Estimating π from the Wallis sequence

CRISTINEL MORTICI^{1,*}

¹ Department of Mathematics, Valahia University of Târgoviște, Bd. Unirii 18, 130082 Târgoviște, Romania

Received February 11, 2011; accepted January 20, 2012

Abstract. The aim of this paper is to define new sequences related to the Wallis sequence having higher rates of convergence. Some sharp inequalities are established. **AMS subject classifications**: 40A05, 40A20, 40A25, 65B10, 65B15

Key words: Wallis product, rate of convergence, inequalities, asymptotic series

1. Introduction and motivation

Perhaps one of the most known sequences related to the constant π is the Wallis sequence

$$W(n) = \prod_{k=1}^{n} \frac{4k^2}{4k^2 - 1},$$

which converges to $\pi/2$ with the convergence rate estimated by n^{-1} , since

$$\frac{3}{10n} < \frac{\pi}{2} - W(n) < \frac{4}{10n} \quad (n \ge 3).$$

see, e.g., [6, Rel. 2c]. As the Wallis sequence is slowly convergent towards its limit, it is not suitable for approximating the constant π . In consequence, many authors were preoccupied in the recent past to accelerate the Wallis sequence. See [1, p. 258], [2, p. 384], [3, p. 213], [4, p. 5, p. 47], [5, p. 384], [7, p. 14, p. 465], [11] and the references therein.

In particular, Lampret [6, Rel. 2c] used the following version of the Stirling formula

$$\Gamma(x) = \sqrt{\frac{2\pi}{x}} \left(\frac{x}{e}\right)^x \exp \frac{\theta_x}{12x} \quad (x > 0), \qquad (1)$$

where $\theta_x \in (0, 1)$ to prove the following representation

$$\pi = W(n) \left(2 + \frac{1}{n}\right) e^{-1} \left(1 + \frac{1}{2n}\right)^{2n} \exp\left(\frac{\theta'_n}{6n+3} - \frac{\theta_n}{6n}\right) \quad (n \ge 1).$$
(2)

As the Stirling formula (1) is now the first approximation of the following Stirling asymptotic series

©2012 Department of Mathematics, University of Osijek

^{*}Corresponding author. *Email address:* cmortici@valahia.ro (C. Mortici)

http://www.mathos.hr/mc

C. Mortici

$$\Gamma(x) \sim \sqrt{\frac{2\pi}{x}} \left(\frac{x}{e}\right)^x \exp\left(\frac{1}{12x} - \frac{1}{360x^3} + \frac{1}{1260x^5} - \frac{1}{1680x^7} + \cdots\right),$$

it results that θ_x tends to 1 as x approaches infinity.

Motivated by Lampret's representation (2), we prove that the best approximation of the form

$$\pi \approx W(n) \left(2 + \frac{1}{n}\right) e^{-1} \left(1 + \frac{1}{2n}\right)^{2n} \exp\left(\frac{a}{6n+3} - \frac{b}{6n}\right) \quad (a, b \in [0, 1])$$
(3)

is obtained for a = b = 1. For these priviled ged values, (3) becomes

$$\pi \approx W(n)\left(2+\frac{1}{n}\right)e^{-1}\left(1+\frac{1}{2n}\right)^{2n}\exp\left(-\frac{1}{12n^2+6n}\right),$$

but we prove that the approximation

$$\pi \approx W(n) \left(2 + \frac{1}{n}\right) e^{-1} \left(1 + \frac{1}{2n}\right)^{2n} \exp\left(-\frac{1}{12n^2 + 6n + \frac{6}{5}}\right)$$

gives better results. Moreover, we state and prove the following double inequality **Theorem 1.** For every integer $n \ge 1$, we have

$$W(n)\left(2+\frac{1}{n}\right)e^{-1}\left(1+\frac{1}{2n}\right)^{2n}\exp\left(-\frac{1}{12n^2+6n}\right) < \pi < W(n)\left(2+\frac{1}{n}\right)e^{-1}\left(1+\frac{1}{2n}\right)^{2n}\exp\left(-\frac{1}{12n^2+6n+\frac{6}{5}}\right).$$

