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On non-existence of some difference sets
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Abstract. Eric Lander conjectured that if G is an abelian group of order v containing a
difference set of order n and p is a prime dividing v and n, then the Sylow p-subgroup of
G cannot be cyclic. This paper verifies a version of this conjecture for k£ < 6500. A special
case of this version is the non-existence of Menon-Hadamard-McFarland difference sets in
2-groups. We also give an algorithm that easily verifies this version of Lander’s conjecture
and show that some groups do not admit (288, 42, 6) difference sets.
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1. Introduction

We assume that the reader is familiar with the basic information on difference sets
[11] and symmetric designs [3, 9]. Ryser conjectured that if D is a (v, k, \) difference
set in a cyclic group G, then ged(v,n) = 1, while Lander conjectured that if D is a
(v, k, A\) difference set in an abelian group G with a cyclic Sylow p-subgroup, then p
does not divide ged(v, n). Lander’s conjecture was an improvement of that of Ryser.
Many authors proved some versions of these conjectures but no conclusive general
result is known. It has been established that both conjectures are true for A = 1
and the case A = 2 for abelian difference sets was verified by Dickey and Hughes
[7] with & < 5000 using computer. Also, Arasu [1, 2] validated Lander’s conjecture
for A = 3 and k£ < 500 using various non-existence results. Turyn [19] proved a
special case of Ryser’s conjecture where self conjugacy holds. The most significant
progress on these conjectures was made by Leung et al. [14] and they showed that
both conjectures are true when n is a power of a prime greater than 3.
Furthermore, Lander [11] proved that 12 of the 14 abelian groups of order 288
do not admit (288, 42, 6) difference sets while Iliams [8] demonstrated that this
difference set does not exist in the remaining two abelian groups. This paper studies
the non-existence of (v, k, A) difference sets in which n is a perfect square and G
is a group of order v. We start by using difference set basic equation A\(v — 1) =
r(k — 1) to find potential (v,k, \) tuples and use the fact that if v is even, then
n = k — X\ is a perfect square to prune the list for £ < 6500. Thereafter, we use
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representation and factorization in cyclotomic rings to show that cyclic Sylow 2-
factor group of G does not admit respective difference sets. The Dillon technique
shows that the corresponding dihedral factor group behaves similarly. The tuples
with these properties appear in Tables 3 - 10. Also, we show that 170 of 1045 groups
of order 288 do not admit (288, 42, 6) difference sets. In this paper, we verify the
following version of Lander’s conjecture combined with Dillon’s result.

Conjecture 1. Let G be a group of order v = 2°a, where s > 4, ged (2,a) =1 and
a is a positive integer. Suppose n = k — X\ = 227b*' ged (2,b) = 1,7, t > 1. If there
exists a normal subgroup N of G such that G/N s isomorphic to Cas or Dys—1, then
G does not admit a (v, k,\) difference set.

We also establish the following:

Theorem 1. Suppose that G is a group of order 288. If there exists a mormal
subgroup N of G such that G/N is isomorphic to one of Csa, Dig, Dg X Cs, (Cy X
CQ) Dl 04, (04)2 X Cg, Dy x (02)2, ((C4 X 02) X Cg) X CQ(/32, 22/), ((04 X CQ) X
02) X 02 (/5)2, 48/), (04 X (02)3, (02)5, (02)4 X 02 or (04 X 04) X CQ, then G does
not admit a (288,42,6) difference set.

[|G/N], cn] means the GAP [5] library number of group G/N. Section 2 discusses
basic results while Section 3 provides an algorithm that verifies Conjecture 1 in Sylow
2-cyclic factor groups. In Section 4, we provide a detailed example that demonstrates
Conjecture 1 and show that certain groups do not admit (288, 42, 6) difference sets.
The last section enumerates parameter sets that satisfy the conjecture along with
those that do not.

2. Preliminaries

Difference sets are closely related to symmetric designs and difference sets as follows
([11, Theorem 4.2])

Lemma 1. Suppose that D is a (v, k, \) difference set in a group G, then the Dev(D)
is a (v, k, \) symmetric design and G acts as a regular automorphism group of this
design.

This lemma simply means that difference sets can be used to construct symmetric
designs. However, the converse is not necessarily true (see [6]).
Let G be a group and N a normal subgroup of G. If D is a (v, k, \) difference set
in G, then the difference set image in G/N (also known as the contraction of D
with respect to the kernel N) is the multi-set D/N = (D) = {dN : d € D} . Let
T* ={1,t1,...,tn} be aleft transversal of N in G. We can write D= Yot ere ditiN,
where the integer d; = |D Nt;N| is known as the intersection number of D with
respect to N. In this work, we shall always use the notation D for (D) and denote
the number of times d; equals ¢ by m; > 0. We now state another necessary but not
sufficient condition for the existence of difference sets.

Lemma 2 (Variance trick). Suppose that D is a (v,k, \) difference in a group G of
order v and N is a normal subgroup of G. Suppose also that D is the difference set
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image in G/N and T* is a left transversal of N in G such that {d;} is a sequence
of intersection numbers and {m;}, where m; is the number of times d; equal to i.

Then
|N| [N IV

S mi =GN Y imy =k, Y i — 1)m; = A(IN| - 1). (1)
i=0 i=0 i=0

Notice that the bound for each intersection number is 0 < d; < min(|N|, |D|).

Readers are referred to [12, 13, 16, 18] for basic information on character and rep-
resentation theories and algebraic number theory. The following results characterize
the algebraic number y(D).

Lemma 3. Let D be a difference set in a group G and N a normal subgroup of G.
Suppose that ¥ : G — G /N is a natural epimorphism and n =k — X. Then

1. Db(_l) =n- lg/N + |N|)\(G/N)
2. S d? =n+|NJA

3. x(D)x(D) = n-14, where x is a non trivial representation of G/N of degree d
and Ig is an identity matriz of order d.

We now state the general formula employed in the search of the difference set in
abelian groups [15].

Theorem 2. Let G be an abelian group and G*/ ~ the set of equivalence classes of
characters. Suppose that {Xo, X1,---,Xs} 18 a system of distinct representatives for
the equivalence classes of G*/ ~. Then for A € Z|G], we have

A= Z a;ley ], (2)

where «; is any x;-alias for A.

