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Abstract. Quantization of a continuous-value signal into a discrete form (or discretization
of amplitude) is a standard task in all analog/digital devices. We consider quantization
of a signal (or random process) in a probabilistic framework. The quantization method
presented in this paper can be applied to signal coding and storage capacity problems. In
order to demonstrate a general approach, both uniform and non-uniform quantization of a
Gaussian process are studied in more detail and compared with a conventional piecewise
constant approximation. We investigate asymptotic properties of some accuracy charac-
teristics, such as a random quantization rate, in terms of the correlation structure of the
original random process when quantization cellwidth tends to zero. Some examples and
numerical experiments are presented.
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1. Introduction

Analog signals correspond to data represented in continuously variable physical
quantities in contrast to the digital representation of data in discrete units. In
many applications, both discretization in time (or sampling) and in amplitude (or
quantizing) are exploited. Due to many factors (e.g., measurement errors, essen-
tial phenomenon randomness) signals are frequently random and therefore random
process models are used. Unlike standard techniques when quantization of a single
random variable is studied, the presented quantization methods are based on the
correlation structure of the model random process and applicable both to coding
and archiving problems for realizations of the process and also to predicting the
necessary capacity of the memory needed for quantized process realizations. Ig-
noring the quantization problem, we may use various approximation methods to
restore an initial random process with a given accuracy (algebraic or trigonometric
polynomials, [15]; splines, [1, 10, 16, 20]; wavelets, [17]). Quantization is generally
less well understood than linear approximation. One of the reasons is that it is a
nonlinear operation. Nevertheless, quantization is a standard procedure for all ana-
log/digital devices. Various quantization problems are considered in the number of
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papers, mostly in applied literature (see, e.g., [4, 5, 21] and references therein). For
a comprehensive overview of quantization techniques, we refer to [9] (see also [8] and
references therein). Some statistical properties of quantizers are also studied in [7].
Let [x] be the integer part of x. The uniform quantizer qε(x) can be defined as

qε(x) = ε[x/ε]

for a fixed cellwidth ε > 0. In the number of quantization levels’ optimization
problems, the non-uniform quantization is used (see, e.g., [9]). Following Bennett’s
notation [3], the non-uniform n-level companding quantizer (or compander) qn,G(x)
is defined as follows:

qn,G(x) = G−1(qn,U [G(x)]),

where G : R → (0, 1) is onto and increasing, and qn,U is the n-level uniform quantizer
on (0, 1),

qn,U (y) =

{
k
n − 1

2n , if y ∈
(
k−1
n , k

n

]
, k = 1, . . . , n− 1,

1− 1
2n , if y ∈

(
n−1
n , 1

)
.

Note that the inverse function S := G−1 provides a transformation from a uni-
form quantization to a non-uniform one. Therefore, the quantization intervals
of the companding quantizer qn,G, I1, n = (−∞, S( 1n )], Ik, n = (S(k−1

n ), S( kn )],
k = 2, . . . , n − 1, and In, n = (S(n−1

n ),∞), and the corresponding quantization

levels’ grid, {uk = uk(n), k = 1, . . . , n} = {S( kn − 1
2n ), k = 1, . . . , n} (cf. generating

densities for regular designs of observation (time) points, see, e.g., [14, 16]). The
quality of a quantizer q(x) can be measured for a random process X(t), t ∈ [0, T ],
for instance, by the maximum mean square error (MMSE)

ε(X) = ε(X, q(X)) := max
t∈[0,T ]

||X(t)− q(X(t))||,

where ∥Y ∥2 := E(Y 2) for a random variable Y . There are quantizers with fixed
or variable codeword length (or rate). Fixed-rate quantizers use all codes (or code-
words) of equal length, say r. In variable-rate quantization, the instant rate r(X) is
the length of the corresponding codeword, i.e., a random variable, and the average
rate

R(X) := E(r(X))

is of interest. The MMSE characterizes restoration quality (i.e., accuracy) of a quan-
tizer whereas the rate concerns the storage capacity needed for quantized process
realizations. Some problems for the fixed-rate quantization of Gaussian processes
and optimal properties of the corresponding Karhunen-Loève expansion are consid-
ered in [13]. This approach is related to reproducing kernel Hilbert space (RKHS)
techniques and some results for ϵ-entropy for sets in a metric space (see also [11, 12]).

