Estimating π from the Wallis sequence

Cristinel Mortici ${ }^{1, *}$

${ }^{1}$ Department of Mathematics, Valahia University of Târgovişte, Bd. Unirii 18, 130082
Târgovişte, Romania
Received February 11, 2011; accepted January 20, 2012

Abstract

The aim of this paper is to define new sequences related to the Wallis sequence having higher rates of convergence. Some sharp inequalities are established. AMS subject classifications: 40A05, 40A20, 40A25, 65B10, 65B15

Key words: Wallis product, rate of convergence, inequalities, asymptotic series

1. Introduction and motivation

Perhaps one of the most known sequences related to the constant π is the Wallis sequence

$$
W(n)=\prod_{k=1}^{n} \frac{4 k^{2}}{4 k^{2}-1}
$$

which converges to $\pi / 2$ with the convergence rate estimated by n^{-1}, since

$$
\frac{3}{10 n}<\frac{\pi}{2}-W(n)<\frac{4}{10 n} \quad(n \geq 3)
$$

see, e.g., [6, Rel. 2c]. As the Wallis sequence is slowly convergent towards its limit, it is not suitable for approximating the constant π. In consequence, many authors were preoccupied in the recent past to accelerate the Wallis sequence. See [1, p. 258], [2, p. 384], [3, p. 213], [4, p. 5, p. 47], [5, p. 384], [7, p. 14, p. 465], [11] and the references therein.

In particular, Lampret [6, Rel. 2c] used the following version of the Stirling formula

$$
\begin{equation*}
\Gamma(x)=\sqrt{\frac{2 \pi}{x}}\left(\frac{x}{e}\right)^{x} \exp \frac{\theta_{x}}{12 x} \quad(x>0) \tag{1}
\end{equation*}
$$

where $\theta_{x} \in(0,1)$ to prove the following representation

$$
\begin{equation*}
\pi=W(n)\left(2+\frac{1}{n}\right) e^{-1}\left(1+\frac{1}{2 n}\right)^{2 n} \exp \left(\frac{\theta_{n}^{\prime}}{6 n+3}-\frac{\theta_{n}}{6 n}\right) \quad(n \geq 1) \tag{2}
\end{equation*}
$$

As the Stirling formula (1) is now the first approximation of the following Stirling asymptotic series

[^0]$$
\Gamma(x) \sim \sqrt{\frac{2 \pi}{x}}\left(\frac{x}{e}\right)^{x} \exp \left(\frac{1}{12 x}-\frac{1}{360 x^{3}}+\frac{1}{1260 x^{5}}-\frac{1}{1680 x^{7}}+\cdots\right)
$$
it results that θ_{x} tends to 1 as x approaches infinity.
Motivated by Lampret's representation (2), we prove that the best approximation of the form
\[

$$
\begin{equation*}
\pi \approx W(n)\left(2+\frac{1}{n}\right) e^{-1}\left(1+\frac{1}{2 n}\right)^{2 n} \exp \left(\frac{a}{6 n+3}-\frac{b}{6 n}\right) \quad(a, b \in[0,1]) \tag{3}
\end{equation*}
$$

\]

is obtained for $a=b=1$. For these priviledged values, (3) becomes

$$
\pi \approx W(n)\left(2+\frac{1}{n}\right) e^{-1}\left(1+\frac{1}{2 n}\right)^{2 n} \exp \left(-\frac{1}{12 n^{2}+6 n}\right)
$$

but we prove that the approximation

$$
\pi \approx W(n)\left(2+\frac{1}{n}\right) e^{-1}\left(1+\frac{1}{2 n}\right)^{2 n} \exp \left(-\frac{1}{12 n^{2}+6 n+\frac{6}{5}}\right)
$$

gives better results. Moreover, we state and prove the following double inequality
Theorem 1. For every integer $n \geq 1$, we have

$$
\begin{aligned}
W(n)\left(2+\frac{1}{n}\right) & e^{-1}\left(1+\frac{1}{2 n}\right)^{2 n} \exp \left(-\frac{1}{12 n^{2}+6 n}\right) \\
& <\pi<W(n)\left(2+\frac{1}{n}\right) e^{-1}\left(1+\frac{1}{2 n}\right)^{2 n} \exp \left(-\frac{1}{12 n^{2}+6 n+\frac{6}{5}}\right)
\end{aligned}
$$