Equation (2) is known as the rational idempotent decomposition of A.

There are many ways to study difference sets. We adopt the representation
theoretic method [15, 17], which entails getting information about the putative dif-
ference set D in a group G, by first obtaining comprehensive list ¢ /n of difference
set images in factor group G/N of least size. We garner information about D as
we gradually increase the size of the factor group. If at a point the distribution list
Qg n is empty, then this signifies non-existence. The following result is credited to
Kronecker [18].

Theorem 3 (Kronecker). Let a be an algebraic integer in Q(¢) where  is some
root of unity. If a and all its algebraic conjugates have modulus one, then « is a
root of umnity.

Aliases are needed for the construction of difference set images. Suppose that
G/N is an abelian factor group of exponent m’ and D is a difference set image in

G/N. If x is not a principal character of G/N, then by Lemma 3, x(D)x(D) = n,
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where x(D) is an algebraic number of length y/n. The determination of the alias

requires the knowledge of how the ideal generated by x(D) factors in cyclotomic
ring Z[Cm], where s is the m/-th root of unity. If & := y(D), then by (2) we seek
a group ring, Z[G/N] element say « such that y(a) = 6. The task of solving the
algebraic equation 60 = n is sometimes made easier if we consider the factorization

of principal ideals (6)(6) = (n). To achieve this,
a) we must look for all principal ideals © € Z[(,,] such that 77 = (n),
b) for each such ideal, we find a representative element, say § with 66 = n, and
¢) for each 0 we find an alias a € Z[G/N] such that x(a) = 4.

Using algebraic number theory, we can easily construct the ideal 7. The daunting
task is to find an appropriate element 6 € 7. Suppose we are able to find § =
Zf:(gl/)fl diCl . € Z[(m'] such that §6 = n, where ¢ is the Euler ¢-function. By
Kronecker’s Theorem if there is any other solution to the algebraic equation, then
it must be of the form ¢’ = du [16], where u = £}, is a unit. To construct alias
from this information, we choose a group element g that is mapped to (,s and

set o := Z?:(gll)_l d;g* such that y(a) = §. Hence, the set of complete aliases is
{fag’ :5=0,1,....,m' — 1}.

We use the following result to determine the number of factors of an ideal in
a ring: Suppose p is any prime and m’ is an integer such that ged (p,m’) = 1.
Suppose that d is the order of p in the multiplicative group Z; , of the modular
number ring Z,,. Then the number of prime ideal factors of the principal ideal (p)
in the cyclotomic integer ring Z[(,] is ¢(?,), where ¢ is the Euler ¢-function, i.e.
o(m') = |Z;,/| [12]. For instance, the ideal generated by 2 has two factors in Z[(7],
the ideal generated by 3 is prime in Z[(2:],s < 2 while the ideal generated by 3
has two factors in Z[(2:],s > 3. On the other hand, since 2° is a power of 2, the
ideal generated by 2 is said to completely ramify as power of (1 — (2s) = (1 — (25)
in Z[(as].

According to Turyn [19], an integer n is said to be semi-primitive modulo m/ if for
every prime factor p of n, there is an integer i such that p' = —1 (mod m/). In this
case, —1 belongs to the multiplicative group generated by p. Furthermore, n is self
conjugate modulo m’ if every prime divisor of n is semi primitive modulo m/,, m/,
is the largest divisor of m’ relatively prime to p. This means that every prime ideal
over n in Z[(,] is fixed by complex conjugation. For instance, a® = —1 (mod m’),
where a = 3,7,11 and m’ = 17,34. Also, 2* = —1 (mod 17) and 7 = —1 (mod 8).
Thus, (a) is fixed by conjugation in Z[(,]. In this paper, we shall use the phrase
m factors trivially in Z[(,] if the ideal generated by m is prime (or ramifies)
in Z[(mn] or m is self conjugate modulo m’. In this case, if D is the difference set
image of order n = m? in G/N, a group with exponent m’ and y is a non trivial
representation of G/N, then X(ﬁ) =m(’,,, Cm is the m/-th root of unity.

For (288, 42, 6) difference sets, n = k — A = 36 = 2232 and we look at factor
groups of order m’ = 2% s = 1,...,5. The ideal (36) = (2)(3)? and we need the
factoring of (2) and (3) in the cyclotomic ring Z[(2s]. The ideal generated by 2
factors trivially in Z[(2:], the ideal generated by 3 is prime in Z[(2:], s < 2 while (3)
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has two factors in the same cyclotomic ring for s > 2. Consequently, every alias of
the difference set is a multiple of 2 in the factor group of order 2°. Now, we need
§ such that 66 = 32 in the cyclotomic field Q[(a:], where s = 3,4,5. (3) has two
factors in each of these cyclotomic fields and we consider Q[(g]. Suppose o € Q[(s],
where o({s) = (2. This Galois automorphism splits the integral basis of Q[(s] into
two orbits as (Cs, (3), (¢, ¢J). Tt can be verified that (3) = (1+ (s +¢2)(1+¢5 +¢J).
Put 7 = (1+ (s +¢3) and let 6; = 1 + (s + (3 be a representative of this ideal. The
solutions to the algebraic equation §6 = 32 are: 6,6; = 32, 62 or 5_12. This shows
that § =9, —1 +2¢g + 2¢3 or —1 — 2(g — 2¢3. In general, if m’ = 2°, where s > 3,
then (3) = (1+¢2, " +¢32 ") (1—¢2° —¢32°°). In summary, if D is a difference
set image in C,,/, a factor group of any group of order 288 and x is a non trivial
representation of C,,s such that x(D)x(D) = 2232. Then using Theorem 3, x(D) is

a) i6(3;l, ifm'=24,and j=0,...,m — 1.

2573 2573

b) one of £6¢t ,, £2(—1+2¢2, " 4232 77 ¢n, £9(—1—2¢2 " —2¢E2 )¢, it
m' =2%s>3and r,t,u=0,...,m — 1.

Consequently, the possible aliases « in the rational idempotent decomposition of D
is

1) £627 if m’ = 2,4, and j =0,...,m' — 1,z is a generator of C,,.

2) one of +6z!, £2(—1 + 222" + 2232 V)pu £2(—1 — 2227 " — 2232 Va7 if
m' =2%s>3, and r,t,u=0,...,m — 1,z is a generator of Cas.