In the fourth section of [6], the following estimates were established

$$W_1(n) < W(n) < W_2(n) \quad (n \ge 2),$$
 (4)

where

$$W_{1}(n) = \frac{\pi}{2} \left(1 - \frac{1}{2n+1} \right) \left(1 + \frac{1}{4n^{2}-1} \right)^{n} \exp\left(\frac{-1}{6n(4n^{2}-1)} - \frac{1}{80(n^{2}-1)^{2}} \right)$$
$$W_{2}(n) = \frac{\pi}{2} \left(1 - \frac{1}{2n+1} \right) \left(1 + \frac{1}{4n^{2}-1} \right)^{n} \exp\left(\frac{-1}{6n(4n^{2}-1)} + \frac{1}{80(n^{2}-1)^{2}} \right).$$

Finally, Lampret [6, Rel. (17a)-(17e)] improved (4) to

$$W_1^*(n) < W(n) < W_2^*(n) \quad (n \ge 2),$$
 (5)

where

$$W_{1}^{*}(n) = \frac{\pi}{2} \left(1 - \frac{1}{2n+1} \right) \exp \varphi(n), \quad W_{2}^{*}(n) = \frac{\pi}{2} \left(1 - \frac{1}{2n+1} \right) \exp \psi(n)$$

490

$$\varphi(n) = \frac{n}{4n^2 - 1} - \frac{n}{2(4n^2 - 1)^2} - \frac{1}{6n(4n^2 - 1)} - \frac{1}{80(n^2 - 1)^2}$$

and

$$\psi(n) = \frac{n}{4n^2 - 1} - \frac{n}{3(4n^2 - 1)^2} - \frac{1}{6n(4n^2 - 1)} + \frac{1}{80(n^2 - 1)^2}.$$

Motivated by the estimates (4)-(5), we introduce the following approximation family

$$W(n) \approx \frac{\pi}{2} \left(1 - \frac{1}{2n+1} \right) \exp \mu_n(\alpha, \beta, \delta), \qquad (6)$$

with α, β, δ real parameters, where

$$\mu_n(\alpha,\beta,\delta) = \frac{n}{4n^2 - 1} - \frac{\alpha n}{(4n^2 - 1)^2} - \frac{\beta}{n(4n^2 - 1)} + \frac{\delta}{80(n^2 - 1)^2}$$

and we prove that the best such approximation is obtained for

$$\alpha = -\frac{11}{30}, \quad \beta = \frac{23}{60}, \quad \delta = 0,$$

namely

$$W(n) \approx \frac{\pi}{2} \left(1 - \frac{1}{2n+1} \right) \exp\left(\frac{n}{4n^2 - 1} + \frac{11n}{30(4n^2 - 1)^2} - \frac{23}{60n(4n^2 - 1)} \right).$$

Furthermore, the next approximation is better

$$W(n) \approx \frac{\pi}{2} \left(1 - \frac{1}{2n+1} \right) \times \exp\left(\frac{n}{4n^2 - 1} + \frac{11n}{30(4n^2 - 1)^2} - \frac{23}{60n(4n^2 - 1)} - \frac{493}{107520n^3(n^2 - 1)^2} \right)$$

and we prove the following double inequality.

Theorem 2. For every integer $n \ge 1$, we have

$$\frac{\pi}{2} \left(1 - \frac{1}{2n+1} \right) \exp\left(\frac{n}{4n^2 - 1} + \frac{11n}{30 \left(4n^2 - 1\right)^2} - \frac{23}{60n \left(4n^2 - 1\right)} - \frac{493}{107520n^3 \left(n^2 - 1\right)^2} \right)$$
$$< W(n) < \frac{\pi}{2} \left(1 - \frac{1}{2n+1} \right) \exp\left(\frac{n}{4n^2 - 1} + \frac{11n}{30 \left(4n^2 - 1\right)^2} - \frac{23}{60n \left(4n^2 - 1\right)} \right).$$