In the fourth section of [6], the following estimates were established

$$
\begin{equation*}
W_{1}(n)<W(n)<W_{2}(n) \quad(n \geq 2) \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& W_{1}(n)=\frac{\pi}{2}\left(1-\frac{1}{2 n+1}\right)\left(1+\frac{1}{4 n^{2}-1}\right)^{n} \exp \left(\frac{-1}{6 n\left(4 n^{2}-1\right)}-\frac{1}{80\left(n^{2}-1\right)^{2}}\right) \\
& W_{2}(n)=\frac{\pi}{2}\left(1-\frac{1}{2 n+1}\right)\left(1+\frac{1}{4 n^{2}-1}\right)^{n} \exp \left(\frac{-1}{6 n\left(4 n^{2}-1\right)}+\frac{1}{80\left(n^{2}-1\right)^{2}}\right)
\end{aligned}
$$

Finally, Lampret [6, Rel. (17a)-(17e)] improved (4) to

$$
\begin{equation*}
W_{1}^{*}(n)<W(n)<W_{2}^{*}(n) \quad(n \geq 2) \tag{5}
\end{equation*}
$$

where

$$
W_{1}^{*}(n)=\frac{\pi}{2}\left(1-\frac{1}{2 n+1}\right) \exp \varphi(n), \quad W_{2}^{*}(n)=\frac{\pi}{2}\left(1-\frac{1}{2 n+1}\right) \exp \psi(n)
$$

$$
\varphi(n)=\frac{n}{4 n^{2}-1}-\frac{n}{2\left(4 n^{2}-1\right)^{2}}-\frac{1}{6 n\left(4 n^{2}-1\right)}-\frac{1}{80\left(n^{2}-1\right)^{2}}
$$

and

$$
\psi(n)=\frac{n}{4 n^{2}-1}-\frac{n}{3\left(4 n^{2}-1\right)^{2}}-\frac{1}{6 n\left(4 n^{2}-1\right)}+\frac{1}{80\left(n^{2}-1\right)^{2}}
$$

Motivated by the estimates (4)-(5), we introduce the following approximation family

$$
\begin{equation*}
W(n) \approx \frac{\pi}{2}\left(1-\frac{1}{2 n+1}\right) \exp \mu_{n}(\alpha, \beta, \delta) \tag{6}
\end{equation*}
$$

with α, β, δ real parameters, where

$$
\mu_{n}(\alpha, \beta, \delta)=\frac{n}{4 n^{2}-1}-\frac{\alpha n}{\left(4 n^{2}-1\right)^{2}}-\frac{\beta}{n\left(4 n^{2}-1\right)}+\frac{\delta}{80\left(n^{2}-1\right)^{2}}
$$

and we prove that the best such approximation is obtained for

$$
\alpha=-\frac{11}{30}, \quad \beta=\frac{23}{60}, \quad \delta=0
$$

namely

$$
W(n) \approx \frac{\pi}{2}\left(1-\frac{1}{2 n+1}\right) \exp \left(\frac{n}{4 n^{2}-1}+\frac{11 n}{30\left(4 n^{2}-1\right)^{2}}-\frac{23}{60 n\left(4 n^{2}-1\right)}\right)
$$