2.1. Useful results about difference sets in subgroups of a group

The Dillon result below provides a nice way to obtain difference set images in a
dihedral group if the difference set images in the corresponding cyclic group of the
same order are known.

Theorem 4 (Dillon dihedral trick). Let H be an abelian group and let G be the
generalized dihedral extension of H. That is, G = (¢, H : ¢> = 1,qhq = h™1,Vh €
H). If G contains a difference set, then so does every abelian group which contains
H as a subgroup of index 2.

Corrollary 1. If the cyclic group Cay, does not contain a (nontrivial) difference
set, then neither does the dihedral group of order 2m.

The next result describes geometrically how properties of factor group of a group
can be lifted, under certain conditions, to the group itself [17].

Theorem 5. Let D be a (v, k,\) difference set in group G with a factor group H.
Suppose that q is a prime such that ¢° | |H| and E C C(H) is an elementary abelian

subgroup of order q", r < s. Suppose also that E1, Es, ..., E;, wheret = q"_d(%)

are the subgroups of E and their cosets, each of order ¢%,d < r, D and D; are
the corresponding difference set images in H and H/E; respectively. Suppose there

exists an integer a and prime p with p | (k — X) such that for each i, D; = a(H/E;)
mod p, then there exist an integer k' such that D = a(k')"*H mod p.
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It turns out that k&’ = ¢%. We will use this result to determine the non-existence
of (288, 42, 6) difference set images in some groups of order 32 with ¢ = 2, p = 11,
k' =2, r=2and d = 1. In this paper, we work with (4, 6, 3, 2, 1) design.

Finally, suppose that H is a group of order 2h with a central involution z. We
take T'= {¢; : ¢ = 1,..., h} to be the transversal of (z) in H so that every element in
H is viewed as t;27,0 < i < h,j = 0,1. Denote the set of all integral combinations,
Z?:l a;t; of elements of T, a; € Z by Z[T). Using the two representations of subgroup
(z) and Frobenius reciprocity theorem [13], we may write any element X of the group

ring Z[H] in the form
1 1-—
X_X( ;LZ>+X< 2Z>. (3)

Furthermore, let A be the group ring element created by replacing every occurrence
of zin X by 1. Also, let B be the group ring element created by replacing every
occurrence of z in H by —1. Then

X:A<<;>>+B(2_2<Z>), (4)

where A = 2?21 a;t; and B = Z?:l bjtj,a;,b; € Z. As X € Z[H], A and B are
both in Z[T] and A = B mod 2. We may equate A with the homomorphic image of
X in G/(z). Consequently, if X is a difference set, then the coefficients of ¢; in the
expression for A will be the intersection number of X in the coset (z). In particular,
it can be shown that if K is a subgroup of a group H such that

H=Kx (2), (5)

then the difference set image in H is

f):A(@) +gB(2_2<Z>>, (6)

where g € H, A is a difference set in K, a = k""[}/‘ﬁ or a = %, B=A—aK and k
is the size of the difference set. (6) is true as long as | K| | (k++/n) or | K| | (k—+/n).

3. The non-existence result and algorithm

3.1. A version of Turyn’s and Dillon’s results

Turyn’s bound [10] states that an abelian group G of order 22“*2 contains a Hadamard
difference set if and only if the exponent of G is at most 2“2, A particular case of
Conjecture 1 yields a version of Turyn’s and Dillon’s results:

Lemma 4. Ifs = 2u+2 and p = 1 in Conjecture 1, then there is no (22412, 2u(2u+1
1),2%(2% — 1)) difference set in Cozut2 and Doz2utr, u is a natural number.
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3.2. The algorithm: A quadruple summary of the non-existence
result

This construction hinges on the splitting of intersection numbers of a (v, k, A) dif-
ference set image in the cyclic factor group of order 27, as j increases from 1 to
s — 1, where v = 2%a. The process involves four important intersection numbers of
the difference set image in a factor group of order 2/. Since G is a group of order
v = 2%a, let N be a subgroup of order a such that G/N = Cy:. Let g be the unique
element of G/N of order 2 and z the generator of H = G/{g, N). Thus by (4), we
can write the difference set image in G/N as

1+9) , p-9)

D:A( ,
2 2

(7)

where A = ZLZ(lJ_l t;x' and t; is the intersection number of a difference set image
in G/{g, N), which is isomorphic to Cys-1. As /n = 2"¢?, the ideal generated by 2
factors trivially in the cyclotomic ring Z[¢], where ( is the (2%)!" root of unity and
presumably ¢ may factor in this cyclotomic ring. Consequently, B is just a translate
of 2, say B = 2¢g* for some ¢g* € G. This stipulation forces A = 0 (mod 2). The
steps below show that intersection numbers of a difference set image in H = Cys—1
are not all even integers.

Step 1: Obtain the difference set image in G/N = Cy = (y : y? = 1). Suppose that
D = dy + dyy is the (v, k, \) difference set image in Co. The characters of G/N are
of the form x;(y) = (—1)7, j = 0,1. By applying y — 1 to D, we get dog +dy = k
while y — —1 on D yields dy — dy = v/n or —y/n. The solution to this system of

equations is one of dy = w and dy = kfg\/ﬁ or d = w and dy = kizﬁ’

Step 2: We translate if necessary to ensure that dy > d; and set dy = % and

dy = kfz‘/ﬁ. The first number of the quadruple is obtained by dividing dy by 2 and
adding @; the second is obtained by dividing dy by 2; for the next number, divide

di by 2 and the last number is obtained by dividing d; by 2 and subtracting @

This process generates the quadruple [d"';\/ﬁ, %0, d—zl, 4 _2‘/5}

Step 3: Divide the first coordinate of the quadruplet in step 2 by 2 and add @;
divide the second coordinate by 2; divide the third coordinate by 2; and finally,

divide the fourth coordinate by 2 and subtract 4 This process generates the
quadruple [Lf"/ﬁ, %‘J, %1, Lfﬁ].
Step j,7 > 2: Continue with the iteration to get the j-th quadruplet
d0+(2j71 71)\/5 do di  dy 7(2j7171)\/’l}l
2i—1 1 9j-1795-17 2i—1 ’

The process terminates at the step j = s — 1, when the entries are either fractions
or odd numbers. At this stage, there is at least one odd number in each set of
intersection numbers in the factor group Cys—1. Consequently, by parity (7) has
no integer solutions and Css does not admit a difference set. The Dillon dihedral
technique shows that Dys-1 does not either. We illustrate the above algorithm with
an example.
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Example 1. Consider a (1024, 496, 240) parameter set. In this case, n = 256,
do = 5 — 956 and dy = k — dy = 240 and 5" = 8.

