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On non-existence of some difference sets
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Abstract. Eric Lander conjectured that if G is an abelian group of order v containing a
difference set of order n and p is a prime dividing v and n, then the Sylow p-subgroup of
G cannot be cyclic. This paper verifies a version of this conjecture for k < 6500. A special
case of this version is the non-existence of Menon-Hadamard-McFarland difference sets in
2-groups. We also give an algorithm that easily verifies this version of Lander’s conjecture
and show that some groups do not admit (288, 42, 6) difference sets.
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1. Introduction

We assume that the reader is familiar with the basic information on difference sets
[11] and symmetric designs [3, 9]. Ryser conjectured that if D is a (v, k, λ) difference
set in a cyclic group G, then gcd(v, n) = 1, while Lander conjectured that if D is a
(v, k, λ) difference set in an abelian group G with a cyclic Sylow p-subgroup, then p
does not divide gcd(v, n). Lander’s conjecture was an improvement of that of Ryser.
Many authors proved some versions of these conjectures but no conclusive general
result is known. It has been established that both conjectures are true for λ = 1
and the case λ = 2 for abelian difference sets was verified by Dickey and Hughes
[7] with k ≤ 5000 using computer. Also, Arasu [1, 2] validated Lander’s conjecture
for λ = 3 and k ≤ 500 using various non-existence results. Turyn [19] proved a
special case of Ryser’s conjecture where self conjugacy holds. The most significant
progress on these conjectures was made by Leung et al. [14] and they showed that
both conjectures are true when n is a power of a prime greater than 3.

Furthermore, Lander [11] proved that 12 of the 14 abelian groups of order 288
do not admit (288, 42, 6) difference sets while Iiams [8] demonstrated that this
difference set does not exist in the remaining two abelian groups. This paper studies
the non-existence of (v, k, λ) difference sets in which n is a perfect square and G
is a group of order v. We start by using difference set basic equation λ(v − 1) =
r(k − 1) to find potential (v, k, λ) tuples and use the fact that if v is even, then
n = k − λ is a perfect square to prune the list for k < 6500. Thereafter, we use
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representation and factorization in cyclotomic rings to show that cyclic Sylow 2-
factor group of G does not admit respective difference sets. The Dillon technique
shows that the corresponding dihedral factor group behaves similarly. The tuples
with these properties appear in Tables 3 - 10. Also, we show that 170 of 1045 groups
of order 288 do not admit (288, 42, 6) difference sets. In this paper, we verify the
following version of Lander’s conjecture combined with Dillon’s result.

Conjecture 1. Let G be a group of order v = 2sa, where s ≥ 4, gcd (2, a) = 1 and
a is a positive integer. Suppose n = k − λ = 22rb2t, gcd (2, b) = 1, r, t ≥ 1. If there
exists a normal subgroup N of G such that G/N is isomorphic to C2s or D2s−1 , then
G does not admit a (v, k, λ) difference set.

We also establish the following:

Theorem 1. Suppose that G is a group of order 288. If there exists a normal
subgroup N of G such that G/N is isomorphic to one of C32, D16, D8 × C2, (C4 ×
C2) o C4, (C4)

2 × C2, D4 × (C2)
2, ((C4 × C2) o C2) o C2([32, 22]), ((C4 × C2) o

C2)oC2([32, 48]), (C4 × (C2)
3, (C2)

5, (C2)
4 oC2 or (C4 ×C4)oC2, then G does

not admit a (288, 42, 6) difference set.

[|G/N |, cn] means the GAP [5] library number of group G/N . Section 2 discusses
basic results while Section 3 provides an algorithm that verifies Conjecture 1 in Sylow
2-cyclic factor groups. In Section 4, we provide a detailed example that demonstrates
Conjecture 1 and show that certain groups do not admit (288, 42, 6) difference sets.
The last section enumerates parameter sets that satisfy the conjecture along with
those that do not.

2. Preliminaries

Difference sets are closely related to symmetric designs and difference sets as follows
([11, Theorem 4.2])

Lemma 1. Suppose that D is a (v, k, λ) difference set in a group G, then the Dev(D)
is a (v, k, λ) symmetric design and G acts as a regular automorphism group of this
design.

This lemma simply means that difference sets can be used to construct symmetric
designs. However, the converse is not necessarily true (see [6]).
Let G be a group and N a normal subgroup of G. If D is a (v, k, λ) difference set
in G, then the difference set image in G/N (also known as the contraction of D
with respect to the kernel N) is the multi-set D/N = ψ(D) = {dN : d ∈ D} . Let
T ∗ = {1, t1, . . . , th} be a left transversal of N in G. We can write D̂ =

∑
ti∈T∗ ditiN ,

where the integer di = |D ∩ tiN | is known as the intersection number of D with
respect to N . In this work, we shall always use the notation D̂ for ψ(D) and denote
the number of times di equals i by mi ≥ 0. We now state another necessary but not
sufficient condition for the existence of difference sets.

Lemma 2 (Variance trick). Suppose that D is a (v, k, λ) difference in a group G of
order v and N is a normal subgroup of G. Suppose also that D̂ is the difference set
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image in G/N and T ∗ is a left transversal of N in G such that {di} is a sequence
of intersection numbers and {mi}, where mi is the number of times di equal to i.
Then

|N |∑
i=0

mi = |G/N |,
|N |∑
i=0

imi = k,

|N |∑
i=0

i(i− 1)mi = λ(|N | − 1). (1)

Notice that the bound for each intersection number is 0 ≤ di ≤ min(|N |, |D̂|).
Readers are referred to [12, 13, 16, 18] for basic information on character and rep-

resentation theories and algebraic number theory. The following results characterize
the algebraic number χ(D̂).

Lemma 3. Let D be a difference set in a group G and N a normal subgroup of G.
Suppose that ψ : G −→ G/N is a natural epimorphism and n = k − λ. Then

1. D̂D̂(−1) = n · 1G/N + |N |λ(G/N)

2.
∑
d2i = n+ |N |λ

3. χ(D̂)χ(D̂) = n · Id, where χ is a non trivial representation of G/N of degree d
and Id is an identity matrix of order d.

We now state the general formula employed in the search of the difference set in
abelian groups [15].

Theorem 2. Let G be an abelian group and G∗/ ∼ the set of equivalence classes of
characters. Suppose that {χo, χ1, . . . , χs} is a system of distinct representatives for
the equivalence classes of G∗/ ∼. Then for A ∈ Z[G], we have

A =
s∑

i=0

αi[eχi ], (2)

where αi is any χi-alias for A.

Equation (2) is known as the rational idempotent decomposition of A.
There are many ways to study difference sets. We adopt the representation

theoretic method [15, 17], which entails getting information about the putative dif-
ference set D in a group G, by first obtaining comprehensive list ΩG/N of difference
set images in factor group G/N of least size. We garner information about D as
we gradually increase the size of the factor group. If at a point the distribution list
ΩG/N is empty, then this signifies non-existence. The following result is credited to
Kronecker [18].