Here we consider the uniform and non-uniform quantization with (random)
variable-rate for the linear space Cm[0, T ] of random processes with continuous
quadratic mean (q.m.) derivatives up to the order m ≥ 0. The space Cm[0, T ]
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of non-random functions with continuous derivatives up to the order m can be con-
sidered as a linear subspace of Cm[0, T ] by usual embedding. Let X(t), t ∈ [0, T ],
be a random process (or a signal) with covariance function K(t, s), t, s ∈ [0, T ],
and continuous sample paths. Following the standard notation for crossings of a
level by a continuous function f (see, e.g., [6]), f is said to have a crossing of the
level u at t0 if in each neighborhood of t0 there are points t1 and t2 such that
(f(t1) − u)(f(t2) − u) < 0. Let Nu(f) := Nu(f, T ) denote the number of crossings
of the level u by f in [0, T ]. For a realization of the random process X(t), t ∈ [0, T ],
denote by rε(X) and rn,G(X) the total number of quantization points in [0, T ] (or
random quantization rate) for uniform qε(X) and non-uniform qn,G(X) quantizers,
respectively,

rε(X) :=
∑
k∈Z

Nuk
(X), rn,G(X) :=

n∑
k=1

Nuk
(X).

Note that uniform rε(X) and non-uniform rn,G(X) quantization rates are random
variables whenever X(t), t ∈ [0, T ], is a Gaussian process with continuous sample
paths (see, e.g., [6]). For the random process X(t), t ∈ [0, T ], define also the average
uniform and non-uniform quantization rates as

Rε(X) := E(rε(X)) and Rn,G(X) := E(rn,G(X)), (1)

respectively. We investigate the asymptotic properties of rε(X) and Rε(X) as ε → 0
and, the corresponding non-uniform case, Rn,G(X) as n → ∞.

For a set of random variables Yε, ε > 0, let
a.s.→ denote convergence almost surely

and
s→ in s-mean, s ≥ 1, as ε → 0. Let {x} be the fractional part of x, x = [x]+{x}.

For a random variable Y and a quantizer q(Y ) (uniform or non-uniform), consider the
quantization error e(Y ) := Y − q(Y ). Properties of the quantization errors are con-
sidered in a number of applied papers (see, e.g., [9] and references therein). Shykula
and Seleznjev [19] derive the stochastic structure of the asymptotic quantization
errors for a random variable with values in a finite interval. The asymptotic quan-
tization errors for unbounded quantizers are studied in [18]. Denote by λ2 = λ2(X)
the second spectral moment of a stationary process X(t), t ∈ [0, T ].

In this paper, we study (random) variable-rate uniform and non-uniform quan-
tization of a random process with continuous sample paths. The main distinction
with a number of mentioned results is exploiting correlation properties of a ran-
dom process for evaluation of the rate. Moreover, the developed technique could be
applied to a wide class of random functions. In order to demonstrate the general
approach, the asymptotic properties of the uniform and non-uniform quantizers for
a Gaussian process are studied in more details.

The paper is organized as follows. In Section 2, asymptotic properties of uniform
quantization rate rε(X) for a Gaussian process X(t), t ∈ [0, T ], as ε → 0 are investi-
gated. We study also the asymptotic behavior of uniform and non-uniform average
quantization rates. For some classes of Gaussian processes and a given accuracy, we
compare approximations by a quantized process and by a piecewise constant process.
Section 3 provides some numerical experiments and examples of applications of the
obtained results. Section 4 proves the statements in the previous sections.
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2. Results

For deterministic signals, evaluation of the necessary capacity of the memory for a
quantized sequence is a complicated task in general. We develop an average case
analysis of this problem assuming a probabilistic model. Henceforth, let X(t), t ∈
[0, T ], be a Gaussian zero mean process with covariance function K(t, s), t, s ∈ [0, T ],
and continuous sample paths.