Step 1: [256, 240]

Step 2: [136, 128, 120, 112]
Step 3: [16, 64, 60, 48]
Step 4: [46, 32, 30, 16]
Step 5: [31, 16, 15, 0]

Step 6: [*, 8, * *]

Step 7: [*, 4, *, ]

Step 8: [*, 2, * %]

Step 9: [*, 1, *, ¥,

where *is a place holder for fractions or negative integers. The process terminates at
step 9 and there must be at least one odd intersection number in each set of difference
set images of Cs12. This shows that Cio24 and D512 do not admit a (1024, 496, 240)
difference set.

4. Non-existence of (288, 42, 6) difference sets in some groups

We show that if G is a group of order 288 and N is an appropriate normal subgroup
of G such that G/N = H, where H is one of the identified groups of order 32,
then G does not admit (288, 42, 6) difference sets. Part of the work in this section
provides an example that illustrates the non-existence of (v, k, A) in groups that are
isomorphic to C3o or Dig.

4.1. The C, image

Suppose G/N = Cy = (z : 22 = 1) and D = Z}:o djz? is the difference set image
in G/N. Then the unique element of Q¢, is A = 24 + 18z.

4.2. Images on groups of order 4

We obtain the (288, 42, 6) difference sets images in the two groups of order 4.

4.2.1. The C, images

Suppose G/N = Cy = (z : 2* = 1) and the difference set image in G/N is D =
E?:o djz?. We view this group ring element as a 1 x 4 matrix with columns indexed
by powers of x. The rational idempotents of G/N are [ey,] = I(z); [ey,] =

1(2(z%) = (x));  lex,]) = 3(2—(2?)). The first two rational idempotents have (z?) in
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their kernel and the linear combination of these idempotents is written as oy, [ex,] +
Oy [Exs] = A@, where A is the difference set image in Cs. As x1(D)(x1(D)) =
36 = (6)(6), the difference set image is
2
D= A% + 627 ey, ], (8)

j =0,1,2,3. By translating if necessary, the distribution scheme, Q¢, for Cy (up to
translation) consists of 41 = —6 + 12(z) and Ay = 6 4 9(x).

4.2.2. The (C;)? images

It can be shown that if G/N = (C3)? = (z,y : 22 = y* = [z,y] = 1) and the
difference set image in G/N is D= Zi,t:o dsx®y", then the elements of Q(c,)2 , up
to translation, are 12(x)(y) — 6 and 9(x)(y) + 6.

4.3. Images of groups of order 8
We obtain the (288, 42, 6) difference set images in four of the five groups of order 8.

4.3.1. The Cys images

Suppose G/N = Cg = (z: 28 =1) and D = Zj‘:o djz? is the (288, 42, 6) difference
set image in G/N. We view this group ring element as a 1 x 8 matrix with columns
indexed by powers of z. The characters of G/N are of the form x;(z) = ¢/, j =
0,---,7, where (¢ is the eighth root of unity. The four rational idempotents of
G/N are: [ey] = glo), lex,] = §(2(z%) — (2)), [ex] = 3(2(2*) = (2?)), and
few] = 52— ().

The linear combination of the three rational idempotents which have (%) in their

kernel is written as > ,_o, 4 ay;[ey;] = %(w‘l), where Ag, k = 1,2 is a difference
set in Cy.
Thus, the difference set image in Cg is
. Ay
D= 7<1‘4> + Qxy [6X1]7 (9)

where oy, € {£62°,£2(—1 — 2z — 223)zt, £2(—1 + 2z + 22%)2"}, 5,6, u = 0,..., 7.
If D is a solution (9) so does gD for an group element g € G/N. Hence, we use only
the first two aliases. Define:

Z1 = 6ley,) = 3(1 —at), Zo = 2(—1+ 2z + 223)[ey,] = (=1 + 2z 4 223)(1 — 2*).
Thus, (9) becomes D = 4k (z*)+272;,j = 0,1,2,3,1,k = 1,2. The fact that 82, = 0
mod 8 forces kK = 1. Up to equivalence, the elements of Q¢, are

By =—6+6(z),

By =3(x) + 3x(2 + = + 2% + 2° + 2)

Bs =3(z) + 3z(1 4 2z + 2% + z* + 25)

By =2+ 8z + 622 + 822 + 42 + 42° + 625 + 427
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Bs =1+ 5z + 822 + 62 + 5a* + 72° + 425 + 627
Bg =3 + 4x + 522 + 82> + 3z* + 82° + 7a% + 427

4.3.2. The D, images

We use the Dillon dihedral technique trick to obtain the difference set image in
G/N =Dy = (0,y:0* =y*=1,y0y = 6710). Take D = Zi:o 22:0 de:0%y to the
(288, 42, 6) difference set image in G/N. We view this group ring element as a 2 x 4
matrix with columns indexed by powers of § and rows indexed by y. To use the
Cg = (x : 2% = 1) difference set images, set §# = 22 and y = x. This transformation
enables us to view each Bj,j =1,...,6 as a 2 x 4 matrix. For instance, By becomes
Bl =3+ 660+ 36% 4+ 66° + (9 + 60 + 30 + 60°)y.

Furthermore, G/N = D, has one degree two representation and four characters.
The degree two representation is

o (10 (o1
X' O_Z' ’y 10 b

where i is the fourth root of unity. We apply this representation to each transformed
difference set image B, j = 1,..., 6 and verify whether or not x(B})x(B}) = 3612, I
is a 2 x 2 identity matrix. For example,

(B}) = 3+6i+3i2+6i°9+6i+3>+6°\ (06
XAP2) = 94603 +3i2 +6i 3463 +3i2+6i )~ \60)°

Notice that x(B%)x(B%) = 3615. Hence, the elements of Qp, are Bf = —6+ 6(0)(y),
By = —=3(1+62) +6(0)(y) + 3(1 — 6%)y and B} = 30 + 3(0) + 6(0)y.

