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1. Introduction and motivation

For a natural number m and two indeterminates q, x with |q| < 1, the q–shifted
factorials of infinite order are defined by

(x; q)∞ =
∞∏

n=0

(1− xqn) and Em =
∞∏
k=1

(1− qkm).

The multi–parameter expression for the former will be abbreviated as

[α, β, · · · , γ; q]∞ = (α; q)∞(β; q)∞ · · · (γ; q)∞.

Let p(n) be the unrestricted partition function defined by the generating function

∞∑
n=0

p(n)qn =
1

(q; q)∞
=

1

E1
.

Ramanujan [14] discovered the following three congruences

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11);

and the two beautiful identities (cf. Hardy [12, Chapter VI])
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∞∑
n=0

p(5n+ 4)qn = 5
(q5; q5)5∞
(q; q)6∞

= 5
E5

5

E6
1

,

∞∑
n=0

p(7n+ 5)qn = 7
(q7; q7)3∞
(q; q)4∞

+ 49q
(q7; q7)7∞
(q; q)8∞

= 7
E3

7

E4
1

+ 49q
E7

7

E8
1

.

For complete proofs of these generating functions and their implications, the reader
can consult the book by Chu and DiClaudio [8, Chapter H].

By means of the generating function approach devised by Atkin [2] and then
employed by Hirschhorn–Hunt [13], Chan and Cooper [5] recently proved a family
of congruences for c(n) modulo powers of 2. The two simplest cases of them are the
following congruences

c(2n+ 1) ≡ 0 (mod 2),

c(4n+ 3) ≡ 0 (mod 4);

where the multipartition function c(n) is defined by the power series expansion∑
n≥0

c(n)qn =
1

(q; q)2∞(q3; q3)2∞
=

1

E2
1E

2
3

.

Inspired by these relations, in this paper we shall investigate congruence properties
for the integer sequences {C(n),C(n), D(n)} defined respectively by the generating
functions

∞∑
n=0

C(n)qn =
1

(q; q)∞(q3; q3)∞
=

1

E1E3
,

∞∑
n=0

C(n)qn = (−q; q)2∞(−q3; q3)2∞ =
E2

2E
2
6

E2
1E

2
3

,

∞∑
n=0

D(n)qn =
(q3; q3)4∞
(q; q)4∞

=
E4

3

E4
1

;

which can be interpreted in terms of multipartitions (cf. Andrews [1]). We shall
show that these sequences satisfy the following congruence relations

C(4n+ 2) ≡ 0 (mod 2),

C(4n+ 3) ≡ 0 (mod 2);

C(2n+ 1) ≡ 0 (mod 2),

C(4n+ 3) ≡ 0 (mod 8);

D(2n+ 1) ≡ 0 (mod 4),

D(4n+ 3) ≡ 0 (mod 36);

and establish product expressions for their corresponding generating functions.
Our approach will essentially be the multi–section series method, that has been

used by Chu and Wang [9] to investigate Rogers–Ramanujan identities. Denote the
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m-th root of unity by ωm = exp( 2πim ). Then for the nonnegative integer r with
0 ≤ r < m and the formal power series defined by ϕ(x) :=

∑
n≥0 Ω(n)x

n, there
holds the following multi–section series modulo m (cf. Comtet [10, p. 84])

∑
n≥0

Ω(mn+ r)xmn+r =
1

m

m∑
k=1

ω−kr
m ϕ(xωk

m). (1)

This will be combined with Jacobi’s triple product identity (cf. Bailey [3, §8.6])

[q, x, q/x; q]∞ =
∞∑

k=−∞

(−1)kq(
k
2)xk (2)

and three three-term relations from the theory of theta functions. The first one is
the fundamental relation originally due to Weierstrass (cf. Whittaker–Watson [15,
p. 451]) which can equivalently be reformulated as follows. For the five complex
parameters a, b, c, d, e subject to a2 = bcde, there holds the theta function identity
(cf. Chu [6, Theorem 1.1]):

⟨a/b, a/c, a/d, a/e; q⟩∞ − ⟨b, c, d, e; q⟩∞ = b ⟨a, a/bc, a/bd, a/be; q⟩∞, (3)

where the modified Jacobi theta function is defined by

⟨α, β, · · · , γ; q⟩∞ = ⟨α; q⟩∞⟨β; q⟩∞ · · · ⟨γ; q⟩∞ and ⟨x; q⟩∞ = (x; q)∞(q/x; q)∞.