For further references, we introduce the following non-singularity conditions. Let
Y (t), t ∈ [0, T ], Y ∈ C1[0, T ], be a zero mean Gaussian process with covariance
function B(t, s), t, s ∈ [0, T ]. Denote by B11(t, s) = ∂2B(t, s)/(∂t∂s), t, s ∈ [0, T ],
the covariance function of the derivative process Y (1)(t), t ∈ [0, T ]. Let B01(t, s) be
the covariance between Y (t) and Y (1)(s), B01(t, s) = ∂B(t, s)/∂s, t, s ∈ [0, T ]. The
following conditions on Y (t), t ∈ [0, T ], are related to the curve crossing problems
for non-stationary Gaussian processes (see, e.g., [6, Ch. 13]).

(A1) The joint normal distribution for Y (t) and Y (1)(t) is non-singular for each t,
i.e., B(t, t) > 0, B11(t, t) > 0,

∣∣B01(t, t)/
√
B(t, t)B11(t, t)

∣∣ < 1, t ∈ [0, T ].

(A2) B11(t, s), t, s ∈ [0, T ], is continuous at all diagonal points (t, t).

In the following theorem, we investigate the asymptotic behavior of rates rε(X) as
ε → 0 in various convergence modes, specifically, a.s.-convergence and convergence
of the first and the second moments. Denote by

v(X) :=

∫ T

0

∣∣X(1)(t)
∣∣ dt and V (X) := E(v(X))

the variation and the average variation of X(t), t ∈ [0, T ], respectively. Observe that
if X ∈ C2[0, T ], then X(t) is equivalent to a process X̃(t) which, with probability
one, has continuously differentiable sample paths in 0 ≤ t ≤ T (see, e.g., Chapter
9.4 in [6]) and, hence, v(X) is well defined. Let M(X) be the number of crossings
of zero level by a sample path of the process X(1)(t), t ∈ [0, T ], X ∈ C2[0, T ] (i.e.,
the number of local extremes).

Theorem 1. Let X(t), t ∈ [0, T ], X ∈ C2[0, T ], be a zero mean Gaussian process. If
(A1) and (A2) hold for X(1)(t), t ∈ [0, T ], then

(i) |εrε(X)− v(X)| ≤ ε(M(X) + 1) (a.s.) and εrε(X)
a.s.→ v(X) as ε → 0;

(ii) |εRε(X)− V (X)| ≤ ε(E(M(X)) + 1) and εrε(X)
1→ v(X) as ε → 0.

(iii) If additionally X ∈ C3[0, T ], then E|εrε(X)− v(X)|2 ≤ ε2E
(
M(X) + 1

)2
and

εrε(X)
2→ v(X) as ε → 0.

Remark 1. (i) Note that Gaussianity of X(t), t ∈ [0, T ], is a technical assumption
and, for example, Theorem 1 (i) is valid for a wide class of smooth enough processes
with a finite (a.s.) number of local extremes. For the Gaussian case, we evaluate
the rate of convergence (cf. the Banach Theorem for Nu(f), the number of crossings
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of a level u ∈ R by function f). Particularly, in Theorem 1 (ii) we have, by Cramér
and Leadbetter [6] Chapter 13.2,

E(M(X)) =

∫ T

0

∫
R
|z|gt(0, z) dt dz,

where gt(u, z) is the joint probability density function of Gaussian processes X(1)(t)
and X(2)(t), t ∈ [0, T ]. For a stationary Gaussian process X(t), t ∈ [0, T ], with
covariance function K(t, s) = k(t− s), we get

E(M(X)) =
T

π

√
−k(4)(0)

k(2)(0)
.

(ii) Theorem 1 (ii) and (iii) can be generalized to the convergence in mean of
higher order for smooth enough random processes.

(iii) The smoothness condition X ∈ C2[0, T ] is technical and we claim that mean
convergence in Theorem 1(ii) holds even for continuously differentiable (in q.m.)
random functions.