2. Results

We start this section by analyzing the approximations family (3). One way to compare two such approximations is to introduce the relative error sequence w_n by the relations

$$\pi = W(n)\left(2 + \frac{1}{n}\right)e^{-1}\left(1 + \frac{1}{2n}\right)^{2n}\exp\left(\frac{a}{6n+3} - \frac{b}{6n}\right)\exp w_n \quad (n \ge 1) \quad (7)$$

C. Mortici

and to consider an approximation (3) the better the faster w_n converges to zero.

Furthermore, a tool for estimating the rate of convergence is the following lemma, which was used in [8-10] to improve some convergences and to construct asymptotic expansions.

Lemma 1. If $(\omega_n)_{n\geq 1}$ is convergent to zero and there exists the limit

$$\lim_{n \to \infty} n^k (\omega_n - \omega_{n+1}) = l \in \mathbb{R},\tag{8}$$

with k > 1, then

$$\lim_{n \to \infty} n^{k-1} \omega_n = \frac{l}{k-1}.$$

For a detailed proof, see e.g. [8]. We see from this lemma that the speed of convergence of the sequence $(\omega_n)_{n\geq 1}$ increases together with the value k satisfying (8).

As we are interested to compute a limit of the form (8) for the sequence w_n given by (8), we develop the difference $w_n - w_{n+1}$ as a power series in n^{-1} as

$$w_n - w_{n+1} = \left(-\frac{1}{6}a + \frac{1}{6}b\right)\frac{1}{n^2} + \left(\frac{1}{3}a - \frac{1}{6}b - \frac{1}{6}\right)\frac{1}{n^3} + O\left(\frac{1}{n^4}\right)$$
(9)

(this can be made using some computer software such as Maple).

Referring to Lemma 1, the convergence of the sequence w_n to zero is fastest whenever the convergence of the difference $w_n - w_{n+1}$ to zero is the fastest, i.e. when the first two coefficients in (9) vanish, namely when a = b = 1.

Proof of Theorem 1. As the sequences

$$a_n = W(n) \left(2 + \frac{1}{n}\right) e^{-1} \left(1 + \frac{1}{2n}\right)^{2n} \exp\left(-\frac{1}{12n^2 + 6n}\right)$$
$$b_n = W(n) \left(2 + \frac{1}{n}\right) e^{-1} \left(1 + \frac{1}{2n}\right)^{2n} \exp\left(-\frac{1}{12n^2 + 6n + \frac{6}{5}}\right)$$

converge to π , it suffices to prove that a_n is strictly increasing and b_n is strictly decreasing.

In this sense, we have $\ln a_{n+1} - \ln a_n = f_1(n)$, $\ln b_{n+1} - \ln b_n = g_1(n)$, where

$$f_1(x) = \ln \frac{4(x+1)^2}{4(x+1)^2 - 1} + \ln \frac{2 + \frac{1}{x+1}}{2 + \frac{1}{x}} + (2x+2)\ln\left(1 + \frac{1}{2x+2}\right) - 2x\ln\left(1 + \frac{1}{2x}\right) - \frac{1}{12(x+1)^2 + 6(x+1)} + \frac{1}{12x^2 + 6x}$$

and

$$g_{1}(x) = \ln \frac{4(x+1)^{2}}{4(x+1)^{2}-1} + \ln \frac{2 + \frac{1}{x+1}}{2 + \frac{1}{x}} + (2x+2)\ln\left(1 + \frac{1}{2x+2}\right) - 2x\ln\left(1 + \frac{1}{2x}\right) - \frac{1}{12(x+1)^{2} + 6(x+1) + \frac{6}{5}} + \frac{1}{12x^{2} + 6x + \frac{6}{5}}$$

