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The extension of Willmore’s method into 4-space
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Abstract. We present a new method for finding the Frenet vectors and the curvatures of
the transversal intersection curve of three implicit hypersurfaces by extending the method
of Willmore into four-dimensional Euclidean space.

AMS subject classifications: 53A04, 53A05

Key words: implicit hypersurface, implicit curve, transversal intersection, curvatures

1. Introduction

It is known that all geometric properties of a parametrically given regular space
curve can be computed, [3, 10 - 12]. But, if the space curve is given as an intersec-
tion curve and if the parametric equation for the curve cannot readily be obtained,
then the computations of curvatures and Frenet vectors become harder. For that
reason, various methods have been given for computing the Frenet apparatus of the
intersection curve of two surfaces in Euclidean 3-space, and of three hypersurfaces
in Euclidean 4-space. The intersection of (hyper)surfaces can be either transversal
or tangential. In the case of transversal intersection, in which the normal vectors
of the (hyper)surfaces are linearly independent, the tangential direction at an inter-
section point can be computed simply by the vector product of the normal vectors
of (hyper)surfaces. Hartmann [7] provides formulas for computing the curvature of
the intersection curves. Ye and Maekawa [15] give algorithms for computing the dif-
ferential geometry properties of both transversal and tangential intersection curves
of two surfaces for all types of intersection problems. Aléssio [1] describes how to
obtain the unit tangent, principal normal, binormal, curvature and the torsion of
two transversally intersecting implicit surfaces using the implicit function theorem.
Goldman [6] derives curvature formulas for space curves defined by the intersection
of two implicit surfaces and also gives the formula of the first curvature of the curve
given as an intersection of n implicit hypersurfaces. Willmore [14] introduces a
derivative operator to provide an algorithm for finding the curvature and the torsion
of implicitly defined space curves. Recently, Aléssio [2] has studied differential geom-
etry properties of the transversal intersection curve of three implicit hypersurfaces
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http://www.mathos.hr/mc c⃝2012 Department of Mathematics, University of Osijek
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in 4-space using the implicit function theorem. He also generalizes the method of
Ye and Maekawa into 4-space by taking a different base of the normal hyperplane.
Besides, Düldül [4] computes the Frenet apparatus of the transversal intersection
curve of three parametric hypersurfaces in Euclidean 4-space.

In this paper, we study differential geometry properties of implicitly defined
space curves in four-dimensional Euclidean space. The purpose of this paper is
to extend the method of Willmore into 4-space and obtain the Frenet vectors and
the curvatures of the intersection curve of three transversally intersecting implicit
hypersurfaces. Also, we give the extension of the well known Joachimsthal’s theorem.

As it is mentioned above, for such an intersection problem in 4-dimensional
Euclidean space, Aléssio proposed two different methods. For that reason, compared
with these methods, one can ask:

- What is the benefit of your new method?, or

- Is this method better than the others?

First of all, we do not claim that our method is better than the others. But, our
extension may have some advantages with respect to the others in 4-space. According
to our method, we do not need to

- test the Jacobian determinants whether they are zero or not,

- compute any Hessian matrices and their derivatives,

- solve any linear equation systems with three unknowns,

- obtain the fourth derivative vector of the intersection curve

at the intersection point. Our extension uses only scalar and ternary products in
4-space. This method can be generalized into n-space (at least for calculating the
curvatures k1 and k2) for the transversal intersection of n−1 implicit hypersurfaces.

In Section 2, we introduce the definition of a ternary product of three vectors and
essential reviews of differential geometry of curves and surfaces. Section 3 includes
the extension of Willmore’s method developed for finding the Frenet apparatus of the
intersection curve of three transversally intersecting implicit hypersurfaces. Finally,
we give the extended Joachimsthal’s theorem. As an application of our method, an
example is included at the end of the paper.