The other two relations read as the following equations [7, Proposition 3]

⟨−x,−y; q⟩∞ + ⟨x, y; q⟩∞ = 2(−q; q)2∞⟨−xy,−qx/y; q2⟩∞, (4)

⟨−x,−y; q⟩∞ − ⟨x, y; q⟩∞ = 2x(−q; q)2∞⟨−qxy,−q2x/y; q2⟩∞. (5)

The rest of the paper will be organized as follows. The next section will prove
the two congruence relations for C(4n+2) and C(4n+3) as well as their generating
functions, that will be utilized to review the congruences due to Chan and Cooper [5].
The second section will be devoted to the congruences for C(2n+ 1), C(4n+ 3) and
their generating functions. In the third section, we shall establish the congruences for
D(2n+1) and D(4n+3) as well as their generating functions, where as preliminaries,
new proofs will be presented for the two relations concerning the theta function z(q)
that appeared in both Berndt [4, p. 110] and Chan–Cooper [5].

2. Congruences for partition function C(n)

For the multipartition function C(n) defined by the power series expansion∑
n≥0

C(n)qn =
1

(q; q)∞(q3; q3)∞
=

1

E1E3

we shall prove, in this section, the following theorem.
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Theorem 1. There hold the following two congruence relations

C(4n+ 2) ≡ 0 (mod 2), (6a)

C(4n+ 3) ≡ 0 (mod 2); (6b)

and the quartic–section series generating functions

∑
n≥0

C(4n+ 2)qn = 2
E4

2E
12
6 E2

8

E6
1E

9
3E4E4

12

+ 4q
E2

2E
5
4E

4
12

E6
1E

5
3E

2
8

, (7a)

∑
n≥0

C(4n+ 3)qn = 4
E4

4E
2
6E

5
12

E5
1E

6
3E

2
24

+ 2q
E12

2 E4
6E

2
24

E9
1E

6
3E

4
4E12

. (7b)

Proof. Denote by f(q) the generating function

f(q) :=
∑
n≥0

C(n)qn =
1

(q; q)∞(q3; q3)∞
.

Applying formula (1), we have the following quartic-section series

∑
n≥0

C(4n+ 2)q4n+2 =
1

4

4∑
k=1

(−1)kf(qik) =
1

4

{
f(q) + f(−q)− f(qi)− f(−qi)

}
.

Now we are going to examine the four terms inside the braces. Firstly, the sum of
the first two terms can be manipulated as

f(q) + f(−q) =
1

(q; q)∞(q3; q3)∞
+

1

(−q;−q)∞(−q3;−q3)∞

=
(−q; q2)∞(−q3; q6)∞ + (q; q2)∞(q3; q6)∞
(q2; q2)∞(q2; q4)∞(q6; q6)∞(q6; q12)∞

.

According to (4), the numerator in the last fraction can be factorized into

⟨−q,−q3; q6⟩∞ + ⟨q, q3; q6⟩∞ = 2(−q6; q6)2∞⟨−q4,−q4; q12⟩∞

which leads to the following simplified expression

f(q) + f(−q) =
2(−q6; q6)2∞⟨−q4; q12⟩2∞

(q2; q2)∞(q2; q4)∞(q6; q6)∞(q6; q12)∞

=2
(−q2; q2)∞(−q6; q6)3∞(−q4; q4)2∞
(q2; q2)∞(q6; q6)∞(−q12; q12)2∞

.