As a corollary of Theorem 1 (ii) and (iii) we have the following proposition,
where the average quantization rate Rε(X) = E(rε(X)) and the variance of rε(X)
are studied asymptotically as ε → 0. Let σ1(t) = K11(t, t)

1/2 and ρ11(t, s) be the
standard deviation and the correlation function of X(1)(t), t, s ∈ [0, T ], respectively.
Denote by

γ(t, s) := 2π−1σ1(t)σ1(s)
((

1− ρ211(t, s)
)1/2

+ ρ11(t, s)
(
π/2− arccos ρ11(t, s)

))
.

Proposition 1. Let X(t), t ∈ [0, T ], X ∈ C2[0, T ], be a zero mean Gaussian process
with covariance function K(t, s). If (A1) and (A2) hold for X(1)(t), t ∈ [0, T ], then

(i) εRε(X) → V (X) =
√
2/π

∫ T

0
σ1(t) dt as ε → 0.

(ii) If X ∈ C3[0, T ], then

lim
ε→0

ε2Var(rε(X)) = Var(v(X))

=

∫∫
[0,T ]2

γ(t, s) dt ds− 2π−1

(∫ T

0

σ1(t) dt

)2

.

The following corollary is an immediate consequence of Proposition 1 (i) for the
stationary case.

Corollary 1. Suppose that X(t), t ∈ [0, T ], X ∈ C2[0, T ], is a zero mean stationary
Gaussian process, λ2 = λ2(X). Then

Rε(X) ∼ ε−1 T
√

2λ2/π as ε → 0.
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In the following theorem, the average quantization rate Rn,G(X) for n-level
companding quantizer qn,G(X) is studied asymptotically as n → ∞. Let pt(z) and
pt(u, z) denote the density function of X(1)(t) and the joint density function of X(t)
and X(1)(t), t ∈ [0, T ], respectively. We introduce the following condition on the
joint distribution of X(t) and X(1)(t), t ∈ [0, T ].

(B) There exists b(t, z) : [0, T ] × R → R such that pt(u|z) = pt(u, z)/pt(z) ≤
b(t, z), u, z ∈ R, t ∈ [0, T ], and

∫ T

0

∫
R b(t, z)|z|pt(z) dz dt < ∞.

Theorem 2. Let X(t), t ∈ [0, T ], X ∈ C1[0, T ], be a zero mean Gaussian process
with covariance function K(t, s). If (A1), (A2), and (B) hold for X(t), t ∈ [0, T ],
then

n−1Rn,G(X) →
∫ T

0

∫∫
R2

|z|pt(u, z) dz dG(u) dt as n → ∞.

Remark 2. We claim that Theorems 1 and 2 can be generalized for Gaussian pro-
cesses with sufficiently smooth mean functions (cf. Chapter 13.2 in [6]).

The following corollary is an immediate consequence of Theorem 2 for the sta-
tionary case.

Corollary 2. Let X(t), t ∈ [0, T ], X ∈ C1[0, T ], be a zero mean stationary Gaussian
process with one-dimensional density f(x), x ∈ R, λ2 = λ2(X). If (A1) and (A2)
hold for X(t), t ∈ [0, T ], then

n−1Rn,G(X) → T
√

2λ2/π

∫
R
f(u) dG(u) as n → ∞.

The quantized process Lε(t) = qε(X(t)), t ∈ [0, T ], can be considered as a piece-
wise constant approximation of X(t), t ∈ [0, T ], with random number of knots cor-
responding to crossings of quantization levels. For Gaussian processes, we compare
this method with a conventional piecewise constant approximation, Pm(t), t ∈ [0, T ],
when discretization in time is used. Let X(t), t ∈ [0, T ], be sampled at distinct de-
sign points Tm := (t0, t1, . . . , tm), and the set of all (m+1)-point designs be denoted
by Dm := {Tm : 0 = t0 < t1 < . . . < tm = T}. The sequence of sampling points (or
designs) Tm := Tm(h) ∈ Dm is generated by a positive continuous density function

h(t), i/m = T−1
∫ ti
0

h(t)dt, i = 0, . . . ,m, and Pm(t) = Pm(X,Tm)(t) = X(ti), t ∈
[ti, ti+1), i = 0, . . . ,m − 1. Following [14], we define asymptotic optimality of a
sequence of sampling designs T ∗

m by (in terms of MMSE)

lim
m→∞

||X − Pm(X,T ∗
m)||/ inf

Tm∈Dm

||X − Pm(X,Tm)|| = 1.