2. Preliminaries

Definition 1. Let {e1, e2, e3, e4} be the standard basis of four-dimensional Eu-
clidean space E4. The ternary product (or vector product) of the vectors x =∑4

i=1 xiei, y =
∑4

i=1 yiei, and z =
∑4

i=1 ziei is defined by [8, 13]

x⊗ y ⊗ z =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣ .
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The ternary product x⊗ y ⊗ z yields a vector that is orthogonal to x,y, and z.
Let M ⊂ E4 be a regular hypersurface given implicitly by f(x, y, z, w) = 0

and let α : I ⊂ R → M be an arbitrary curve with arc length parametrization. If
{t,n,b1,b2} is the moving Frenet frame along α, then the Frenet formulas are given
by [5] 

t′ = k1n,

n′ = −k1t+ k2b1,

b′
1 = −k2n+ k3b2,

b′
2 = −k3b1,

(1)

where t,n,b1, and b2 denote the tangent, the principal normal, the first binormal,
and the second binormal vector fields, respectively; ki, (i = 1, 2, 3) the ith curvature
functions of the curve α (See [2] for the determination of the Frenet frame). Also,

the unit normal vector of M is given by N = ∇f
||∇f || , where ∇f =

(
∂f
∂x ,

∂f
∂y ,

∂f
∂z ,

∂f
∂w

)
.

Using the Frenet formulas, for the derivatives of the curve α, we have

α′ = t, α′′ = k1n, α′′′ = −k21t+ k′1n+ k1k2b1. (2)

3. The extension of Willmore’s method into 4-space

Let M1,M2, and M3 be three regular transversally intersecting hypersurfaces given

by implicit equations fi(x, y, z, w) = 0, (i = 1, 2, 3) and let α(s) =
(
x(s), y(s), z(s), w(s)

)
be their intersection curve with arc length parametrization. Since the unit tan-
gent vector is orthogonal to the normal vectors of hypersurfaces, it is parallel to
∇f1 ⊗∇f2 ⊗∇f3 = h, i.e., λα′ = h. Then, λx′ = h1, λy

′ = h2, λz
′ = h3, λw

′ = h4

and λ2 = ⟨h,h⟩. If we denote

∆ = λ
d

ds
=

(
h1

∂

∂x
+ h2

∂

∂y
+ h3

∂

∂z
+ h4

∂

∂w

)
,

we may write ∆α = h. If we apply ∆ to h = λt, we obtain

∆h = λλ′t+ λ2k1n. (3)

Then, since the unit tangent vector t = h/λ is known, we have

λ′ = ⟨∆h, t⟩/λ, ⟨∆h,∆h⟩ = (λλ′)
2
+ λ4k21.

Hence, the first curvature of the intersection curve is obtained by

k1 =
1

λ2

√
⟨∆h,∆h⟩ − (λλ′)

2
. (4)

Substituting the values of λ′ and k1 into (3) yields the principal normal vector of
the intersection curve as

n =
1

λ2k1
(∆h− λλ′t) . (5)
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If we use (2), we obtain the curvature vector α′′. Operating ∆ on (3) gives

∆2h =
(
λ (λ′)

2
+ λ2λ′′ − λ3k21

)
t+

(
3λ2λ′k1 + λ3k′1

)
n+

(
λ3k1k2

)
b1. (6)

The ternary product of h, ∆h and ∆2h yields

h⊗∆h⊗∆2h = λ6k21k2b2.

Thus, the second binormal vector is obtained by

b2 =
h⊗∆h⊗∆2h

||h⊗∆h⊗∆2h||
(7)

and the first binormal vector is computed by

b1 = b2 ⊗ t⊗ n. (8)

Using b1 and (6), the second curvature of the intersection curve is given by

k2 =
1

λ3k1
⟨∆2h,b1⟩. (9)

We need to find k′1 to obtain the third derivative of the intersection curve. By taking
the scalar product of both hand sides of (6) with n, we obtain

⟨∆2h,n⟩ = 3λ2λ′k1 + λ3k′1 (10)

from which we can find k′1. Hence, α
′′′ can be found by (2).

If we apply ∆ to (6), we get

∆3h = {...}t+ {...}n+ {...}b1 + λ4k1k2k3b2.

Finally, the third curvature of the intersection curve is computed by

k3 =
1

λ4k1k2
⟨∆3h,b2⟩. (11)

Remark 1. If the first curvature k1 is zero at a point, then (5) does not define the
principal normal vector. (If k1 is identically zero, then the intersection curve is a
straight line. In this case, the Frenet frame of the curve is not defined.)