4.3.3. The C; x Cy images

Consider G/N 22 CyxCy = (z,y: x* =y> =1 = [z,y]). Let D = 22:0 Zi:o T
be the (288, 42, 6) difference set image in G/N. We view this group ring element as
a 2 x 4 matrix with columns indexed by powers of x and rows indexed by y. As G/N
is of the form (5), « = 12 or 9. Wlog, take « = 12, K = C4 and B, = As — 12K,
where A, s = 1,2 is an element of Q¢,. Then by (6), the difference set image is

D= A, (?) + gBs <22<y>) (10)

g € Cy xCy, By =3—3y and By = 3(6 — 3(z))(1 — y). Up to equivalence, the
difference set image in Cy x Cy are B) = —6 + 6(z)(y), Bf = 6 + 6(x)(y) — 3(z),
Bl = 34 3z 4 62% + 62° + (34 92 + 622 + 62%)y and B}, = 6 + 6z + 322 + 323 +
(9 4 3z + 622 + 623)y.

4.3.4. The (C;)? images

Consider G/N 2 (Cy)? = (z,y,2z: 22 = y?> = 22 = 1 = [2,y] = [z, 2] = [2,9]). The
(288, 42, 6) difference set image in this group are B = —6+6(1+x)(1 +y)(1 + 2),
By =3+6(1+z)(1+y)(1+2)—3(z+y+az).
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4.4. Images on some groups of order 16

We obtain the (288, 42, 6) difference set images in some groups of order 16.

4.4.1. The Ci5 image

Suppose that G/N = Cj = (z : 26 = 1) and the difference set in G/N is D =
. 8
E}io d;x’. Out of the five rational idempotents of G/N, only [e,,] = # do not

have (z®) in its kernel. The linear combination of rational idempotents having (x®)
8

in their kernel is written as 32,5 4 g @, [€c, ] = B; (%), where B; is a difference

set image in Cg.

Thus, the difference set image in G/N is

b8 (<2>) Ty [eey, ) (1)

where a, € {£62", £2(—1+22°+225)2", +2(—1-22>—22%)2"}, r,t,u = 0,...,15.
Define Z1 = 6 - [ey,] = 3(1 — 2%) and Zy = 2(—1 + 222 4 22%)[e\,] = —1 + 222 +
248 4 28 — 2210 — 2214, We now rewrite (11) as D = Bj(@) +2lZk=1,2;1 =
0,---,15;5 = 1,...,6. Since 16Z; = 0 mod 16, a solution exists if and only if
16Bj(<'T’T8>) = 0 mod 16. This condition is satisfied by Bj,j = 1,4. Up to equiva-
lence, the C1g images are:

Fy =624322 4322+ 32 +32° + 325+ 327 + 3210+ 321 1 +-3212 43213 - 3214 43215

Fy =1+72+32x2+423 + 22 +22° + 320 + 207 + 28 + 22 + 3210 + 42 42212 + 2213
1314 49,15

F3 =14+4z+62%+42° + 224 +22° + 325 + 2207 + 28+ 42° + 421 42212 + 2212 4 3214
FIPRE)

Fy =22+32% 4522 + 324 +32° + 325 + 52" +42° + 3210 + 2 43212+ 3213 + 314 4210

Fy =1+322+ 32 +52° +325 4327+ 527 + 320+ 42t 4+ 3212 4 212 4 3214 4 3215

Fy =4 +52% +423 4+ 22 4+ 22° + 520+ 227+ 228 + 42 + 210 + 401 42212 42213
PRSI IL

Fr =1432+ 3224+ 623+ 224+ 2254 325+ 42" +48+ 52+ 32104 201 + 2212 42413 - 32

Fy =1+4z+2? +4a3 + 2+ 225+ 525 + 227 + 28+ 42° + 5210 + 4ot 4 3212 42213 42214
1915

Fy =14+4a+ 324224+ 204 254 325+ 427 428+ 42° + 3210 + 6211 + 2212+ 3213 43214
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Fio =3z+32? + 2% + 321 + 225+ 3054527+ 32° + 3210 4- 521 + 3212 4- 4213 4 321 1P

Fi =304+22+32° + 20 +32° +52° + 327 + 28+ 327 +5210+- 32  + 4212+ 328 4 214
4315

Fio =32+62%+32%+32* +32° + 32°+ 32" + 327 + 32" + 322 + 323 4 324 4- 3210

Fis =324+322 4323+ 624 +32° + 325+ 32"+ 327 + 3210+ 32 + 3213 + 3514 4+ 3210

4.4.2. The Dg image

Consider the factor group G/N = Dg = (x,y : 2® = y?> = 1,yzy = 2~ !) and let
D= ZZ:O Zi:o dgz®yt be its difference set image. By the Dillon technique and up
to equivalence, D is one of the following:

F| =(3z 4 32% + 32% + 32° + 32° + 327)

+ (6 4 3z + 322 + 32° + 32* + 32° + 32° + 327y
F} =(3x + 322 + 323 + 32° + 325 + 327)

+ (24 5z + 32 + 52° + 4ot + 25 + 32% + 27y
F} =3z + 322 + 32° 4 325 + 32° 4 327)

+ (14 22 4 52 + 323 + 5o + 42° + 25 + 327)y
Fy =3z + 322 + 32° 4 325 + 32° 4 327)

+ (34 x + 222 + 52° + 32* 4+ 5% + 42 + 27y
Fl =(2 + 227 + 523 + 52 + 425 + 27)

+ (3 + 3z + 322 + 323 + 32t + 325 + 325 + 327y
F} =3z + 62 + 32° + 32° + 327) + (3 + 3z + 32% + 3% + 32* + 32° + 325 + 327y
F} =(6x + 322 + 32% 4+ 325 + 327) + (3 4+ 3z + 32% 4 323 + 32? + 32° + 325 + 327y

Notice that the Dg difference set images are either of the form 033'26' or

02122'384152, The notation 033'26! means the intersection number 0 occurs three
times, intersection number 3 occurs twelve times while intersection number 6 occurs

once. This information will be used to show that G/N = Dg x Cs does not admit
(288, 42, 6) difference sets.