The optimal sequences of designs for spline approximation are studied in [16]. A
corresponding result for piecewise constant approximation and the uniform mean
norm maxt∈[0,T ] ||X(t)|| is obtained in the following proposition. For a random
process Y (t), t ∈ [0, T ], Y ∈ C1[0, T ], we introduce the following condition (local
stationarity),

lim
s→0

||Y (t+ s)− Y (t)||/|s| = ||Y (1)(t)|| > 0 uniformly in t ∈ [0, T ] (2)
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(see, e.g., [14, 16]). Let

εm(X) = MMSE(X,Pm) := max
t∈[0,T ]

||X(t)− Pm(t)||

denote the maximum mean square error for a random process X ∈ C1[0, T ]. Let

h∗(t) := c(t)/

∫ T

0

c(s) ds, t ∈ [0, T ],

where c(t) := ∥X(1)(t)∥.

Proposition 2. Let a random process X(t), t ∈ [0, T ], X ∈ C1[0, T ], satisfy (2).
Then

(i) limm→∞ mεm(X) = maxt∈[0,T ]

(
c(t)/ h(t)

)
.

(ii) The sequence of designs Tm = Tm(h) is optimal iff Tm = T ∗
m, where T ∗

m =
Tm(h∗). For the optimal T ∗

m,

lim
m→∞

mεm(X) =

∫ T

0

c(t) dt. (3)

Henceforth, we suppose that the corresponding assumptions for the results used
below are fulfilled. For a Gaussian process X ∈ C2[0, T ], it follows by the definition
and Proposition 1 (i) that δ = δq = MMSE(X, Lε) ≤ ε for the approximation by
the quantized process Lε(t) with the average number of points (average uniform
quantization rate)

mq = mq(ε) ∼ ε−1
√

2/π

∫ T

0

c(t) dt as ε → 0. (4)

For a fixed accuracy δ = δp = εm(X), (3) implies that it needs mp sampling points,

mp = mp(δ) ∼ δ−1

∫ T

0

c(t) dt as δ → 0. (5)

Note, that by the definition ε = ε(δ) ≥ δ ≥ ∥X(0)− Lε(0)∥ ∼ ε/
√
3 as ε → 0 (see,

e.g., [19]). Thus, from (4) and (5), we have

lim
δ→0

mq

mp
= lim

δ→0

δ

ε

√
2

π
≤

√
2

π
≈ 0.798. (6)

For a stationary Gaussian process X ∈ C1[0, T ], we have δ = MMSE(X,Lε) =
∥X(0)− Lε(0)∥ ∼ ε/

√
3 as ε → 0, and therefore,

lim
δ→0

mq

mp
=

√
2

3π
≈ 0.461. (7)

A similar result can be obtained for a non-uniform quantization. Hence, for certain
classes of Gaussian processes and a given accuracy, the approximation by a quantized
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process demands less storage capacity for archiving digital information. Notice here
that comparisons with the optimal piecewise constant approximation in (6) and (7)
are performed under the assumption that the optimal density h∗(t) (i.e., ∥X(1)(t)∥)
is known although it is not given in practice. Of course, one can also remark that
for differentiable random processes, more smooth approximation methods can be
used (e.g., Hermite interpolation splines) with higher approximation order (see, e.g,
[16]). But in practical applications, e.g., in conventional signal processing techniques,
both quantization and sampling are required, i.e., only discretized values of random
functions are available. Henceforth, the direct methods comparison is not correct an,
even in a piecewise linear approximation the function values have to be quantized
first.