Theorem 3 (Kronecker). Let α be an algebraic integer in Q(ζ) where ζ is some
root of unity. If α and all its algebraic conjugates have modulus one, then α is a
root of unity.

Aliases are needed for the construction of difference set images. Suppose that
G/N is an abelian factor group of exponent m′ and D̂ is a difference set image in

G/N . If χ is not a principal character of G/N , then by Lemma 3, χ(D̂)χ(D̂) = n,
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where χ(D̂) is an algebraic number of length
√
n. The determination of the alias

requires the knowledge of how the ideal generated by χ(D̂) factors in cyclotomic
ring Z[ζm′ ], where ζm′ is the m′-th root of unity. If δ := χ(D̂), then by (2) we seek
a group ring, Z[G/N ] element say α such that χ(α) = δ. The task of solving the
algebraic equation δδ̄ = n is sometimes made easier if we consider the factorization
of principal ideals (δ)(δ̄) = (n). To achieve this,

a) we must look for all principal ideals π ∈ Z[ζm′ ] such that ππ̄ = (n),

b) for each such ideal, we find a representative element, say δ with δδ̄ = n, and

c) for each δ we find an alias α ∈ Z[G/N ] such that χ(α) = δ.

Using algebraic number theory, we can easily construct the ideal π. The daunting
task is to find an appropriate element δ ∈ π. Suppose we are able to find δ =∑ϕ(m′)−1

i=0 diζ
i
m′ ∈ Z[ζm′ ] such that δδ̄ = n, where ϕ is the Euler ϕ-function. By

Kronecker’s Theorem if there is any other solution to the algebraic equation, then
it must be of the form δ′ = δu [16], where u = ±ζjm′ is a unit. To construct alias
from this information, we choose a group element g that is mapped to ζm′ and

set α :=
∑ϕ(m′)−1

i=0 dig
i such that χ(α) = δ. Hence, the set of complete aliases is

{±αgj : j = 0, 1, . . . ,m′ − 1}.
We use the following result to determine the number of factors of an ideal in

a ring: Suppose p is any prime and m′ is an integer such that gcd (p,m′) = 1.
Suppose that d is the order of p in the multiplicative group Z∗

m′ of the modular
number ring Zm′ . Then the number of prime ideal factors of the principal ideal (p)

in the cyclotomic integer ring Z[ζm′ ] is ϕ(m′)
d , where ϕ is the Euler ϕ-function, i.e.

ϕ(m′) = |Z∗
m′ | [12]. For instance, the ideal generated by 2 has two factors in Z[ζ7],

the ideal generated by 3 is prime in Z[ζ2s ], s ≤ 2 while the ideal generated by 3
has two factors in Z[ζ2s ], s ≥ 3. On the other hand, since 2s is a power of 2, the
ideal generated by 2 is said to completely ramify as power of (1 − ζ2s) = (1− ζ2s)
in Z[ζ2s ].

According to Turyn [19], an integer n is said to be semi-primitive modulom′ if for
every prime factor p of n, there is an integer i such that pi ≡ −1 (mod m′). In this
case, −1 belongs to the multiplicative group generated by p. Furthermore, n is self
conjugate modulo m′ if every prime divisor of n is semi primitive modulo m′

p, m
′
p

is the largest divisor of m′ relatively prime to p. This means that every prime ideal
over n in Z[ζm′ ] is fixed by complex conjugation. For instance, a8 ≡ −1 (mod m′),
where a = 3, 7, 11 and m′ = 17, 34. Also, 24 ≡ −1 (mod 17) and 7 ≡ −1 (mod 8).
Thus, ⟨a⟩ is fixed by conjugation in Z[ζm′ ]. In this paper, we shall use the phrase
m factors trivially in Z[ζm′ ] if the ideal generated by m is prime (or ramifies)
in Z[ζm′ ] or m is self conjugate modulo m′. In this case, if D̂ is the difference set
image of order n = m2 in G/N , a group with exponent m′ and χ is a non trivial
representation of G/N , then χ(D̂) = mζim′ , ζm′ is the m′-th root of unity.

For (288, 42, 6) difference sets, n = k − λ = 36 = 2232 and we look at factor
groups of order m′ = 2s, s = 1, . . . , 5. The ideal (36) = (2)2(3)2 and we need the
factoring of (2) and (3) in the cyclotomic ring Z[ζ2s ]. The ideal generated by 2
factors trivially in Z[ζ2s ], the ideal generated by 3 is prime in Z[ζ2s ], s ≤ 2 while (3)
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has two factors in the same cyclotomic ring for s > 2. Consequently, every alias of
the difference set is a multiple of 2 in the factor group of order 2s. Now, we need
δ such that δδ̄ = 32 in the cyclotomic field Q[ζ2s ], where s = 3, 4, 5. (3) has two
factors in each of these cyclotomic fields and we consider Q[ζ8]. Suppose σ ∈ Q[ζ8],
where σ(ζ8) = ζ38 . This Galois automorphism splits the integral basis of Q[ζ8] into
two orbits as (ζ8, ζ

3
8 ), (ζ

5
8 , ζ

7
8 ). It can be verified that (3) = (1+ ζ8+ ζ

3
8 )(1+ ζ

5
8 + ζ

7
8 ).

Put π = (1+ ζ8 + ζ38 ) and let δ1 = 1+ ζ8 + ζ38 be a representative of this ideal. The

solutions to the algebraic equation δδ̄ = 32 are: δ1δ̄1 = 32, δ21 or δ̄1
2
. This shows

that δ = 9, −1 + 2ζ8 + 2ζ38 or −1 − 2ζ8 − 2ζ38 . In general, if m′ = 2s, where s ≥ 3,

then (3) = (1+ ζ2
s−3

m′ + ζ3·2
s−3

m′ )(1− ζ ·2s−3

m′ − ζ3·2s−3

m′ ). In summary, if D̂ is a difference
set image in Cm′ , a factor group of any group of order 288 and χ is a non trivial

representation of Cm′ such that χ(D̂)χ(D̂) = 2232. Then using Theorem 3, χ(D̂) is

a) ±6ζjm′ if m′ = 2, 4, and j = 0, . . . ,m′ − 1.

b) one of ±6ζtm′ ,±2(−1+2ζ2
s−3

m′ +2ζ3·2
s−3

m′ )ζum′ ,±2(−1− 2ζ2
s−3

m′ − 2ζ3·2
s−3

m′ )ζrm′ , if
m′ = 2s, s ≥ 3 and r, t, u = 0, . . . ,m′ − 1.

Consequently, the possible aliases α in the rational idempotent decomposition of D̂
is

1) ±6xj if m′ = 2, 4, and j = 0, . . . ,m′ − 1, x is a generator of Cm′ .