492

In consequence, it suffices to show that $f_1 > 0$ and $g_1 < 0$. In this sense, we have

$$f_1''(x) = \frac{(4x+3)\left(60x+148x^2+144x^3+48x^4+9\right)}{3x^3\left(x+1\right)^3\left(2x+1\right)^3\left(2x+3\right)^3}$$

and

$$g_1''(x) = -\frac{(4x+3)Q(x)}{x^2(x+1)^2(2x+1)^2(2x+3)^2(25x+10x^2+16)^3(5x+10x^2+1)^3},$$

where

$$\begin{split} Q\left(x\right) = & 12\,288 + 291\,072x + 2962\,853x^2 + 16\,496\,490x^3 + 55\,483\,705x^4 + 118\,363\,500x^5 \\ & + 163\,202\,000x^6 + 144\,648\,000x^7 + 79\,458\,000x^8 + 24\,600\,000x^9 + 3280\,000x^{10}. \end{split}$$

Finally, f_1 is strictly convex and g_1 is strictly concave, with $f_1(\infty) = g_1(\infty) = 0$, so $f_1 > 0$ and $g_1 < 0$.

Now, in order to find the best approximation of type (6), we associate the relative error sequence z_n by the relations

$$W(n) = \frac{\pi}{2} \left(1 - \frac{1}{2n+1} \right) \exp \mu_n \left(\alpha, \beta, \delta \right) \cdot e^{z_n}.$$

By making appeal again to Maple, we get

$$\begin{aligned} z_n - z_{n+1} &= \left(\frac{3}{16}\alpha + \frac{3}{4}\beta - \frac{7}{32}\right)\frac{1}{n^4} + \left(-\frac{3}{8}\alpha - \frac{3}{2}\beta - \frac{1}{20}\delta + \frac{7}{16}\right)\frac{1}{n^5} \\ &+ \left(\frac{25}{32}\alpha + \frac{45}{16}\beta + \frac{1}{8}\delta - \frac{19}{24}\right)\frac{1}{n^6} + \left(-\frac{45}{32}\alpha - \frac{75}{16}\beta - \frac{2}{5}\delta + \frac{41}{32}\right)\frac{1}{n^7} \\ &+ O\left(\frac{1}{n^8}\right). \end{aligned}$$

The system

$$\begin{cases} \frac{3}{16}\alpha + \frac{3}{4}\beta - \frac{7}{32} = 0\\ -\frac{3}{8}\alpha - \frac{3}{2}\beta - \frac{1}{20}\delta + \frac{7}{16} = 0\\ \frac{25}{32}\alpha + \frac{45}{16}\beta + \frac{1}{8}\delta - \frac{19}{24} = 0 \end{cases}$$

determined by the first three coefficients of this power series gives the best values $\alpha = -\frac{11}{30}, \ \beta = \frac{23}{60}, \ \delta = 0$ and the corresponding approximation

$$W(n) \approx \frac{\pi}{2} \left(1 - \frac{1}{2n+1} \right) \exp\left(\frac{n}{4n^2 - 1} + \frac{11n}{30\left(4n^2 - 1\right)^2} - \frac{23}{60n\left(4n^2 - 1\right)} \right).$$

Proof of Theorem 2. Denoting

$$u(x) = \frac{x}{4x^2 - 1} + \frac{11x}{30(4x^2 - 1)^2} - \frac{23}{60x(4x^2 - 1)} - \frac{493}{107520x^3(x^2 - 1)^2}$$

C. Mortici

and

$$v(x) = u(x) + \frac{493}{107520x^3(x^2 - 1)^2},$$

we have to prove that

$$\frac{\pi}{2} \left(1 - \frac{1}{2n+1} \right) \exp u(n) < W(n) < \frac{\pi}{2} \left(1 - \frac{1}{2n+1} \right) \exp v(n).$$

In fact it suffices to show that the sequence c_n is strictly increasing and d_n is strictly decreasing, where

$$c_n = \frac{\left(1 - \frac{1}{2n+1}\right) \exp u(n)}{W(n)}, \quad d_n = \frac{\left(1 - \frac{1}{2n+1}\right) \exp v(n)}{W(n)}.$$