3. Numerical experiments

In this section, we illustrate the convergence results from Corollaries 1 and 2. Denote
by Qε(X) := εRε(X) and Qn,G(X) := n−1Rn,G(X) the normalized average uniform
and normalized average non-uniform quantization rates, respectively. Recall that
ε → 0 for uniform quantization corresponds to n → ∞ for non-uniform (cf. (1)).
We approximate a random process in the example below by piecewise linear with
equidistant sampling points and estimate Qε(X), ε > 0, and Qn,G(X), n ≥ 1, by
the standard Monte-Carlo method. Let N denote the number of simulations.

Example 1. Let Z1 and Z2 be two independent standard normal random variables.
Then, X1(t) = Z1 cos(t) + Z2 sin(t), t ∈ [0, 2π], T = 2π, is a stationary Gaussian
process with zero mean, covariance function K1(t, s) = cos(t− s), λ2(X1) = 1, and
one-dimensional standard normal density f(x). For uniform quantization rate, it
follows from Corollary 1 that

Qε(X1) → 2π
√
2/π ≈ 5.0133 as ε → 0. (8)

Let G1(x), x ∈ R, be onto and increasing function defined as follows:

G1(x) =


0, if x ≤ −1,

(x+ 1)/2, if − 1 < x < 1,

1, if x ≥ 1.

Then for non-uniform quantization rate, it follows from Corollary 2 that

Qn,G1(X1)→T
√

2λ2/π

∫
R
f(u) dG1(u) = 2π

√
2/π

∫ 1

0

f(u) du≈1.7112 as n → ∞.(9)

Figure 1 demonstrates convergence in (8) and (9), respectively, as ε → 0 and n → ∞.

Example 2. Let X2(t), t ∈ [0, 2π], T = 2π, be a stationary Gaussian process with

zero mean and covariance function K2(t, s) = e−(t−s)2 , λ2(X2) = 2; one-dimensional
density f(x) is standard normal. Let G2(x), x ∈ R, be the standard normal distri-
bution function. Similarly, it follows from Corollaries 1 and 2 that

Qε(X2) → 2π
√
4/π ≈ 7.0898 as ε → 0 (10)
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Figure 1: The normalized average quantization rates Qε(X1) (left) and Qn,G1 (X1) (right); the
number of simulations N = 5000.

and

Qn,G2(X2)→T
√
2λ2/π

∫
R
f(u) dG2(u) = 2π

√
4/π

∫
R
f2(u) du≈2.0 as n → ∞, (11)

respectively. Figure 2 demonstrates convergence in (10) and (11), respectively, as
ε → 0 and n → ∞.
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Figure 2: The estimated normalized average quantization rates Qε(X2) (left) and Qn,G2 (X2)
(right); the number of simulations N = 5000.

4. Proofs

Without loss of generality, let henceforth T = 1.

Proof of Theorem 1. We consider the uniform quantization of the process X ∈
C2[0, 1] with the infinite levels’ ε-grid, the quantizer qε(X(t)) = ε[X(t)/ε], the
quantization rate rε(X) = rε(X, [0, 1]), and the quantization error eε(X(t)) =
X(t)− qε(X(t)) = ε{X(t)/ε}, 0 ≤ eε(X(t)) < ε, t ∈ [0, 1]. We have

v(X) = v(X, [0, 1]) =

∫ 1

0

|X(1)(t)| dt. (12)
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On the other hand, let τ = {0 < τ1 < τ2 < . . . < τM(X) < 1} be a set of local
extremes of the process X(t), t ∈ [0, 1], and τ0 := 0, τM(X)+1 := 1. Using the
elementary properties of functions of bounded variation, we obtain

v(X, [0, 1]) =

M(X)∑
i=0

v(X, [τi, τi+1]) =

M(X)∑
i=0

|X(τi+1)−X(τi)|. (13)

For a fixed ε ∈ (0, 1) the total number of quantization points rε(X) is additive on

disjoint intervals, i.e., rε(X) =
∑M(X)

i=0 rε(X, [τi, τi+1]). Thus, it follows from (12)
and (13) that

∣∣∣εrε(X)− v(X)
∣∣∣ ≤ M(X)∑

i=0

∣∣∣εrε(X, [τi, τi+1]
)
− |X(τi+1)−X(τi)|

∣∣∣. (14)