2) one of ±6xt,±2(−1 + 2x2
s−3

+ 2x3·2
s−3

)xu,±2(−1 − 2x2
s−3 − 2x3·2

s−3

)xr, if
m′ = 2s, s ≥ 3, and r, t, u = 0, . . . ,m′ − 1, x is a generator of C2s .

2.1. Useful results about difference sets in subgroups of a group

The Dillon result below provides a nice way to obtain difference set images in a
dihedral group if the difference set images in the corresponding cyclic group of the
same order are known.

Theorem 4 (Dillon dihedral trick). Let H be an abelian group and let G be the
generalized dihedral extension of H. That is, G = ⟨q,H : q2 = 1, qhq = h−1,∀h ∈
H⟩. If G contains a difference set, then so does every abelian group which contains
H as a subgroup of index 2.

Corrollary 1. If the cyclic group C2m does not contain a (nontrivial) difference
set, then neither does the dihedral group of order 2m.

The next result describes geometrically how properties of factor group of a group
can be lifted, under certain conditions, to the group itself [17].

Theorem 5. Let D be a (v, k, λ) difference set in group G with a factor group H.
Suppose that q is a prime such that qs | |H| and E ⊂ C(H) is an elementary abelian

subgroup of order qr, r ≤ s. Suppose also that E1, E2, . . . , Et, where t = qr−d( q
r−1
q−1 )

are the subgroups of E and their cosets, each of order qd, d < r, D̂ and
ˆ̂
Di are

the corresponding difference set images in H and H/Ei respectively. Suppose there

exists an integer a and prime p with p | (k − λ) such that for each i,
ˆ̂
Di ≡ a(H/Ei)

mod p, then there exist an integer k′ such that D̂ ≡ a(k′)−1H mod p.
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It turns out that k′ = qd. We will use this result to determine the non-existence
of (288, 42, 6) difference set images in some groups of order 32 with q = 2, p = 11,
k′ = 2, r = 2 and d = 1. In this paper, we work with (4, 6, 3, 2, 1) design.

Finally, suppose that H is a group of order 2h with a central involution z. We
take T = {ti : i = 1, . . . , h} to be the transversal of ⟨z⟩ in H so that every element in
H is viewed as tiz

j , 0 ≤ i ≤ h, j = 0, 1. Denote the set of all integral combinations,∑h
i=1 aiti of elements of T, ai ∈ Z by Z[T ]. Using the two representations of subgroup

⟨z⟩ and Frobenius reciprocity theorem [13], we may write any elementX of the group
ring Z[H] in the form

X = X

(
1 + z

2

)
+X

(
1− z

2

)
. (3)

Furthermore, let A be the group ring element created by replacing every occurrence
of z in X by 1. Also, let B be the group ring element created by replacing every
occurrence of z in H by −1. Then

X = A

(
⟨z⟩
2

)
+B

(
2− ⟨z⟩

2

)
, (4)

where A =
∑h

i=1 aiti and B =
∑h

j=1 bjtj , ai, bj ∈ Z. As X ∈ Z[H], A and B are
both in Z[T ] and A ≡ B mod 2. We may equate A with the homomorphic image of
X in G/⟨z⟩. Consequently, if X is a difference set, then the coefficients of ti in the
expression for A will be the intersection number of X in the coset ⟨z⟩. In particular,
it can be shown that if K is a subgroup of a group H such that

H ∼= K × ⟨z⟩, (5)

then the difference set image in H is

D̂ = A

(
⟨z⟩
2

)
+ gB

(
2− ⟨z⟩

2

)
, (6)

where g ∈ H, A is a difference set in K, α = k+
√
n

|K| or α = k−
√
n

|K| , B = A−αK and k

is the size of the difference set. (6) is true as long as |K| | (k+
√
n) or |K| | (k−

√
n).

3. The non-existence result and algorithm

3.1. A version of Turyn’s and Dillon’s results

Turyn’s bound [10] states that an abelian groupG of order 22u+2 contains a Hadamard
difference set if and only if the exponent of G is at most 2u+2. A particular case of
Conjecture 1 yields a version of Turyn’s and Dillon’s results:

Lemma 4. If s = 2u+2 and p = 1 in Conjecture 1, then there is no (22u+2, 2u(2u+1−
1), 2u(2u − 1)) difference set in C22u+2 and D22u+1 , u is a natural number.
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3.2. The algorithm: A quadruple summary of the non-existence
result

This construction hinges on the splitting of intersection numbers of a (v, k, λ) dif-
ference set image in the cyclic factor group of order 2j , as j increases from 1 to
s − 1, where v = 2sa. The process involves four important intersection numbers of
the difference set image in a factor group of order 2j . Since G is a group of order
v = 2sa, let N be a subgroup of order a such that G/N ∼= C2s . Let g be the unique
element of G/N of order 2 and x the generator of H = G/⟨g,N⟩. Thus by (4), we
can write the difference set image in G/N as

D̂ = A
(1 + g)

2
+B

(1− g)

2
, (7)

where A =
∑|H|−1

i=0 tix
i and ti is the intersection number of a difference set image

in G/⟨g,N⟩, which is isomorphic to C2s−1 . As
√
n = 2rqt, the ideal generated by 2

factors trivially in the cyclotomic ring Z[ζ], where ζ is the (2s)th root of unity and
presumably q may factor in this cyclotomic ring. Consequently, B is just a translate
of 2, say B = 2g∗ for some g∗ ∈ G. This stipulation forces A ≡ 0 (mod 2). The
steps below show that intersection numbers of a difference set image in H ∼= C2s−1

are not all even integers.

Step 1: Obtain the difference set image in G/N ∼= C2 = ⟨y : y2 = 1⟩. Suppose that
D̂ = d0 + d1y is the (v, k, λ) difference set image in C2. The characters of G/N are
of the form χj(y) = (−1)j , j = 0, 1. By applying y 7→ 1 to D̂, we get d0 + d1 = k

while y 7→ −1 on D̂ yields d0 − d1 =
√
n or −

√
n. The solution to this system of

equations is one of d0 = k+
√
n

2 and d1 = k−
√
n

2 or d1 = k+
√
n

2 and d0 = k−
√
n

2 .

Step 2: We translate if necessary to ensure that d0 > d1 and set d0 = k+
√
n

2 and

d1 = k−
√
n

2 . The first number of the quadruple is obtained by dividing d0 by 2 and

adding
√
n
2 ; the second is obtained by dividing d0 by 2; for the next number, divide

d1 by 2 and the last number is obtained by dividing d1 by 2 and subtracting
√
n
2 .

This process generates the quadruple
[d0+

√
n

2 , d0

2 ,
d1

2 ,
d1−

√
n

2

]
.