We assume here that k1 vanishes at a point Q. In this case h and ∆h are linearly
dependent at Q. Let Si =

{
h,∆ih

}
, (i = 2, 3, ...). If r is the first value of i which

makes the set Si linearly independent at Q, then we have k1 = k′1 = ... = k
(r−2)
1 = 0

and k
(r−1)
1 ̸= 0. In this case, we have

∆rh = µt+ λr+1k
(r−1)
1 n,

where µ depends on λ and its derivatives up to rth order. Hence, the last equation
defines the principal normal vector at Q.
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Let Dj =
{
h,∆rh,∆r+jh

}
, (j = 1, 2, ...), and let s be the first value of j which

makes the set Dj linearly independent at Q. In this case, the second and the first
binormal vectors of the intersection curve can be computed by

b2 =
h⊗∆rh⊗∆r+sh

||h⊗∆rh⊗∆r+sh||

and b1 = b2⊗t⊗n, respectively (If the second curvature k2 is identically zero, then
the curve is a planar curve in 4-space, that is, b1 and b2 are not defined).

If s = 1, then k2 ̸= 0. In this case, the second curvature is given by

k2 =
⟨∆r+1h,b1⟩
rλr+2k

(r−1)
1

and the third curvature is obtained by

k3 =
⟨∆r+2h,b2⟩(∑r

i=1 i
)
λr+3k

(r−1)
1 k2

If s > 1, then we have k2 = k′2 = ... = k
(s−2)
2 = 0 and k

(s−1)
2 ̸= 0. In this case,

substituting these values into ∆r+s+1h yields the third curvature k3.

4. The extended Joachimsthal’s theorem

Theorem 1. Suppose that the hypersurfaces M1,M2, and M3 intersect through a
smooth curve α = α(s) in Euclidean 4-space and let θij be the angle between the
linearly independent unit normal vectors Ni and Nj (restricted to α) of the hyper-
surfaces. Assume that α is a line of curvature on Mi and Mj. Then, α is a line of
curvature on Mk if and only if θik and θjk are constant along α.

Proof. Let α be a line of curvature on M1 and M2. Then,

d

ds
Ni = N′

i = −λit, i = 1, 2 (12)

where λi are principal curvatures on Mi.

If we differentiate ⟨Ni,N3⟩ = cos θi3 with respect to “s” and use (12), we get

⟨Ni,N
′
3⟩ = −dθi3

ds
sin θi3. (13)

(⇒) Let α be a line of curvature on M3. Hence, we also have N′
3 = −λ3t. Since

θi3 ̸= 0, π, using (13) we obtain θi3 =constant (i = 1, 2) along α.

(⇐) Let θi3(i = 1, 2) be constant along α. From (13) we get N′
3 ⊥ Ni which

yield N′
3 ∥ t, i.e. N′

3 = λt for some λ. In other words, α is a line of curvature on
M3.
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3D scalar fields (points in three-dimensional space with associated function val-
ues) and 3D objects in motion take an important role in many real world applications.
Put into 4-space, the 3D scalar field can be considered as an implicit hypersurface
defined by the equation w − f(x, y, z) = 0. Also, given a surface in 3-space with its
implicit equation g(x, y, z) = 0 and allowing this surface to move on a trajectory,
a continuous family of surfaces is generated, each of which may be specified by a
particular value of time, ”t”. This family of surfaces G(x, y, z, t) = 0 may be thought
of as a hypersurface in four-dimensional space [9, 16].

Now, let us give an example in which the hypersurfaces are generated by moving
2-surfaces in 3-space.

Example 1. Let us consider the surfaces

S1 : y3 + z = 0, S2 : y2 − x = 0, S3 : y − 1 = 0

in Euclidean 3-space. If the surfaces S1 and S2 move in the positive y-direction and
the surface S3 moves in the negative y-direction, we get the corresponding hypersur-
faces in 4-space as (the time parameter is denoted by w)

M1 : f1(x, y, z, w) =(y − w)3 + z = 0,

M2 : f2(x, y, z, w) =(y − w)2 − x = 0,

M3 : f3(x, y, z, w) =y + w − 1 = 0.