Replacing q by qi in the last equality yields another one

f(qi) + f(−qi) =
2(q2;−q2)∞(q6;−q6)3∞(−q4; q4)2∞

(−q2;−q2)∞(−q6;−q6)∞(−q12; q12)2∞
.
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Combining the last two equations and then simplifying the result, we have

∑
n≥0

C(4n+ 2)q4n+2 =
1

4

{
f(q) + f(−q)− f(qi)− f(−qi)

}
=

E4
8E

2
24

2E6
4E

5
12

(8a)

×

{[
q4,−q2,−q2; q4

]
∞

[
q12,−q6,−q6; q12

]2
∞

−
[
q4, q2, q2; q4

]
∞

[
q12, q6, q6; q12

]2
∞

}
. (8b)

Observing that the right-most fraction displayed (8a) is, in fact, a series in base q4,
the coefficient C(4n+ 2) will be even if we can show that each coefficient of q4m+2

with m ∈ N0 for the series inside the braces displayed in (8b) is divisible by 4. In
view of the Jacobi triple product identity (2), this is equivalent to the divisibility by
4 for each coefficient of q2m+1 in the triple sum∑

i,j,k

qi
2+3j2+3k2

{
1− (−1)i+j+k

}
= 2

∑
i+j+k≡21

qi
2+3j2+3k2

, (8c)

where a ≡2 b denotes the congruence a ≡ b (mod 2) for brevity. This is justified by
the fact that the number of integer solutions of Diophantine equation

2m+ 1 = i2 + 3j2 + 3k2

is even (including the case when there is no solution), which contributes to factor 2.
Therefore, we have proved the congruence relation displayed in (6a).

Another congruence relation displayed in (6b) can be shown analogously. In fact,
applying (1) gives the following quartic-section series expression

∑
n≥0

C(4n+ 3)q4n+3 =
1

4

4∑
k=1

i−3kf(qik) =
1

4

{
f(q)− f(−q) + if(qi)− if(−qi)

}
.

Rewriting the sum of the first two terms inside the braces

f(q)− f(−q) =
(−q; q2)∞(−q3; q6)∞ − (q; q2)∞(q3; q6)∞
(q2; q2)∞(q2; q4)∞(q6; q6)∞(q6; q12)∞

and then factorizing, by means of (5), the numerator

⟨−q,−q3; q6⟩∞ − ⟨q, q3; q6⟩∞ = 2q(−q2; q4)2∞(−q12; q12)2∞

we derive the following equality

f(q)− f(−q) =
2q (−q2; q4)2∞(−q12; q12)2∞

(q2; q2)∞(q6; q6)∞(q2; q4)∞(q6; q12)∞
,

which leads, under replacement q → qi, to another expression

f(qi)− f(−qi) =
2qi (q2; q4)2∞(−q12; q12)2∞

(−q2;−q2)∞(−q6;−q6)∞(−q2; q4)∞(−q6; q12)∞
.
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Combining the last two equations and then simplifying the result, we get∑
n≥0

C(4n+ 3)q4n+3 =
1

4

{
f(q)− f(−q) + if(qi)− if(−qi)

}
=

qE2
8E

4
24

2E5
4E

6
12

(9a)

×

{[
q4,−q2,−q2; q4

]2
∞

[
q12,−q6,−q6; q12

]
∞

−
[
q4, q2, q2; q4

]2
∞

[
q12, q6, q6; q12

]
∞

}
. (9b)

By carrying out the same procedure as that for C(4n + 2), we can check that the
congruence C(4n+ 3) ≡ 0 (mod 2) is equivalent to the fact that each coefficient of
q2m+1 is a multiple of 4 in the following triple sum∑

i,j,k

qi
2+j2+3k2

{
1− (−1)i+j+k

}
= 2

∑
i+j+k≡21

qi
2+j2+3k2

. (9c)

This is guaranteed by the fact that the number of integer solutions of the following
Diophantine equation is also even

2m+ 1 = i2 + j2 + 3k2.