Step 3: Divide the first coordinate of the quadruplet in step 2 by 2 and add
√
n
2 ;

divide the second coordinate by 2; divide the third coordinate by 2; and finally,

divide the fourth coordinate by 2 and subtract
√
n
2 . This process generates the

quadruple
[d0+3

√
n

4 , d0

4 , d1

4 , d1−3
√
n

4

]
.

Step j, j ≥ 2: Continue with the iteration to get the j-th quadruplet[
d0 + (2j−1 − 1)

√
n

2j−1
,
d0
2j−1

,
d1
2j−1

,
d1 − (2j−1 − 1)

√
n

2j−1

]
.

The process terminates at the step j = s − 1, when the entries are either fractions
or odd numbers. At this stage, there is at least one odd number in each set of
intersection numbers in the factor group C2s−1 . Consequently, by parity (7) has
no integer solutions and C2s does not admit a difference set. The Dillon dihedral
technique shows that D2s−1 does not either. We illustrate the above algorithm with
an example.
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Example 1. Consider a (1024, 496, 240) parameter set. In this case, n = 256,

d0 = 496+
√
n

2 = 256 and d1 = k − d0 = 240 and
√
n
2 = 8.

Step 1: [256, 240]

Step 2: [136, 128, 120, 112]

Step 3: [76, 64, 60, 48]

Step 4: [46, 32, 30, 16]

Step 5: [31, 16, 15, 0]

Step 6: [*, 8, *, *]

Step 7: [*, 4, *, *]

Step 8: [*, 2, *, *]

Step 9: [*, 1, *, *],

where * is a place holder for fractions or negative integers. The process terminates at
step 9 and there must be at least one odd intersection number in each set of difference
set images of C512. This shows that C1024 and D512 do not admit a (1024, 496, 240)
difference set.

4. Non-existence of (288, 42, 6) difference sets in some groups

We show that if G is a group of order 288 and N is an appropriate normal subgroup
of G such that G/N ∼= H, where H is one of the identified groups of order 32,
then G does not admit (288, 42, 6) difference sets. Part of the work in this section
provides an example that illustrates the non-existence of (v, k, λ) in groups that are
isomorphic to C32 or D16.

4.1. The C2 image

Suppose G/N ∼= C2 = ⟨x : x2 = 1⟩ and D̂ =
∑1

j=0 djx
j is the difference set image

in G/N . Then the unique element of ΩC2 is A = 24 + 18x.

4.2. Images on groups of order 4

We obtain the (288, 42, 6) difference sets images in the two groups of order 4.

4.2.1. The C4 images

Suppose G/N ∼= C4 = ⟨x : x4 = 1⟩ and the difference set image in G/N is D̂ =∑3
j=0 djx

j . We view this group ring element as a 1×4 matrix with columns indexed

by powers of x. The rational idempotents of G/N are [eχ0 ] = 1
4 ⟨x⟩; [eχ2 ] =

1
4 (2⟨x

2⟩−⟨x⟩); [eχ1 ] =
1
2 (2−⟨x2⟩). The first two rational idempotents have ⟨x2⟩ in
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their kernel and the linear combination of these idempotents is written as αχ0 [eχ0 ]+

αχ2 [eχ2 ] = A ⟨x2⟩
2 , where A is the difference set image in C2. As χ1(D̂)(χ1(D̂)) =

36 = (6)(6), the difference set image is

D̂ = A
⟨x2⟩
2

± 6xj [eχ1 ], (8)

j = 0, 1, 2, 3. By translating if necessary, the distribution scheme, ΩC4 for C4 (up to
translation) consists of A1 = −6 + 12⟨x⟩ and A2 = 6 + 9⟨x⟩.

4.2.2. The (C2)
2 images

It can be shown that if G/N ∼= (C2)
2 = ⟨x, y : x2 = y2 = [x, y] = 1⟩ and the

difference set image in G/N is D̂ =
∑1

s,t=0 dstx
syt, then the elements of Ω(C2)2 , up

to translation, are 12⟨x⟩⟨y⟩ − 6 and 9⟨x⟩⟨y⟩+ 6.

4.3. Images of groups of order 8

We obtain the (288, 42, 6) difference set images in four of the five groups of order 8.

4.3.1. The C8 images

Suppose G/N ∼= C8 = ⟨x : x8 = 1⟩ and D̂ =
∑7

j=0 djx
j is the (288, 42, 6) difference

set image in G/N . We view this group ring element as a 1× 8 matrix with columns
indexed by powers of x. The characters of G/N are of the form χj(x) = ζj , j =
0, · · · , 7, where ζ is the eighth root of unity. The four rational idempotents of
G/N are: [eχ0 ] =

1
8 ⟨x⟩, [eχ4 ] =

1
8 (2⟨x

2⟩ − ⟨x⟩), [eχ2 ] =
1
4 (2⟨x

4⟩ − ⟨x2⟩), and
[eχ1 ] =

1
2 (2− ⟨x4⟩).

The linear combination of the three rational idempotents which have ⟨x4⟩ in their
kernel is written as

∑
j=0,2,4 αχj [eχj ] =

Ak

2 ⟨x4⟩, where Ak, k = 1, 2 is a difference
set in C4.

Thus, the difference set image in C8 is

D̂ =
Ak

2
⟨x4⟩+ αχ1 [eχ1 ], (9)

where αχ1 ∈ {±6xs,±2(−1 − 2x − 2x3)xt,±2(−1 + 2x + 2x3)xu}, s, t, u = 0, . . . , 7.
If D is a solution (9) so does gD for an group element g ∈ G/N . Hence, we use only
the first two aliases. Define:

Z1 = 6[eχ1 ] = 3(1− x4), Z2 = 2(−1 + 2x+ 2x3)[eχ1 ] = (−1 + 2x+ 2x3)(1− x4).

Thus, (9) becomes D̂ = Ak

2 ⟨x4⟩±xjZl, j = 0, 1, 2, 3, l, k = 1, 2. The fact that 8Zl ≡ 0
mod 8 forces k = 1. Up to equivalence, the elements of ΩC8 are

B1 =− 6 + 6⟨x⟩,
B2 =3⟨x⟩+ 3x(2 + x+ x2 + x5 + x6)

B3 =3⟨x⟩+ 3x(1 + 2x+ x2 + x4 + x6)

B4 =2 + 8x+ 6x2 + 8x3 + 4x4 + 4x5 + 6x6 + 4x7
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B5 =1 + 5x+ 8x2 + 6x3 + 5x4 + 7x5 + 4x6 + 6x7

B6 =3 + 4x+ 5x2 + 8x3 + 3x4 + 8x5 + 7x6 + 4x7

4.3.2. The D4 images

We use the Dillon dihedral technique trick to obtain the difference set image in
G/N ∼= D4 = ⟨θ, y : θ4 = y2 = 1, yθy = θ−1θ⟩. Take D̂ =

∑3
s=0

∑1
t=0 dstθ

syt to the
(288, 42, 6) difference set image in G/N . We view this group ring element as a 2×4
matrix with columns indexed by powers of θ and rows indexed by y. To use the
C8 = ⟨x : x8 = 1⟩ difference set images, set θ = x2 and y = x. This transformation
enables us to view each Bj , j = 1, . . . , 6 as a 2× 4 matrix. For instance, B2 becomes
B′

2 = 3 + 6θ + 3θ2 + 6θ3 + (9 + 6θ + 3θ2 + 6θ3)y.
Furthermore, G/N ∼= D4 has one degree two representation and four characters.