4.4.3. The (Cy x C3) x Cy images

Consider G/N = (Cy x Co) x Cy = (z,y,2: 2t =y? =22 =1 = [v,y] = [x,2],yz =
zx?y) with GAPI[5] location number [16, 13]. The derived subgroup of G/N is
(G/N) = {1,2?} and the center of G/N, C(G/N) = (z) = Cy. Suppose that the
difference set image in G/Nis D = Y20 S™1 SN dijpaty’2*. We view this group
ring element in array form as:

b dooo d100 d200 d3o0 do1o di10 d210 d3io0
doo1 dio1 d2o1 dso1 doi1 di11 do11 dsin
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Since (G/N)/(G/N) = (C2)* = (x,y,2 : 2% = y* = 2° = [2,y] = [y, 2] = [x, 2]), the
projection map x% — 1 produces the following system of equations:

1 1
(ds,t0 + dst2,00) = Cst0, Z (ds,t1 + dst2,01) = Cs11, (12)
s,t=0 s,t=0

where the array (cooo, €100, €010, €110, €001, €101, Co11, €111) is a difference set image
in (Cy)3. Furthermore, the degree two representation of G/N is:

g (10 (01 e
X 0i) Y 10)° 0—1

where ¢ is the fourth root of unity. The image of D under this representation is

x(D) = (Z Z) , with

where

ag = dooo — d200, a1 = digo — d3oo, @2 = doo1 — d201, a3 = dio1 — d3o1,

bo = do1o — d210, b1 = d110 — d3io, b2 = do11 — da11, b3 = di11 — dai1.

AT ad + bb aé + bd
Hence, x(D)x(D) = <ca+dl_) i+ dJ) , where
a@ + bb = a% + a% + 2agpas + a% + ag + 2a1a3 + bg + b% + 2bgbs + b% + bg + 2b1 b3,
¢+ dd = ag + a% — 2agas + a% + ag — 2a1a3 + bg + bg — 2boba + bf + b% — 2b1b3,
ac+bd = 2(a0b0 — agby + a1by — agbs — asbyi + agbgi — a1bai + agbsi),
ca + db = 2((1()[)0 — agbs + a1by — aszbs — asb1i — apbsi + a1bat — (lgboi).

As we require x(D)x (D) = 3612, where I is a 2 x 2 identity matrix, it follows that
aa+bb=36, cc+dd=36, ca+db=0, ca+db=0.
The sum of equations aa + bb = 36 and c¢ + dd = 36 yields

ag 4+ a3 + a3 4 a3 + b2 + b3 4+ b? + b2 = 36 (13)
apaz + a1as + boba + b1bz =0, (14)

while ca 4+ db = 0 or ca + db = 0 implies

agbg — asby + a1by —aszbs =0 (15)
—agbl — aobg + albg — G,gbo =0. (16)
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The solution set of (13) is some permutation of the entries of the row 1 through 6
of the following tables:

1{£6| 0 | 0 | 0 |0]0]0|0 4|+4|+4|£1|£1|£1|£1{ 0| 0
2|+5|£3|+2|£1|0]0|0|0(, O|E3|E£3|£3|£3/ 0000
3|x4|£4|£2] 0 |0/0(0]0 6|3 |£3|+2|£2|+2|£2|+1|£1

There are 1248 possible solutions to (13)-(16). To get difference set images, we
need to solve (12)-(16). Recall that (13) involves the array (cooo, c100, €010, €110, C0015
€101, Co11, c111), Which is a difference set image in (Co)3. The difference set images
in (Cy)? are either of the form 0'67 in which all intersection numbers are even or
33649 in which half of the intersection numbers are even and the rest are odd
integers. Due to the nature of (13) and (14), only solutions arising from rows 1 and
3 of the above tables are comparable with 0167 while the rest are compatible with
32649, Interestingly, it turns out that any putative difference set image in G/N
has one of the distributions 033261, 021221334152 or 0112233°7!. This is the only
vital information required to establish the non-existence of difference set images in
((04 X Cg) A 02) X 02[32, 48]

4.4.4. The structure of difference set images in some groups of order 16

Suppose that G/N is isomorphic to some groups of order 16, apart from Cjg and Dsg.
Recall that the difference set images in G/N = Cy x Cy, (Co)? or Dy satisfy B;- =0
mod 3. Let E be an elementary abelian subgroup of C(G/N) such that |E| = 22.
Consider the sequence {F;}, where E; is a subgroup of E of order 2. Suppose
that for each i, (G/N)/E; is isomorphic to one of Cy x Ca, (C2)? or Dy. Then by
Theorem 5, the difference set image DinG /N satisfies D =0 mod 3. The groups
of order 16 that satisfy this stipulation are: Cy x Cy4([16, 2]), (Cy x C3) x C2([16 3]),
Cy x (Cq)2([16, 10]), D4 x Co([16, 11]) and (C3)*([16, 14]), where [|G/N], cn] is the
GAP library number.

4.5. Non-existence of difference set images in some groups of
order 32

We now show that there are no (288, 42, 6) difference set images in some groups of
order 32.

4.5.1. There are no C3; and D, images

Suppose that D = Z?io d;x® is the difference set image in G/N = Csp = (w :

22 Joes
2

in its kernel. The linear combination of the remaining five rational

. . - (x10) .
idempotents can be written as >°,_5 4516 e, [eexj] = Fr(*5), where O, is an

alias and Fy,k =1,...,13, is a difference set image in C14. The difference set image
is

232 = 1). Out of the six rational idempotents of G/N, only [e,,] =
not have (z16)

D=F (<“7216>> + ae,, ey, ] (17)
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where e, € {£62°,+2(-1 + 2z + 22'%)2!, £2(-1 — 22* — 22'%)2"}. We only
have to use aliases 6 and —1 + 2z* + 22'2. Define Z; = 6 - [e,,] = 3(1 — z'%) and
Zy =2(—1+ 2z + 2x12)[exl] = —1+22% + 2212 4+ 216 — 2220 — 2224, We can now
rewrite (17) as D= F;.C(< >) +2°Z;,l=1,2;s=0,---,15. The fact that 32Z; =0
mod 32 requires 32Fk(< >) = 0 mod 32. However, there is no Fy in Q¢,, such

that 32F; ({2°2) = 0 mod 32. Thus, Csy and Dyg (by the Dillon dihedral trick) do
not admit a (288, 42, 6) difference set.