Let us find the Frenet vectors and the curvatures of the intersection curve at the
intersection point P = (1, 0, 1, 1). Since

∇f1 =
(
0, 3(y − w)2, 1,−3(y − w)2

)
,

∇f2 =
(
− 1, 2(y − w), 0,−2(y − w)

)
,

∇f3 =(0, 1, 0, 1),

we get

h =
(
− 4(y − w),−1, 6(y − w)2, 1

)
. (14)

If we apply ∆ to (14) consecutively, we obtain

∆h =λ

(
− 4(y′ − w′), 0, 12(y − w)(y′ − w′), 0

)
, (15)

∆2h =λλ′

(
− 4(y′ − w′), 0, 12(y − w)(y′ − w′), 0

)

+ λ2

(
− 4(y′′ − w′′), 0, 12(y′ − w′)2 + 12(y − w)(y′′ − w′′), 0

)
, (16)
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∆3h =
(
λ(λ′)2 + λ2λ′′)(− 4(y′ − w′), 0, 12(y − w)(y′ − w′), 0

)

+ 3λ2λ′

(
− 4(y′′ − w′′), 0, 12(y′ − w′)2 + 12(y − w)(y′′ − w′′), 0

)
(17)

+ λ3

(
− 4(y′′′ − w′′′), 0, 36(y′ − w′)(y′′ − w′′) + 12(y − w)(y′′′ − w′′′), 0

)
.

Then, we have
h(P ) = (4,−1, 6, 1), λ(P ) = ±3

√
6.

So, for λ(P ) = 3
√
6, we find the unit tangent vector of the intersection curve as

t(P ) =
h(P )

λ(P )
=

(
4

3
√
6
,
−1

3
√
6
,
2√
6
,

1

3
√
6

)
. (18)

Using (15) and (18), we obtain

∆h(P ) = (8, 0, 24, 0)

which yields

λ′(P ) =
88

27
, k1(P ) =

8
√
21

243
.

Substituting the obtained results into (5) gives the principal normal vector

n(P ) =

(
−17

6
√
21

,
11

6
√
21

,
5

2
√
21

,
−11

6
√
21

)
. (19)

Hence, we get α′′(P ) =
(−68
729 ,

44
729 ,

20
243 ,

−44
729

)
. If we substitute the coordinates of α′(P )

and α′′(P ) into (16), we have

∆2h(P ) = (0, 0, 48, 0).

Thus, the second and the first binormal vectors of the intersection curve are found
from (7) and (8) as

b2(P ) =

(
0,

−1√
2
, 0,

−1√
2

)
, b1(P ) =

(
3

2
√
7
,

3

2
√
7
,
−1

2
√
7
,
−3

2
√
7

)
. (20)

Using b1 and (9), we find the second curvature as k2(P ) = −3
√
2

28 . Substituting the
known values into (10) yields k′1(P ) = −3308

6561
√
14
. Then, we obtain the third derivative

of the intersection curve from (2) as

α′′′(P ) =

(
8384

59049
√
6
,
−64568

59049
√
6
,

−29624

137781
√
6
,

64568

59049
√
6

)
.

On the other hand, the scalar product of both hand sides of (10) with t gives us

⟨∆h, t⟩ = λ (λ′)
2
+ λ2λ′′ − λ3k21.
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Hence, we get
(
λ (λ′)

2
+λ2λ′′

)
(P ) = 912

√
6. If we substitute these results into (17),

we find

∆3h(P ) =

(
2620160

729
, 0,

2620160

243
, 0

)
which yields k3(P ) = 0.

5. Conclusion

In this paper, the method of Willmore which provides an algorithm for computing
the curvature and torsion of implicitly defined space curves is extended into four-
dimensional Euclidean space. We show that all differential geometry properties of
the transversal intersection curve of three implicit hypersurfaces can also be obtained
by our new method besides the methods of Aléssio. Our new method may have some
advantages in relation to the other methods. But, the advantages with respect to
the others in 4-space can be reversed depending on the implicit equations of the
intersecting hypersurfaces.
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