The degree two representation is

χ : θ 7→
(
i 0
0 −i

)
, y 7→

(
0 1
1 0

)
,

where i is the fourth root of unity. We apply this representation to each transformed
difference set image B′

j , j = 1, . . . , 6 and verify whether or not χ(B′
j)χ(B

′
j) = 36I2, I2

is a 2× 2 identity matrix. For example,

χ(B′
2) =

(
3 + 6i+ 3i2 + 6i3 9 + 6i+ 3i2 + 6i3

9 + 6i3 + 3i2 + 6i 3 + 6i3 + 3i2 + 6i

)
=

(
0 6
6 0

)
.

Notice that χ(B′
2)χ(B

′
2) = 36I2. Hence, the elements of ΩD4 are B′

1 = −6+6⟨θ⟩⟨y⟩,
B′

2 = −3(1 + θ2) + 6⟨θ⟩⟨y⟩+ 3(1− θ2)y and B′
3 = 3θ + 3⟨θ⟩+ 6⟨θ⟩y.

4.3.3. The C4 × C2 images

ConsiderG/N ∼= C4×C2 = ⟨x, y : x4 = y2 = 1 = [x, y]⟩. Let D̂ =
∑3

s=0

∑1
t=0 dstx

syt

be the (288, 42, 6) difference set image in G/N . We view this group ring element as
a 2×4 matrix with columns indexed by powers of x and rows indexed by y. As G/N
is of the form (5), α = 12 or 9. Wlog, take α = 12, K = C4 and Bs = As − 12K,
where As, s = 1, 2 is an element of ΩC4 . Then by (6), the difference set image is

D̂ = As

(
⟨y⟩
2

)
+ gBs

(
2− ⟨y⟩

2

)
, (10)

g ∈ C4 × C2, B1 = 3 − 3y and B2 = 1
2 (6 − 3⟨x⟩)(1 − y). Up to equivalence, the

difference set image in C4 × C2 are B′
4 = −6 + 6⟨x⟩⟨y⟩, B′

5 = 6 + 6⟨x⟩⟨y⟩ − 3⟨x⟩,
B′

6 = 3 + 3x + 6x2 + 6x3 + (3 + 9x + 6x2 + 6x3)y and B′
7 = 6 + 6x + 3x2 + 3x3 +

(9 + 3x+ 6x2 + 6x3)y.

4.3.4. The (C2)
3 images

Consider G/N ∼= (C2)
3 = ⟨x, y, z : x2 = y2 = z2 = 1 = [x, y] = [x, z] = [z, y]⟩. The

(288, 42, 6) difference set image in this group are B′
8 = −6 + 6(1 + x)(1 + y)(1 + z),

B′
9 = 3 + 6(1 + x)(1 + y)(1 + z)− 3(x+ y + xz).
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4.4. Images on some groups of order 16

We obtain the (288, 42, 6) difference set images in some groups of order 16.

4.4.1. The C16 image

Suppose that G/N ∼= C16 = ⟨x : x16 = 1⟩ and the difference set in G/N is D̂ =∑15
j=0 djx

j . Out of the five rational idempotents of G/N , only [eχ1
] = 2−⟨x8⟩

2 do not

have ⟨x8⟩ in its kernel. The linear combination of rational idempotents having ⟨x8⟩
in their kernel is written as

∑
j=0,2,4,8 αeχj

[eeχj
] = Bj

( ⟨x8⟩
2

)
, where Bj is a difference

set image in C8.

Thus, the difference set image in G/N is

D̂ = Bj

(
⟨x8⟩
2

)
+ αeχ1

[eeχ1
], (11)

where αeχ1
∈ {±6xu,±2(−1+2x2+2x6)xt,±2(−1−2x2−2x6)xr}, r, t, u = 0, . . . , 15.

Define Z1 = 6 · [eχ1 ] = 3(1 − x8) and Z2 = 2(−1 + 2x2 + 2x6)[eχ1 ] = −1 + 2x2 +

2x6 + x8 − 2x10 − 2x14. We now rewrite (11) as D̂ = Bj

( ⟨x8⟩
2

)
+ xlZk, k = 1, 2; l =

0, · · · , 15; j = 1, . . . , 6. Since 16Zk ≡ 0 mod 16, a solution exists if and only if

16Bj

( ⟨x8⟩
2

)
≡ 0 mod 16. This condition is satisfied by Bj , j = 1, 4. Up to equiva-

lence, the C16 images are:

F1 =6x+3x2+3x3+3x4+3x5+3x6+3x7+3x10+3x11+3x12+3x13+3x14+3x15

F2 =1+7x+3x2+4x3+2x4+2x5+3x6+2x7+x8+x9+3x10+4x11+2x12+2x13

+3x14+2x15

F3 =1+4x+6x2+4x3+2x4+2x5+3x6+2x7+x8+4x9+4x11+2x12+2x13+3x14

+x15

F4 =2x+3x2+5x3+3x4+3x5+3x6+5x7+4x9+3x10+x11+3x12+3x13+3x14+x15

F5 =x+3x2+3x4+5x5+3x6+3x7+5x9+3x10+4x11+3x12+x13+3x14+3x15

F6 =4x+5x2+4x3+2x4+2x5+5x6+2x7+2x8+4x9+x10+4x11+2x12+2x13

+x14+2x15

F7 =1+3x+3x2+6x3+2x4+2x5+3x6+4x7+x8+5x9+3x10+2x11+2x12+2x13+3x14

F8 =1+4x+x2+4x3+x4+2x5+5x6+2x7+x8+4x9+5x10+4x11+3x12+2x13+x14

+2x15

F9 =1+4x+3x2+2x3+2x4+x5+3x6+4x7+x8+4x9+3x10+6x11+2x12+3x13+3x14



480 A. S.Osifodunrin

F10 =3x+3x2+x3+3x4+2x5+3x6+5x7+3x9+3x10+5x11+3x12+4x13+3x14+x15

F11 =3x+x2+3x3+2x4+3x5+5x6+3x7+x8+3x9+5x10+3x11+4x12+3x13+x14

+3x15

F12 =3x+6x2+3x3+3x4+3x5+3x6+3x7+3x9+3x11+3x12+3x13+3x14+3x15

F13 =3x+3x2+3x3+6x4+3x5+3x6+3x7+3x9+3x10+3x11+3x13+3x14+3x15

4.4.2. The D8 image

Consider the factor group G/N ∼= D8 = ⟨x, y : x8 = y2 = 1, yxy = x−1⟩ and let

D̂ =
∑7

s=0

∑1
t=0 dstx

syt be its difference set image. By the Dillon technique and up

to equivalence, D̂ is one of the following:

F ′
1 =(3x+ 3x2 + 3x3 + 3x5 + 3x6 + 3x7)

+ (6 + 3x+ 3x2 + 3x3 + 3x4 + 3x5 + 3x6 + 3x7)y

F ′
2 =(3x+ 3x2 + 3x3 + 3x5 + 3x6 + 3x7)

+ (2 + 5x+ 3x2 + 5x3 + 4x4 + x5 + 3x6 + x7)y

F ′
3 =(3x+ 3x2 + 3x3 + 3x5 + 3x6 + 3x7)

+ (1 + 2x+ 5x2 + 3x3 + 5x4 + 4x5 + x6 + 3x7)y

F ′
4 =(3x+ 3x2 + 3x3 + 3x5 + 3x6 + 3x7)

+ (3 + x+ 2x2 + 5x3 + 3x4 + 5x5 + 4x6 + x7)y

F ′
5 =(x+ 2x2 + 5x3 + 5x5 + 4x6 + x7)

+ (3 + 3x+ 3x2 + 3x3 + 3x4 + 3x5 + 3x6 + 3x7)y

F ′
6 =(3x+ 6x2 + 3x3 + 3x5 + 3x7) + (3 + 3x+ 3x2 + 3x3 + 3x4 + 3x5 + 3x6 + 3x7)y

F ′
7 =(6x+ 3x2 + 3x3 + 3x6 + 3x7) + (3 + 3x+ 3x2 + 3x3 + 3x4 + 3x5 + 3x6 + 3x7)y

Notice that the D8 difference set images are either of the form 0331261 or
021221384152. The notation 0331261 means the intersection number 0 occurs three
times, intersection number 3 occurs twelve times while intersection number 6 occurs
once. This information will be used to show that G/N ∼= D8 × C2 does not admit
(288, 42, 6) difference sets.

4.4.3. The (C4 × C2)o C2 images

Consider G/N ∼= (C4 × C2)o C2 = ⟨x, y, z : x4 = y2 = z2 = 1 = [x, y] = [x, z], yz =
zx2y⟩ with GAP[5] location number [16, 13]. The derived subgroup of G/N is
(G/N)′ = {1, x2} and the center of G/N , C(G/N) = ⟨x⟩ ∼= C4. Suppose that the

difference set image in G/N is D̂ =
∑3

i=0

∑1
i=0

∑1
i=0 dijkx

iyjzk. We view this group
ring element in array form as:

D̂ =

[
d000 d100 d200 d300 d010 d110 d210 d310
d001 d101 d201 d301 d011 d111 d211 d311

]
.
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Since (G/N)/(G/N)′ ∼= (C2)
3 = ⟨x, y, z : x2 = y2 = z2 = [x, y] = [y, z] = [x, z]⟩, the

projection map x2 7→ 1 produces the following system of equations:

1∑
s,t=0

(ds,t0 + ds+2,t0) = cst0,

1∑
s,t=0

(ds,t1 + ds+2,t1) = cst1, (12)

where the array (c000, c100, c010, c110, c001, c101, c011, c111) is a difference set image
in (C2)

3. Furthermore, the degree two representation of G/N is:

χ : θ 7→
(
i 0
0 i

)
, y 7→

(
0 1
1 0

)
, z 7→

(
1 0
0 −1

)
where i is the fourth root of unity. The image of D̂ under this representation is

χ(D̂) =

(
a b
c d

)
, with

a = (a0 + a2) + (a1 + a3)i,

b = (b0 + b2) + (b1 + b3)i,

c = (b0 − b2) + (b1 − b3)i,

d = (a0 − a2) + (a1 − a3)i,

where

a0 = d000 − d200, a1 = d100 − d300, a2 = d001 − d201, a3 = d101 − d301,

b0 = d010 − d210, b1 = d110 − d310, b2 = d011 − d211, b3 = d111 − d311.

Hence, χ(D̂)χ(D̂) =

(
aā+ bb̄ ac̄+ bd̄
cā+ db̄ cc̄+ dd̄

)
, where

aā+ bb̄ = a20 + a22 + 2a0a2 + a21 + a23 + 2a1a3 + b20 + b22 + 2b0b2 + b21 + b23 + 2b1b3,

cc̄+ dd̄ = a20 + a22 − 2a0a2 + a21 + a23 − 2a1a3 + b20 + b22 − 2b0b2 + b21 + b23 − 2b1b3,

ac̄+ bd̄ = 2(a0b0 − a2b2 + a1b1 − a3b3 − a2b1i+ a3b0i− a1b2i+ a0b3i),

cā+ db̄ = 2(a0b0 − a2b2 + a1b1 − a3b3 − a2b1i− a0b3i+ a1b2i− a3b0i).

As we require χ(D̂)χ(D̂) = 36I2, where I2 is a 2× 2 identity matrix, it follows that

aā+ bb̄ = 36, cc̄+ dd̄ = 36, cā+ db̄ = 0, cā+ db̄ = 0.

The sum of equations aā+ bb̄ = 36 and cc̄+ dd̄ = 36 yields

a20 + a22 + a21 + a23 + b20 + b22 + b21 + b23 = 36 (13)

a0a2 + a1a3 + b0b2 + b1b3 = 0, (14)

while cā+ db̄ = 0 or cā+ db̄ = 0 implies

a0b0 − a2b2 + a1b1 − a3b3 = 0 (15)

−a2b1 − a0b3 + a1b2 − a3b0 = 0. (16)
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The solution set of (13) is some permutation of the entries of the row 1 through 6
of the following tables:

1 ±6 0 0 0 0 0 0 0
2 ±5 ±3 ±2 ±1 0 0 0 0
3 ±4 ±4 ±2 0 0 0 0 0

,
4 ±4 ±4 ±1 ±1 ±1 ±1 0 0
5 ±3 ±3 ±3 ±3 0 0 0 0
6 ±3 ±3 ±2 ±2 ±2 ±2 ±1 ±1

There are 1248 possible solutions to (13)-(16). To get difference set images, we
need to solve (12)-(16). Recall that (13) involves the array (c000, c100, c010, c110, c001,
c101, c011, c111), which is a difference set image in (C2)

3. The difference set images
in (C2)

3 are either of the form 0167 in which all intersection numbers are even or
336491 in which half of the intersection numbers are even and the rest are odd
integers. Due to the nature of (13) and (14), only solutions arising from rows 1 and
3 of the above tables are comparable with 0167 while the rest are compatible with
336491. Interestingly, it turns out that any putative difference set image in G/N
has one of the distributions 0331261, 021221384152 or 0112233971. This is the only
vital information required to establish the non-existence of difference set images in
((C4 × C2)o C2)× C2[32, 48].