4.5.2. There are (288, 42, 6) difference set images in Dg x Cy and ((Cy x
02) X 02) X 02[32, 48]

Suppose that G/N = K x Cy, where K = Dg or (Cy x C3) xCy and z is the generator
of Cy. Put a =3, |K| = 16. Then using (6), the difference set image in G/N is of

the form
b (D) m (25). a8

g€ G/N, B; =Aj —3K and A or A, is a difference set image in K with distribu-
tions 023126!, 021221384152 or 01122337, In view of these distributions, A, (@)

consists of 24 fractions and 8 integers while By (2_2<Z>> consists of 8 fractions and

24 integers. Since the intersection numbers must be non negative integers, the two
terms on the right-hand side of (18) are not compatible and hence, the equation has
no integer solutions.

4.5.3. No difference set images in some factor groups of order 32

Suppose that G/N = H, where H is a group of order 32 satisfying the conditions
of Theorem 5 with p = 3, ¢ = 2 and |C(H)| > 4. Suppose that the difference set
image exists in H and is D. Take E to be a subgroup of C(H) of order 4 and F;
is a subgroup of F such that H/E; is isomorphic to one of the five groups of order
16 listed in subsection 4.4.4. Theorem 5 requires D satisfying D = 0 (mod 3). This
condition is verified using a variance technique with [N| = 9. Suppose that D = 0
(mod 3). Then the intersection numbers in D could be 0, 3, 6 or 9. Thus by Lemma
2, we have

mo + ms + mg + mg = 32 (19)
3m3 + 6m6 + 9m9 =42 (20)
6ms + 30mg + 72mg = 48 (21)

The coefficient of mg in (21) is 72 which is greater than 48. Thus, mg must be
zero and the unique solution of the system of equations is (mq,ms,mg,mg) =
(16,18, —2,0). This solution involves a negative integer which is not admissible
as m; > 0. This shows that D#0 (mod 3) and this violation implies there is no dif-
ference set image in H. An exploration by GAP reveals that H is one of (Cy X C2) %
C4([32, 2]), (C1)? x C2([32, 21]), Dy x (C2)?([32, 46]), ((Cy x Ca) x C) x Co([32, 22]),
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((04 X CQ) ba'l CQ) X CQ([32, 48])7 (04 X (02)3([32, 45]), (02)5([32, 51]), (02)4 be'l CQ(BQ,
27]) or (Cq x Cy) xC2([32, 34]). This work shows that 170 groups of the 1045 groups
of order 288 do not admit (288, 42, 6) difference sets. In the GAP library, these
groups are [288,c¢n], en =1, 2, 6, 33, 38, 45, 61, 64, 65, 66, 81, 84, 90, 92, 114, 120,
132, 137, 142, 147, 150, 162, 163, 164, 165, 170, 177, 182, 188, 193, 194, 227, 233,
260, 265, 274, 301, 306, 313, 329, 353, 354, 355, 356, 357, 360, 362, 365, 366, 367,
368, 370, 373, 382, 385, 395, 429, 441, 445, 469, 472, 523, 530, 559, 562, 568, 569,
570, 571, 572, 574, 602, 608, 611, 616, 622, 624, 625, 627, 629, 631, 642, 645, 651,
653, 674, 681, 693, 698, 702, 708, 711, 723, 724, 728, 731, 737, 739, 760, 767, 779,
784, 788, 794, 797, 809, 810, 811, 812, 817, 824, 829, 839, 840, 873, 879, 880, 883,
889, 932, 941, 943, 944, 948, 949, 950, 951, 952, 953, 954, 958, 959, 960, 966, 967,
969, 970, 971, 972, 973, 974, 976, 977, 989, 990, 991, 992, 993, 996, 998, 1001, 1002,
1004, 1005, 1006, 1007, 1008, 1011, 1013, 1016, 1017, 1018, 1019, 1021, 1031, 1039,
1040, 1043, 1044, 1045.

5. List of some parameter sets satisfying conjecture 1

The lower bound for Conjecture 1 is s = 4. Parameters that meet this bound for
a < 100 and k < 6500 are listed in Table 3. By hand verification, the other parameter
sets that are ruled out are listed in Tables 4, 7, 8, 9 and 10. However, for s = 1,
s = 2 and s = 3 the largest 2-group is isomorphic to Cs, Cy and Cg, respectively,
and the difference set images exist in these groups. These parameters are listed in
Tables 1, 2 and 5, respectively.

v k A n
1 36 15 6 9
2 | 100 | 45 20 | 25
3 | 156 | 31 6 25
4 1196 | 91 42 | 49 v k A n
5 204 | 29 4 25 1 40 13 4 9
6 | 220 | 73 24 | 49 2| 56 11 2 9
7 | 260 | 112 | 48 | 64 31120 | 35 | 10 | 25
8 | 276 | 100 | 36 | 64 41280 | 63 | 14 | 49
9 | 300 | 92 28 | 64 5| 408 | 111 | 30 | 81
10 | 324 | 153 | 72 | 81 6 | 456 | 105 | 24 | 81
11 | 364 | 243 | 162 | 81 7616 | 165 | 44 | 121
12 1 396 | 80 16 | 64 8 1 760 | 253 | 84 | 169

Table 1: Parameters with s = 2, a < 100 Table 2: Parameters with s = 3, a < 100

and k < 6500 and k < 6500
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v k A n
1 16 6 2 4
2 144 66 30 36
3 176 50 14 36
4 208 46 10 36
5 400 | 190 | 90 | 100
6 560 | 130 | 30 | 100
7 784 | 378 | 182 | 196
8 816 | 326 | 130 | 196
9 880 | 294 | 98 | 196
10 | 1008 | 266 | 70 | 196
11 | 1200 | 110 10 100
12 | 1296 | 630 | 306 | 324
13 | 1456 | 486 | 162 | 324
Table 3: Parameters with s = 4, a < 100
and k < 6500
v k| A |n
1| 66 | 26| 10| 16
2| 70 | 24| 8 | 16
3| 78 | 22| 6 |16
4| 154 |18 | 2 | 16