Furthermore, the next approximation is better

$$
\begin{aligned}
W(n) \approx & \frac{\pi}{2}\left(1-\frac{1}{2 n+1}\right) \\
& \times \exp \left(\frac{n}{4 n^{2}-1}+\frac{11 n}{30\left(4 n^{2}-1\right)^{2}}-\frac{23}{60 n\left(4 n^{2}-1\right)}-\frac{493}{107520 n^{3}\left(n^{2}-1\right)^{2}}\right)
\end{aligned}
$$

and we prove the following double inequality.
Theorem 2. For every integer $n \geq 1$, we have

$$
\begin{aligned}
& \frac{\pi}{2}\left(1-\frac{1}{2 n+1}\right) \exp \left(\frac{n}{4 n^{2}-1}+\frac{11 n}{30\left(4 n^{2}-1\right)^{2}}-\frac{23}{60 n\left(4 n^{2}-1\right)}-\frac{493}{107520 n^{3}\left(n^{2}-1\right)^{2}}\right) \\
& \quad<W(n)<\frac{\pi}{2}\left(1-\frac{1}{2 n+1}\right) \exp \left(\frac{n}{4 n^{2}-1}+\frac{11 n}{30\left(4 n^{2}-1\right)^{2}}-\frac{23}{60 n\left(4 n^{2}-1\right)}\right)
\end{aligned}
$$

2. Results

We start this section by analyzing the approximations family (3). One way to compare two such approximations is to introduce the relative error sequence w_{n} by the relations

$$
\begin{equation*}
\pi=W(n)\left(2+\frac{1}{n}\right) e^{-1}\left(1+\frac{1}{2 n}\right)^{2 n} \exp \left(\frac{a}{6 n+3}-\frac{b}{6 n}\right) \exp w_{n} \quad(n \geq 1) \tag{7}
\end{equation*}
$$

and to consider an approximation (3) the better the faster w_{n} converges to zero.
Furthermore, a tool for estimating the rate of convergence is the following lemma, which was used in [8-10] to improve some convergences and to construct asymptotic expansions.

Lemma 1. If $\left(\omega_{n}\right)_{n \geq 1}$ is convergent to zero and there exists the limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k}\left(\omega_{n}-\omega_{n+1}\right)=l \in \mathbb{R} \tag{8}
\end{equation*}
$$

with $k>1$, then

$$
\lim _{n \rightarrow \infty} n^{k-1} \omega_{n}=\frac{l}{k-1}
$$

For a detailed proof, see e.g. [8]. We see from this lemma that the speed of convergence of the sequence $\left(\omega_{n}\right)_{n \geq 1}$ increases together with the value k satisfying (8).

As we are interested to compute a limit of the form (8) for the sequence w_{n} given by (8), we develop the difference $w_{n}-w_{n+1}$ as a power series in n^{-1} as

$$
\begin{equation*}
w_{n}-w_{n+1}=\left(-\frac{1}{6} a+\frac{1}{6} b\right) \frac{1}{n^{2}}+\left(\frac{1}{3} a-\frac{1}{6} b-\frac{1}{6}\right) \frac{1}{n^{3}}+O\left(\frac{1}{n^{4}}\right) \tag{9}
\end{equation*}
$$

(this can be made using some computer software such as Maple).
Referring to Lemma 1 , the convergence of the sequence w_{n} to zero is fastest whenever the convergence of the difference $w_{n}-w_{n+1}$ to zero is the fastest, i.e. when the first two coefficients in (9) vanish, namely when $a=b=1$.

Proof of Theorem 1. As the sequences

$$
\begin{aligned}
& a_{n}=W(n)\left(2+\frac{1}{n}\right) e^{-1}\left(1+\frac{1}{2 n}\right)^{2 n} \exp \left(-\frac{1}{12 n^{2}+6 n}\right) \\
& b_{n}=W(n)\left(2+\frac{1}{n}\right) e^{-1}\left(1+\frac{1}{2 n}\right)^{2 n} \exp \left(-\frac{1}{12 n^{2}+6 n+\frac{6}{5}}\right)
\end{aligned}
$$

converge to π, it suffices to prove that a_{n} is strictly increasing and b_{n} is strictly decreasing.