4.4.4. The structure of difference set images in some groups of order 16

Suppose that G/N is isomorphic to some groups of order 16, apart from C16 and D8.
Recall that the difference set images in G/N ∼= C4 ×C2, (C2)

3 or D4 satisfy B′
j ≡ 0

mod 3. Let E be an elementary abelian subgroup of C(G/N) such that |E| = 22.
Consider the sequence {Ei}, where Ei is a subgroup of E of order 2. Suppose
that for each i, (G/N)/Ei is isomorphic to one of C4 × C2, (C2)

3 or D4. Then by
Theorem 5, the difference set image D̂ in G/N satisfies D̂ ≡ 0 mod 3. The groups
of order 16 that satisfy this stipulation are: C4×C4([16, 2]), (C4×C2)oC2([16 3]),
C4 × (C2)

2([16, 10]), D4 ×C2([16, 11]) and (C2)
4([16, 14]), where [|G/N |, cn] is the

GAP library number.

4.5. Non-existence of difference set images in some groups of
order 32

We now show that there are no (288, 42, 6) difference set images in some groups of
order 32.

4.5.1. There are no C32 and D16 images

Suppose that D̂ =
∑31

i=0 dix
i is the difference set image in G/N ∼= C32 = ⟨x :

x32 = 1⟩. Out of the six rational idempotents of G/N , only [eχ1 ] =
2−⟨x16⟩

2 does
not have ⟨x16⟩ in its kernel. The linear combination of the remaining five rational

idempotents can be written as
∑

j=0,2,4,8,16 αeχj
[eeχj

] = Fk

( ⟨x16⟩
2

)
, where αeχj

is an

alias and Fk, k = 1, . . . , 13, is a difference set image in C16. The difference set image
is

D̂ = Fk

(
⟨x16⟩
2

)
+ αeχ1

[eeχ1
], (17)
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where αeχ1
∈ {±6xs,±2(−1 + 2x4 + 2x12)xt,±2(−1 − 2x4 − 2x16)xu}. We only

have to use aliases 6 and −1 + 2x4 + 2x12. Define Z1 = 6 · [eχ1 ] = 3(1 − x16) and
Z2 = 2(−1 + 2x4 + 2x12)[eχ1 ] = −1 + 2x4 + 2x12 + x16 − 2x20 − 2x24. We can now

rewrite (17) as D̂ = Fk

( ⟨x16⟩
2

)
+ xsZl, l = 1, 2; s = 0, · · · , 15. The fact that 32Zl ≡ 0

mod 32 requires 32Fk

( ⟨x16⟩
2

)
≡ 0 mod 32. However, there is no Fk in ΩC16 such

that 32Fk

( ⟨x16⟩
2

)
≡ 0 mod 32. Thus, C32 and D16 (by the Dillon dihedral trick) do

not admit a (288, 42, 6) difference set.

4.5.2. There are (288, 42, 6) difference set images in D8 × C2 and ((C4 ×
C2)o C2)× C2[32, 48]

Suppose that G/N ∼= K×C2, where K = D8 or (C4×C2)oC2 and z is the generator
of C2. Put α = 3, |K| = 16. Then using (6), the difference set image in G/N is of
the form

D̂ = As

(
⟨z⟩
2

)
+ gBs

(
2− ⟨z⟩

2

)
, (18)

g ∈ G/N , Bs = Aj − 3K and Aj or As is a difference set image in K with distribu-

tions 0331261, 021221384152 or 0112233971. In view of these distributions, As

(
⟨z⟩
2

)
consists of 24 fractions and 8 integers while Bs

(
2−⟨z⟩

2

)
consists of 8 fractions and

24 integers. Since the intersection numbers must be non negative integers, the two
terms on the right-hand side of (18) are not compatible and hence, the equation has
no integer solutions.

4.5.3. No difference set images in some factor groups of order 32

Suppose that G/N ∼= H, where H is a group of order 32 satisfying the conditions
of Theorem 5 with p = 3, q = 2 and |C(H)| ≥ 4. Suppose that the difference set
image exists in H and is D̂. Take E to be a subgroup of C(H) of order 4 and Ei

is a subgroup of E such that H/Ei is isomorphic to one of the five groups of order
16 listed in subsection 4.4.4. Theorem 5 requires D̂ satisfying D̂ ≡ 0 (mod 3). This
condition is verified using a variance technique with |N | = 9. Suppose that D̂ ≡ 0
(mod 3). Then the intersection numbers in D̂ could be 0, 3, 6 or 9. Thus by Lemma
2, we have

m0 +m3 +m6 +m9 = 32 (19)

3m3 + 6m6 + 9m9 = 42 (20)

6m3 + 30m6 + 72m9 = 48 (21)

The coefficient of m9 in (21) is 72 which is greater than 48. Thus, m9 must be
zero and the unique solution of the system of equations is (m0,m3,m6,m9) =
(16, 18,−2, 0). This solution involves a negative integer which is not admissible
as mj ≥ 0. This shows that D̂ ̸≡ 0 (mod 3) and this violation implies there is no dif-
ference set image in H. An exploration by GAP reveals that H is one of (C4×C2)o
C4([32, 2]), (C4)

2×C2([32, 21]), D4×(C2)
2([32, 46]), ((C4×C2)oC2)oC2([32, 22]),
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((C4×C2)oC2)oC2([32, 48]), (C4×(C2)
3([32, 45]), (C2)

5([32, 51]), (C2)
4oC2([32,

27]) or (C4×C4)oC2([32, 34]). This work shows that 170 groups of the 1045 groups
of order 288 do not admit (288, 42, 6) difference sets. In the GAP library, these
groups are [288, cn], cn =1, 2, 6, 33, 38, 45, 61, 64, 65, 66, 81, 84, 90, 92, 114, 120,
132, 137, 142, 147, 150, 162, 163, 164, 165, 170, 177, 182, 188, 193, 194, 227, 233,
260, 265, 274, 301, 306, 313, 329, 353, 354, 355, 356, 357, 360, 362, 365, 366, 367,
368, 370, 373, 382, 385, 395, 429, 441, 445, 469, 472, 523, 530, 559, 562, 568, 569,
570, 571, 572, 574, 602, 608, 611, 616, 622, 624, 625, 627, 629, 631, 642, 645, 651,
653, 674, 681, 693, 698, 702, 708, 711, 723, 724, 728, 731, 737, 739, 760, 767, 779,
784, 788, 794, 797, 809, 810, 811, 812, 817, 824, 829, 839, 840, 873, 879, 880, 883,
889, 932, 941, 943, 944, 948, 949, 950, 951, 952, 953, 954, 958, 959, 960, 966, 967,
969, 970, 971, 972, 973, 974, 976, 977, 989, 990, 991, 992, 993, 996, 998, 1001, 1002,
1004, 1005, 1006, 1007, 1008, 1011, 1013, 1016, 1017, 1018, 1019, 1021, 1031, 1039,
1040, 1043, 1044, 1045.