Furthermore, we can compute the generating functions for C(4n+2) and C(4n+
3). According to the Jacobi triple product identity (2), it is not hard to check∑

k≡20

qk
2

=
[
q8,−q4,−q4; q8

]
∞ =

E5
8

E2
4E

2
16

(10a)

∑
k≡21

qk
2

= 2q
[
q8,−q8,−q8; q8

]
∞ = 2q

E2
16

E8
; (10b)

and ∑
i+j≡20

qi
2+j2 =

[
q4,−q2,−q2; q4

]2
∞ =

E10
4

E4
2E

4
8

(11a)

∑
i+j≡21

qi
2+j2 = 4q

[
q4,−q4,−q4; q4

]2
∞ = 4q

E4
8

E2
4

. (11b)

In view of (8c) and (9c), these equalities can be utilized to simplify the triple sums
displayed in (8b) and (9b) as follows

Eq(8b) = 2
∑
i≡21

q2i
2 ∑
j+k≡20

q6j
2+6k2

+ 2
∑
i≡20

q2i
2 ∑
j+k≡21

q6j
2+6k2

;

= 4q2
E10

24E
2
32

E4
12E16E4

48

+ 8q6
E5

16E
4
48

E2
8E

2
24E

2
32

;

Eq(9b) = 2
∑
k≡20

q6k
2∑
i+j≡21

q2i
2+2j2 + 2

∑
k≡21

q6k
2∑
i+j≡20

q2i
2+2j2

= 8q2
E4

16E
5
48

E2
8E

2
24E

2
96

+ 4q6
E10

8 E2
96

E4
4E

4
16E48

.



Congruences of three multipartition functions 439

Substituting them respectively into (8a-8b) and (9a-9b), canceling the common
q-factors across the equations and finally replacing q4 by q, we get the two generating
functions displayed in (7a) and (7b).

Summing up, we have completed the proof of Theorem 1.

Now we are ready to review the two congruence relations due to Chan and
Cooper [5]. For the multipartition function c(n) defined by the power series expan-
sion ∑

n≥0

c(n)qn =
1

(q; q)2∞(q3; q3)2∞
=

1

E2
1E

2
3

.

Chan and Cooper [5] found recently the following interesting result, which has been
the primary motivation for the authors to carry on the present research.

Theorem 2 (See [5]). There hold the congruence relations

c(2n+ 1) ≡ 0 (mod 2), (12a)

c(4n+ 3) ≡ 0 (mod 4); (12b)

and the generating function

∞∑
n=0

c(2n+ 1)qn = 2
E4

2E
4
6

E6
1E

6
3

. (13)

We shall prove that this theorem is obtainable from our Theorem 1, which is
partially supported by the observation that the generating function for c(n) results
in the square of that for C(n). The informed reader will notice that Chan and
Cooper [5] have successfully established some additional congruences modulo powers
of 2 and the corresponding generating functions, that we do not intend to pursue
here.

Proof. Note that c(n) can be expressed as the following convolution

c(n) =
n∑

k=0

C(k)C(n− k). (14)

Splitting the sum with respect to k into two sums according to the parity of k and
then inverting the summation order for the second sum, we get

c(2n+ 1) =
n∑

k=0

C(2k)C(2n+ 1− 2k) +
n∑

k=0

C(2k + 1)C(2n− 2k)

= 2

n∑
k=0

C(2k)C(2n+ 1− 2k)

which confirms the first congruence relation.
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Similarly, classifying the summation index k according to its residues modulo 4
and then pairing the four sums into two ones, we have the expression

c(4n+ 3) =

n∑
k=0

C(4k)C(4n+ 3− 4k) +

n∑
k=0

C(4k + 1)C(4n+ 2− 4k)

+
n∑

k=0

C(4k + 2)C(4n+ 1− 4k) +
n∑

k=0

C(4k + 3)C(4n− 4k)

= 2
n∑

k=0

C(4k + 2)C(4n+ 1− 4k) + 2
n∑

k=0

C(4k + 3)C(4n− 4k).

In view of Theorem 1, each term in the last two sums is divisible by 2. Therefore
c(4n+ 3) is a multiple of 4, which proves the second congruence.

Generating function (13) follows directly from (1) and (3). In fact, we have

2
∞∑

n=0

c(2n+ 1)q2n+1 =
1

(q; q)2∞(q3; q3)2∞
− 1

(−q;−q)2∞(−q3;−q3)2∞

=
E2

4E
2
12

E4
2E

4
6

{
(−q; q2)2∞(−q3; q6)2∞ − (q; q2)2∞(q3; q6)2∞

}
.