Observe that by definitions

X(τi+1)−X(τi) = qε(X(τi+1))− qε(X(τi)) + eε(X(τi+1))− eε(X(τi)),

εrε
(
X, [τi, τi+1]

)
= ε

∣∣[X(τi+1)/ε
]
−

[
X(τi)/ε

]∣∣ = ∣∣qε(X(τi+1))− qε(X(τi))
∣∣,

where i = 0, . . . ,M(X). Therefore, for i = 0, . . . ,M(X), we get

εrε
(
X, [τi, τi+1]

)
− |X(τi+1)−X(τi)|

=

{
eε(X(τi+1))− eε(X(τi)), if X(τi+1) ≤ X(τi),

−(eε(X(τi+1))− eε(X(τi))), if X(τi+1) > X(τi).

Combining these relations with (14), we have

∣∣∣εrε(X)− v(X)
∣∣∣ ≤ M(X)∑

i=0

∣∣∣eε(X(τi+1))− eε(X(τi))
∣∣∣

≤ ε(M(X) + 1), ε ∈ (0, 1), (15)

since 0 ≤ eε(X(t)) < ε, t ∈ [0, 1]. Note that M(X) is the number of crossings of zero
level by a sample path of the process X(1)(t), t ∈ [0, 1]. Belyaev [2] shows that if a
zero mean Gaussian process Z(t) ∈ Ck[0, 1], then the k-th moment of the number of
crossings of any fixed level u by Z(t) is finite. Hence, taking into account (A1) and
(A2), we have for u = 0 and Z(t) = X(1)(t),

E(M(X)) < ∞ if X ∈ C2[0, T ] and E
(
M(X)2

)
< ∞ if X ∈ C3[0, T ]. (16)

Further, letting ε → 0 in (15), we get (i) since M(X) < ∞ almost surely by (16).
Finally, if we take expectations and limit ε → 0 in (15), then due to (16) assertion
(ii) follows. Similarly, we prove assertion (iii). This completes the proof.

Proof of Proposition 1. We use the following elementary property of moments.
Let X,X1, X2, . . . be random variables with finite sth moments, s ≥ 1. If Xn

s→ X
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as n → ∞, then E
∣∣Xn

∣∣s → E
∣∣X∣∣s as n → ∞. This together with Theorem 1 (ii) and

(iii) yields

lim
ε→0

εE(rε(X)) = E(v(X)) = V (X) = E

∫ 1

0

∣∣X(1)(t)
∣∣ dt, (17)

lim
ε→0

ε2Var(rε(X)) = Var(v(X))

= E

∫∫
[0,1]2

∣∣X(1)(t)X(1)(s)
∣∣ dt ds− (

E(v(X))
)2

. (18)

Further, the modification of Fubini’s Theorem for random functions implies that we
can change the order of integration for the terms on the right-hand side of (17) and
(18),

E

∫ 1

0

∣∣X(1)(t)
∣∣ dt = ∫ 1

0

E
∣∣X(1)(t)

∣∣ dt, (19)

E

∫∫
[0,1]2

∣∣X(1)(t)X(1)(s)
∣∣ dt ds =

∫∫
[0,1]2

E
∣∣X(1)(t)X(1)(s)

∣∣ dt ds. (20)

Note that for any standard normal random variable Y , E|Y | =
√
2/π. Hence we

obtain

E
∣∣X(1)(t)

∣∣ = √
2/π σ1(t), t ∈ [0, 1]. (21)

Combining now (17) with (19) and (21) gives assertion (i).

Let Z1 and Z2 be standard normal variables such that E(Z1Z2) = ρ. By or-
thonormalization, we have

E
∣∣Z1Z2

∣∣ = 2π−1
(√

1− ρ2 + ρ(π/2− arccos ρ)
)
, ρ ∈ [−1, 1].