Table 5: Parameters with s = 1, a <

100 and k < 6500

v k A n
1 96 20 4 16
2 160 54 18 | 36
3 | 288 42 6 36
4 | 416 | 166 | 66 | 100
5 672 122 22 1 100
6 | 736 | 196 | 52 | 144
7 | 800 | 188 | 44 | 144
8 | 1632 | 700 | 300 | 400
9 | 1696 | 226 | 30 | 196
10 | 1888 | 222 | 26 | 196
11 | 2016 | 156 | 12 | 144
12 | 2016 | 806 | 322 | 484
13 | 2080 | 540 | 140 | 400
14 | 2784 | 484 | 84 | 400
15 | 2912 | 1066 | 390 | 676
16 | 2976 | 476 | 76 | 400
17 | 3040 | 1014 | 338 | 676

485

Table 4: Parameters with s = 5 , a < 100
and k < 6500 satisfying Conjecture 1

v k A n m | r
1 16 6 2 4 4 |1
2 64 28 12 16 6 |2
3 256 120 56 64 8 |3
4 | 1024 | 496 240 256 | 10 | 4
51| 4096 | 2016 | 992 | 1024 | 12 | 5
6 | 16384 | 8128 | 4032 | 4096 | 14 | 6

Table 6: Menon-MacFaland-Hadamard
Parameters set with s = 1
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v k A n
v k A n 1 640 72 8 64
1 320 88 24 64 2 896 180 36 144
2 448 150 50 100 3 1408 336 80 256
3 576 276 132 144 4 1920 304 48 256
4 704 38 2 36 5 2176 726 242 484
) 960 274 78 196 6 2432 936 360 576
6 | 1344 | 238 42 196 7 3200 | 1372 | 588 784
7 | 1600 | 780 380 400 8 | 4224 206 10 196
8 | 1728 | 628 228 400 9 4992 806 130 676
9 | 1856 | 106 6 100 10 | 5248 | 2332 | 1036 | 1296
10 | 2496 | 500 100 400 11 | 6016 | 2406 | 962 | 1444
11 | 3008 | 776 200 576 12 | 6528 428 28 400
12 | 3136 | 210 14 196 13 | 6784 | 2584 | 984 | 1600
13 | 3136 | 760 184 576 14 | 8064 | 2200 | 600 | 1600
14 | 3136 | 1540 | 756 784 15 | 8320 | 2538 | 774 | 1764
15 | 3520 | 460 60 400 16 | 9088 | 2796 | 860 | 1936
16 | 4032 | 696 120 576 17 | 9856 730 54 676
17 | 4544 | 826 150 676 18 | 10368 | 2962 | 846 | 2116
18 | 5184 | 2556 | 1260 | 1296 19 | 10880 | 990 90 900
19 | 5440 | 148 4 144 20 | 10880 | 3312 | 1008 | 2304
20 | 5440 | 1666 | 510 | 1156 21 | 11136 | 1310 | 154 | 1156
21 | 5568 | 2052 | 756 | 1296 22 | 11648 | 2452 | 516 | 1936
22 | 5824 | 648 72 576 23 | 12160 | 3088 | 784 | 2304
23 | 6336 | 1086 | 186 900 24 | 12416 | 3056 | 752 | 2304
Table 7: Parameters with s = 6 , a < 100 Table 8: Parameters with s = 7 , a < 100

and k < 6500 and k < 6500
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\s k A n
1 1680 438 | 114 | 324
2 1776 426 | 102 | 324
3 2640 378 | 54 | 324
4 3440 362 | 38 | 324
5 3760 358 | 34 | 324
6 6480 342 18 | 324
7 | 18096 | 330 6 | 324
8 | 52976 | 326 2 | 324
9 | 40704 | 404 4 | 400
10 | 14112 412 12 | 400
11 | 8800 420 | 20 | 400
12 | 117856 | 486 2 484
13 | 17680 | 498 | 14 | 484
14 | 11616 506 22 | 484
15 | 6576 526 | 42 | 484
16 | 6096 530 | 46 | 484
17 | 4576 550 | 66 | 484
18 | 2800 | 2622 | 138 | 484
19 | 2640 638 | 154 | 484
20 | 2016 806 | 322 | 484
21 1936 946 | 462 | 484
22 | 14976 | 600 | 24 | 576
23 | 42560 | 584 8 | 576

Table 9: More parameters withn =k — A\ =
(2742, 27 = 18,20, 22,24 satisfying Con-

jecture 1

v k A n m
1 768 118 18 100 | 8
2 2304 1128 | 552 | 576 | 8
3 2816 1126 | 450 | 676 | 8
4 5376 1376 | 352 | 1024 | 8
5 6400 | 3160 | 1560 | 1600 | 8
6 7936 | 2646 | 882 | 1784 | 8
7 8960 868 84 784 | 8
8 9472 616 40 576 | 8
9 12544 | 6216 | 3080 | 3136 | 8
10 | 13056 | 1120 | 96 1024 | 8
11 | 14080 | 1444 | 148 | 1296 | 8
12 | 14080 | 3250 | 750 | 2500 | 8
13 | 20736 | 2640 | 336 | 2304 | 8
14 | 20736 | 3510 | 594 | 2916 | 8
15 | 23808 | 3402 | 486 | 2916 | 8
16 | 52480 | 5832 | 648 | 5184 | 8
17 | 4608 272 16 256 | 9
18 | 13824 | 4808 | 1672 | 3136 | 9
19 | 16896 | 3380 | 676 | 2704 | 9
20 | 17720 | 6336 | 2240 | 4096 | 9
21 | 19968 | 3896 | 760 | 3136 | 9
22 | 22016 | 5440 | 1344 | 4096 | 9
23 | 29184 | 4928 | 832 | 4096 | 9
24 | 50688 | 3900 | 300 | 3600 | 9
25 | 9216 | 4560 | 2256 | 2304 | 10
26 | 31744 | 3528 | 392 | 3136 | 10
27 | 37888 | 4672 | 576 | 4096 | 10
28 | 39936 | 490 6 484 | 10
29 | 46080 | 4544 | 448 | 4096 | 10
30 | 26624 | 5056 | 960 | 4096 | 11
31| 34816 | 1056 | 32 1024 | 11
32 | 169984 | 5050 | 150 | 4900 | 11
33 | 270336 | 4160 | 64 | 4096 | 13

Table 10: More parameters with 8 < s < 15,

a < 100 and k < 6500 in Conjecture 1
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