Rewriting the difference in the braces, through (3), we can factorize it into

⟨−q,−q3,−q5,−q3; q6⟩∞ − ⟨q, q3, q5, q3; q6⟩∞ =q⟨−q6,−1,−q2,−q2; q6⟩∞

=4q
E2

4E
2
12

E2
2E

2
6

.
(15)

It is a routine to check that this expression leads to the generating function for
{c(2n+ 1)} stated in Theorem 2.

We remark that in view of convolution (14), the generating function expression
(13) can also be derived from the product of f(q) + f(−q) and f(q) − f(−q), that
appeared in the proof of Theorem 1.

3. Congruences for partition function C(n)

Similarly to the partition function c(n) treated by Chan and Cooper [5], we may
define the following reciprocal partition function

∞∑
n=0

C(n)qn = (−q; q)2∞(−q3; q3)2∞ =
E2

2E
2
6

E2
1E

2
3

.

Interestingly enough, C(n) admits similar congruences and generating functions.

Theorem 3. There hold the following congruence relations

C(2n+ 1) ≡ 0 (mod 2), (16a)

C(4n+ 3) ≡ 0 (mod 8); (16b)
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and the generating functions

∞∑
n=0

C(2n+ 1)qn = 2
E4

2E
4
6

E4
1E

4
3

, (17a)

∞∑
n=0

C(4n+ 3)qn = 8
E2

2E
4
4E

14
6

E6
1E

10
3 E4

12

+ 8q
E14

2 E2
6E

4
12

E10
1 E6

3E
4
4

. (17b)

Proof. It suffices to show both generating function expressions.

Generating function (17a) follows directly from (1) and (3). In fact, we have the
bisection series

2
∞∑

n=0

C(2n+ 1)q2n+1 = (−q; q)2∞(−q3; q3)2∞ − (q;−q)2∞(q3;−q3)2∞

=
E2

4E
2
12

E2
2E

2
6

{
(−q; q2)2∞(−q3; q6)2∞ − (q; q2)2∞(q3; q6)2∞

}
.

Factorizing the difference in the braces through (15), and then replacing q2 by q, we
get the generating function for C(2n+ 1) stated in Theorem 3.

Recalling (17a), the quartic–section series generating function can be expressed
as

∞∑
n=0

C(4n+ 3)q2n+1 = (−q; q)4∞(−q3; q3)4∞ − (q;−q)4∞(q3;−q3)4∞

=
E4

4E
4
12

E6
2E

6
6

{[
q2,−q,−q; q2

]2
∞

[
q6,−q3,−q3; q6

]2
∞

−
[
q2, q, q; q2

]2
∞

[
q6, q3, q3; q6

]2
∞

}
.

According to Jacobi’s triple product identity (2), the difference inside the braces can
be expressed as quadruplicate sums

2
∑

i+j+k+ℓ≡21

qi
2+j2+3k2+3ℓ2 =2

∑
i+j≡21

qi
2+j2

∑
k+ℓ≡20

q3k
2+3ℓ2

+ 2
∑

i+j≡20

qi
2+j2

∑
k+ℓ≡21

q3k
2+3ℓ2

=8q
E4

8E
10
12

E2
4E

4
6E

4
24

+ 8q3
E10

4 E4
24

E4
2E

4
8E

2
12

,

where the last line has been justified by (11a) and (11b). Therefore, we have found

∞∑
n=0

C(4n+ 3)q2n+1 = 8q
E2

4E
4
8E

14
12

E6
2E

10
6 E4

24

+ 8q3
E14

4 E2
12E

4
24

E10
2 E6

6E
4
8

which is under q2 → q equivalent to generating function (17b).
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4. Congruences for partition function D(n)

Following Chan and Cooper [5], define the modular function by

z(q) = q
∞∏
k=0

(1− q12k+2)2(1− q12k+10)2

(1− q12k+4)2(1− q12k+8)2
= q

E2
2E

4
12

E4
4E

2
6

. (18)

Firstly, we present a new proof for the following modular equations.

Lemma 4.