5. List of some parameter sets satisfying conjecture 1

The lower bound for Conjecture 1 is s = 4. Parameters that meet this bound for
a < 100 and k < 6500 are listed in Table 3. By hand verification, the other parameter
sets that are ruled out are listed in Tables 4, 7, 8, 9 and 10. However, for s = 1,
s = 2 and s = 3 the largest 2-group is isomorphic to C2, C4 and C8, respectively,
and the difference set images exist in these groups. These parameters are listed in
Tables 1, 2 and 5, respectively.

v k λ n
1 36 15 6 9
2 100 45 20 25
3 156 31 6 25
4 196 91 42 49
5 204 29 4 25
6 220 73 24 49
7 260 112 48 64
8 276 100 36 64
9 300 92 28 64
10 324 153 72 81
11 364 243 162 81
12 396 80 16 64

Table 1: Parameters with s = 2, a < 100
and k < 6500

v k λ n
1 40 13 4 9
2 56 11 2 9
3 120 35 10 25
4 280 63 14 49
5 408 111 30 81
6 456 105 24 81
7 616 165 44 121
8 760 253 84 169

Table 2: Parameters with s = 3, a < 100
and k < 6500
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v k λ n
1 16 6 2 4
2 144 66 30 36
3 176 50 14 36
4 208 46 10 36
5 400 190 90 100
6 560 130 30 100
7 784 378 182 196
8 816 326 130 196
9 880 294 98 196
10 1008 266 70 196
11 1200 110 10 100
12 1296 630 306 324
13 1456 486 162 324

Table 3: Parameters with s = 4, a < 100
and k < 6500

v k λ n
1 96 20 4 16
2 160 54 18 36
3 288 42 6 36
4 416 166 66 100
5 672 122 22 100
6 736 196 52 144
7 800 188 44 144
8 1632 700 300 400
9 1696 226 30 196
10 1888 222 26 196
11 2016 156 12 144
12 2016 806 322 484
13 2080 540 140 400
14 2784 484 84 400
15 2912 1066 390 676
16 2976 476 76 400
17 3040 1014 338 676

Table 4: Parameters with s = 5 , a < 100
and k < 6500 satisfying Conjecture 1

v k λ n
1 66 26 10 16
2 70 24 8 16
3 78 22 6 16
4 154 18 2 16

Table 5: Parameters with s = 1, a <
100 and k < 6500

v k λ n m r
1 16 6 2 4 4 1
2 64 28 12 16 6 2
3 256 120 56 64 8 3
4 1024 496 240 256 10 4
5 4096 2016 992 1024 12 5
6 16384 8128 4032 4096 14 6

Table 6: Menon-MacFaland-Hadamard
Parameters set with s = 1
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v k λ n
1 320 88 24 64
2 448 150 50 100
3 576 276 132 144
4 704 38 2 36
5 960 274 78 196
6 1344 238 42 196
7 1600 780 380 400
8 1728 628 228 400
9 1856 106 6 100
10 2496 500 100 400
11 3008 776 200 576
12 3136 210 14 196
13 3136 760 184 576
14 3136 1540 756 784
15 3520 460 60 400
16 4032 696 120 576
17 4544 826 150 676
18 5184 2556 1260 1296
19 5440 148 4 144
20 5440 1666 510 1156
21 5568 2052 756 1296
22 5824 648 72 576
23 6336 1086 186 900

Table 7: Parameters with s = 6 , a < 100
and k < 6500

v k λ n
1 640 72 8 64
2 896 180 36 144
3 1408 336 80 256
4 1920 304 48 256
5 2176 726 242 484
6 2432 936 360 576
7 3200 1372 588 784
8 4224 206 10 196
9 4992 806 130 676
10 5248 2332 1036 1296
11 6016 2406 962 1444
12 6528 428 28 400
13 6784 2584 984 1600
14 8064 2200 600 1600
15 8320 2538 774 1764
16 9088 2796 860 1936
17 9856 730 54 676
18 10368 2962 846 2116
19 10880 990 90 900
20 10880 3312 1008 2304
21 11136 1310 154 1156
22 11648 2452 516 1936
23 12160 3088 784 2304
24 12416 3056 752 2304

Table 8: Parameters with s = 7 , a < 100
and k < 6500
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v k λ n
1 1680 438 114 324
2 1776 426 102 324
3 2640 378 54 324
4 3440 362 38 324
5 3760 358 34 324
6 6480 342 18 324
7 18096 330 6 324
8 52976 326 2 324
9 40704 404 4 400
10 14112 412 12 400
11 8800 420 20 400
12 117856 486 2 484
13 17680 498 14 484
14 11616 506 22 484
15 6576 526 42 484
16 6096 530 46 484
17 4576 550 66 484
18 2800 2622 138 484
19 2640 638 154 484
20 2016 806 322 484
21 1936 946 462 484
22 14976 600 24 576
23 42560 584 8 576

Table 9: More parameters with n = k − λ =
(2rbt)2, 2rbt = 18, 20, 22, 24 satisfying Con-
jecture 1

v k λ n m
1 768 118 18 100 8
2 2304 1128 552 576 8
3 2816 1126 450 676 8
4 5376 1376 352 1024 8
5 6400 3160 1560 1600 8
6 7936 2646 882 1784 8
7 8960 868 84 784 8
8 9472 616 40 576 8
9 12544 6216 3080 3136 8
10 13056 1120 96 1024 8
11 14080 1444 148 1296 8
12 14080 3250 750 2500 8
13 20736 2640 336 2304 8
14 20736 3510 594 2916 8
15 23808 3402 486 2916 8
16 52480 5832 648 5184 8
17 4608 272 16 256 9
18 13824 4808 1672 3136 9
19 16896 3380 676 2704 9
20 17720 6336 2240 4096 9
21 19968 3896 760 3136 9
22 22016 5440 1344 4096 9
23 29184 4928 832 4096 9
24 50688 3900 300 3600 9
25 9216 4560 2256 2304 10
26 31744 3528 392 3136 10
27 37888 4672 576 4096 10
28 39936 490 6 484 10
29 46080 4544 448 4096 10
30 26624 5056 960 4096 11
31 34816 1056 32 1024 11
32 169984 5050 150 4900 11
33 270336 4160 64 4096 13

Table 10: More parameters with 8 ≤ s ≤ 15,
a < 100 and k < 6500 in Conjecture 1
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