We have $\ln c_{n+1} - \ln c_n = f_2(n)$, $\ln d_{n+1} - \ln d_n = g_2(n)$, where

$$f_{2}(x) = \ln \frac{4(x+1)^{2}-1}{4(x+1)^{2}} + \ln \frac{1-\frac{1}{2x+3}}{1-\frac{1}{2x+1}} + u(x+1) - u(x)$$
$$g_{2}(x) = \ln \frac{4(x+1)^{2}-1}{4(x+1)^{2}} + \ln \frac{1-\frac{1}{2x+3}}{1-\frac{1}{2x+1}} + v(x+1) - v(x),$$

with the derivatives

$$f_{2}'(x) = -\frac{P_{2}(x)}{8960x^{4}(x-1)^{3}(x+1)^{4}(x+2)^{3}(2x+3)^{3}(4x^{2}-1)^{3}}$$
$$g_{2}'(x) = \frac{Q_{2}(x)}{60x^{2}(x+1)^{2}(2x+3)^{3}(4x^{2}-1)^{3}},$$

where

$$\begin{split} P_2\left(x\right) = & 26\,622 + 115\,362x - 906\,057x^2 - 2812\,130x^3 + 8973\,969x^4 + 32\,403\,996x^5 \\ &+ 5343\,092x^6 - 67\,006\,464x^7 - 60\,727\,776x^8 + 23\,468\,480x^9 + 57\,479\,616x^{10} \\ &+ 28\,792\,320x^{11} + 4798\,720x^{12} \end{split}$$

and

$$Q_2(x) = -621 - 864x + 7024x^2 + 15776x^3 + 7888x^4.$$

Since all the coefficients of the polynomials $P_2(x+1)$ and $Q_2(x+1)$ are positive, we have $f'_2(x) < 0$ and $g'_2(x) > 0$, for x > 1.

Now, f_2 is strictly decreasing, g_2 is strictly increasing, with $f_2(\infty) = g_2(\infty) = 0$, so $f_2 > 0$ and $g_2 < 0$ and the conclusion follows.

Finally, we are convinced that our new approach presented here can be useful for establishing further improvements and refinements in other related problems.

494

Acknowledgment

The author thanks the anonymous referees for a careful reading of the initial manuscript and for useful comments and corrections. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-ID-PCE-2011-3-0087.

References

- [1] M. ABRAMOWITZ, I. A. STEGUN, Handbook of Mathematical Functions, Dover Publications, New York, 1974.
- [2] G. B. ARFKEN, H. J. WEBER, Mathematical Methods for Physicists, Harcourt/Academic Press, San Diego, 2001.
- [3] T. J. A. BROMWICH, An Introduction to the Theory of Infinite Series, Chelsea Publishing Company, New York, 1991.
- [4] P. HENRICI, Applied and Computational Complex Analysis, Vol.2, John Wiley & Sons Inc., New York, 1991.
- [5] K. KNOPP, Theory and Applications of Infinite Series, Hafner, New York, 1971.
- [6] V. LAMPRET, Wallis sequence estimated through the Euler-Maclaurin formula: even from the Wallis product π could be computed fairly accurately, Gaz. Australian Math. Soc. 31(2004), 328–339.
- [7] J. LEWIN, M. LEWIN, An Introduction to Mathematical Analysis, McGraw-Hill Inc., New York, 1993.
- [8] C. MORTICI, Product approximations via asymptotic integration, Amer. Math. Monthly 117(2010), 434–441.
- [9] C. MORTICI, Completely monotonic functions associated with gamma function and applications, Carpathian J. Math. 25(2009), 186–191.
- [10] C. MORTICI, Optimizing the rate of convergence in some new classes of sequences convergent to Euler's constant, Anal. Appl. (Singap.) 8(2010), 99–107.
- [11] A. SOFO, Some Representations of Pi, AustMS Gazette 31(2004), 184–189.