1− z(q) =
E1E

7
6

E2E3
3E

2
4E

2
12

, (19a)

1− 3z(q) =
E3

1E12

E3E3
4

. (19b)

Under the replacement q → −q, the last equations can equivalently be restated
as

1 + z(q) =
E2

2E
3
3E12

E1E3
4E

2
6

, (20a)

1 + 3z(q) =
E9

2E3E
2
12

E3
1E

6
4E

3
6

. (20b)

It should be pointed out that (20a) has explicitly appeared in Berndt [4, P110;
Lemma 5.3], while (19b) can be found in Cooper [11, Eq 2.9].

Proof. According to the definition of z(q), it is not hard to reformulate 1− z(q) as

1− z(q) =1− q
E2

2E
4
12

E4
4E

2
6

=
E2

12

E2
4

{
E2

4

E2
12

− q
E2

2E
2
12

E2
4E

2
6

}
=
E2

12

E2
4

{
⟨q4, q4; q12⟩∞ − q⟨q2, q2; q12⟩∞

}
=
E2

12

E2
4

{
⟨q4, q2,−q2,−q2; q6⟩∞ − q⟨q5, q,−q,−q; q6⟩∞

}
.

Specifying {a, b, c, d, e} with {q5, q, q3,−q3,−q3} respectively in the three–term re-
lation (3), we can factorize the difference inside the braces into

⟨q4, q2,−q2,−q2; q6⟩∞ − q⟨q5, q,−q,−q; q6⟩∞ = ⟨q, q3,−q3,−q3; q6⟩∞ =
E1E

7
6

E2E3
3E

4
12

which leads to the first modular equation (19a).
Our approach to the second identity (19b) is not so direct. We start from the

equation

2

{
1− E3

1E12

E3E3
4

}
= 2

E3
2E12

E3
4E6

{
E3

4E6

E3
2E12

− E3
1E6

E3
2E3

}
(21a)

=
E3

2E12

E3
4E6

{
⟨−1,−q2,−q2,−q2; q6⟩∞ − 2⟨q3, q, q, q; q6⟩∞

}
. (21b)
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Replacing {a, b, c, d, e} in (3) by {−q3,−1,−q2,−q2,−q2} respectively, we have first
the factorization

⟨−1,−q2,−q2,−q2; q6⟩∞ − ⟨q3, q, q, q; q6⟩∞ = ⟨−q3,−q,−q,−q; q6⟩∞.

Then the difference inside the braces displayed in (21b) can be reformulated as

⟨−1,−q2,−q2,−q2; q6⟩∞ − 2⟨q3, q, q, q; q6⟩∞
= ⟨−q3,−q,−q,−q; q6⟩∞ − ⟨q3, q, q, q; q6⟩∞

=
(−q; q2)3∞
(−q3; q6)∞

− (q; q2)3∞
(q3; q6)∞

=
(q2; q4)∞
(q6; q12)∞

{
⟨−q, qω; q2⟩∞ − ⟨q,−qω; q2⟩∞

}
,

where ω := ω3 = e
2πi
3 is the cubic root of unity for brevity. By means of (5), we can

factorize the last difference into the expression

⟨−q, qω; q2⟩∞ − ⟨q,−qω; q2⟩∞ = 2q(−q2; q2)2∞⟨q4ω, q4/ω; q4⟩∞

= 6q
(q12; q12)2∞
(q2; q2)2∞

= 6q
E2

12

E2
2

.

Recalling (21a) and (21b), we confirm finally the second equation (19b) as follows

1− E3
1E12

E3E3
4

= 3
E2

2E
4
12

E4
4E

2
6

= 3z(q).

This completes the proof of the two equations in Lemma 4.

By means of the two modular equations displayed in Lemma 4, we are going to
establish two congruence relations and the corresponding generating functions for
the partition function D(n) defined by

∞∑
n=0

D(n)qn =
(q3; q3)4∞
(q; q)4∞

=
E4

3

E4
1

.