Thus, for Z1 = X(1)(t) and Z2 = X(1)(s),

E
∣∣X(1)(t)X(1)(s)

∣∣ = γ(t, s). (22)

Combining (18) with (20) and (22), we get assertion (ii). This completes the proof.

Proof of Theorem 2. Recall that the random non-uniform quantization rate
rn,G(X) is the total number of quantization points of the process X(t), t ∈ [0, 1],
with the levels’ grid un = {uk = uk(n)} = {S( kn − 1

2n ), k = 1, . . . , n}, S = G−1,
rn,G(X) =

∑n
k=1 Nuk

(X). If (A1) and (A2) hold for the process X(t), t ∈ [0, T ],
then we have

E(Nuk
(X)) =

∫ 1

0

∫
R
|z|pt(uk, z) dt dz, k = 1, . . . , n, (23)



458 O. Seleznjev and M. Shykula

(see, e.g., [6, Chapter 13.2]). Summing (23) over all k = 1, . . . , n, and multiplying
both parts by n−1 = G(uk+1)−G(uk) = ∆G(uk), we obtain

n−1Rn,G(X) =

∫ 1

0

∫
R
|z|

( n∑
k=1

pt(uk, z)∆G(uk)
)
dt dz

=

∫ 1

0

∫
R

( n∑
k=1

pt(uk|z)∆G(uk)
)
|z|pt(z) dt dz. (24)

Denote by

wn(t, z) :=
n∑

k=1

pt(uk|z)∆G(uk) ≥ 0.

By elementary properties of the Lebesgue-Stieltjes’ integral, for any fixed t ∈ [0, T ]
and z ∈ R we have

lim
n→∞

wn(t, z) =

∫
R
pt(u|z) dG(u). (25)

In fact, the convergence in (25) follows, for example, by splitting up the real line R
into bounded, |u| ≤ a0, and unbounded, |u| > a0, intervals, where we choose a0 in
such way that

∫
|u|>a0

dG(u) is sufficiently small. Further, by (B)

wn(t, z) ≤ b(t, z), n ≥ 1, (26)

and
∫ T

0

∫
R |z|b(t, z)pt(z)dtdz < ∞. Hence, from (24)–(26) and the Dominated Con-

vergence Theorem we get the assertion. This completes the proof.

Proof of Proposition 2. The proof is similar to that of in [16] for spline approxi-
mation. By uniform continuity and positiveness of c(t) = ||X(1)(t)|| we get

c(t+ s) = c(t)(1 + rt(s)), rt(s) → 0 as s → 0 uniformly in t ∈ [0, 1]. (27)

Now it follows from (2) and (27) that

||X(t)−X(tk)|| = |t− tk| c(tk)(1 + rm,k(t)), (28)

where max{|rm,k(t)|, t ∈ [tk, tk+1], k = 0, . . . ,m − 1} = o(1) as m → ∞. Applying
(28) to the maximum mean square error εm(X), we obtain

εm(X) = max
k

max
t∈[tk,tk+1]

||X(t)−X(tk)||

= max
k

max
t∈[tk,tk+1]

(|t− tk| c(tk)(1 + rm,k(t)))

= max
k

(hkc(tk))(1 + o(1)) as m → ∞, (29)

where hk := |tk+1−tk|, k = 0, . . . ,m−1. Further, the Integral Mean-Value Theorem
implies hk = 1/(h(wk)m) for some wk ∈ [tk, tk+1]. By the definition of h(t), t ∈ [0, 1],
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and (27) we have

max
k

(c(tk)hk) =
1

m
max

k
(c(tk)/h(wk))(1 + o(1))

=
1

m
max

k
(c(wk)/h(wk))(1 + o(1))

=
1

m
max
[0,1]

(c(t)/h(t))(1 + o(1)) as m → ∞. (30)

Combining (29) and (30) gives

lim
m→∞

mεm(X) = max
[0,T ]

(c(t)/h(t)).

Note that

max
[0,T ]

c(t)

h(t)
>

∫ T

0

h(s)
c(s)

h(s)
ds =

∫ T

0

c(s) ds

unless h(t)/c(t) = const. This completes the proof.
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