Theorem 5. There hold the following congruence relations

D(2n+ 1) ≡ 0 (mod 4), (22a)

D(4n+ 3) ≡ 0 (mod 36); (22b)

and the corresponding generating functions

∞∑
n=0

D(2n+ 1)qn = 4
E5

2E
3
3E6

E9
1

, (23a)

∞∑
n=0

D(4n+ 3)qn = 36
E14

2 E8
3

E20
1 E2

6

+ 108q
E6

2E
4
3E

6
6

E16
1

. (23b)
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Proof. It is obvious that the two congruences are implied by the corresponding
generating functions. Multiplying (20a) and (20b) and then dividing the resulting
equation by z(q), we get the equality

q
{
1/z(q) + 4 + 3z(q)

}
=

E9
2E

4
3

E4
1E

5
4E

3
6E12

.

Therefore, we can reformulate the following generating function

∞∑
n=0

D(n)qn =
E4

3

E4
1

= q
{
1/z(q) + 4 + 3z(q)

}E5
4E

3
6E12

E9
2

.

From the definition, the power series expansion of z(q) contains only odd powers of
q. Hence the bisection series with odd indices reads as follows

∞∑
n=0

D(2n+ 1)q2n = 4
E5

4E
3
6E12

E9
2

.

Under the replacement q2 → q, this directly gives equation (23a).
Rewriting the equality displayed in (20b) as

E3

E3
1

=
{
1 + 3z(q)

} E6
4E

3
6

E9
2E

2
12

we can reformulate equation (23a) as

∞∑
n=0

D(2n+ 1)qn = 4
E18

4 E10
6

E22
2 E6

12

{
1 + 3z(q)

}3

.

There consequently holds the bisection series generating function

∞∑
n=0

D(4n+ 3)q2n+1 = 4
E18

4 E10
6

E22
2 E6

12

{
9z(q) + 27z3(q)

}
.

Under the replacement q2 by q, this equation is clearly equivalent to (23b).

Before concluding the paper, we would like to point out the existence of another
quartic series expression for the generating function of C(4n + 3) that can be de-
rived using the modular function approach. Multiplying (19a) with (20b) and then
dividing by z(q), we get the equation

1

E2
1E

2
3

= q
E4

4E
4
12

E6
2E

6
6

{
1/z(q) + 2− 3z(q)

}
.

From this, we can derive the following alternative generating function for C(4n+ 3)

∞∑
n=0

C(4n+ 3)qn = 8
E12

2 E4
6

E10
1 E6

3

− 24q
E4

2E
12
6

E6
1E

10
3

. (24)
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Comparing the last equation with (17b) leads to the following curious relation

E4
4E

12
6

E4
3E

4
12

+ q
E12

2 E4
12

E4
1E

4
4

=
E10

2 E2
6

E4
1

− 3q
E2

2E
10
6

E4
3

, (25)

which is equivalent to the algebraic equation

1− 1− z(q)

1 + 3z(q)
= z(q)

{
1 + 3

1− z(q)

1 + 3z(q)

}
.

These last two equations show that the new expression (24) is the same as (17b).
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Series, Università degli Studi di Lecce, Edizioni del Grifo, Lecce, 2004.
[9] W.Chu, C.Wang, The Multisection method for triple products and identities of

Rogers–Ramanujan type, J. Math. Anal. Appl. 339(2008), 774–784.
[10] L.Comtet, Advanced Combinatorics, D.Reidel Publishing Company, Dordrecht–

Holland, 1974.
[11] S.Cooper, Series and iterations for 1/π, Acta Arith. 141(2010), 33–58.
[12] G.H.Hardy, Ramanujan: Twelve lectures suggested by his life and work, third edi-

tion, Chelsea, New York, 1978; Originally published by Cambridge University Press,
Cambridge, 1940; Reprinted by the American Mathematical Society, Providence,
RI, 1999.

[13] M.D.Hirschhorn, D.C.Hunt, A simple proof of the Ramanujan conjecture for
powers of 5, J. Reine Angew. Math. 326(1981), 1–17.

[14] S.Ramanujan, Congruence properties of partitions, Math. Zeit. 9(1921), 147–153.
[15] E.T.Whittaker, G.N.Watson, A Course of Modern Analysis, Cambridge Uni-

versity Press, Cambridge, 1952.