In this sense, we have $\ln a_{n+1}-\ln a_{n}=f_{1}(n), \ln b_{n+1}-\ln b_{n}=g_{1}(n)$, where

$$
\begin{aligned}
f_{1}(x)= & \ln \frac{4(x+1)^{2}}{4(x+1)^{2}-1}+\ln \frac{2+\frac{1}{x+1}}{2+\frac{1}{x}}+(2 x+2) \ln \left(1+\frac{1}{2 x+2}\right) \\
& -2 x \ln \left(1+\frac{1}{2 x}\right)-\frac{1}{12(x+1)^{2}+6(x+1)}+\frac{1}{12 x^{2}+6 x}
\end{aligned}
$$

and

$$
\begin{aligned}
g_{1}(x)= & \ln \frac{4(x+1)^{2}}{4(x+1)^{2}-1}+\ln \frac{2+\frac{1}{x+1}}{2+\frac{1}{x}}+(2 x+2) \ln \left(1+\frac{1}{2 x+2}\right) \\
& -2 x \ln \left(1+\frac{1}{2 x}\right)-\frac{1}{12(x+1)^{2}+6(x+1)+\frac{6}{5}}+\frac{1}{12 x^{2}+6 x+\frac{6}{5}} .
\end{aligned}
$$

In consequence, it suffices to show that $f_{1}>0$ and $g_{1}<0$. In this sense, we have

$$
f_{1}^{\prime \prime}(x)=\frac{(4 x+3)\left(60 x+148 x^{2}+144 x^{3}+48 x^{4}+9\right)}{3 x^{3}(x+1)^{3}(2 x+1)^{3}(2 x+3)^{3}}
$$

and

$$
g_{1}^{\prime \prime}(x)=-\frac{(4 x+3) Q(x)}{x^{2}(x+1)^{2}(2 x+1)^{2}(2 x+3)^{2}\left(25 x+10 x^{2}+16\right)^{3}\left(5 x+10 x^{2}+1\right)^{3}},
$$

where

$$
\begin{aligned}
Q(x)= & 12288+291072 x+2962853 x^{2}+16496490 x^{3}+55483705 x^{4}+118363500 x^{5} \\
& +163202000 x^{6}+144648000 x^{7}+79458000 x^{8}+24600000 x^{9}+3280000 x^{10}
\end{aligned}
$$

Finally, f_{1} is strictly convex and g_{1} is strictly concave, with $f_{1}(\infty)=g_{1}(\infty)=0$, so $f_{1}>0$ and $g_{1}<0$.

Now, in order to find the best approximation of type (6), we associate the relative error sequence z_{n} by the relations

$$
W(n)=\frac{\pi}{2}\left(1-\frac{1}{2 n+1}\right) \exp \mu_{n}(\alpha, \beta, \delta) \cdot e^{z_{n}}
$$

By making appeal again to Maple, we get

$$
\begin{aligned}
z_{n}-z_{n+1}= & \left(\frac{3}{16} \alpha+\frac{3}{4} \beta-\frac{7}{32}\right) \frac{1}{n^{4}}+\left(-\frac{3}{8} \alpha-\frac{3}{2} \beta-\frac{1}{20} \delta+\frac{7}{16}\right) \frac{1}{n^{5}} \\
& +\left(\frac{25}{32} \alpha+\frac{45}{16} \beta+\frac{1}{8} \delta-\frac{19}{24}\right) \frac{1}{n^{6}}+\left(-\frac{45}{32} \alpha-\frac{75}{16} \beta-\frac{2}{5} \delta+\frac{41}{32}\right) \frac{1}{n^{7}} \\
& +O\left(\frac{1}{n^{8}}\right)
\end{aligned}
$$

The system

$$
\left\{\begin{array}{l}
\frac{3}{16} \alpha+\frac{3}{4} \beta-\frac{7}{32}=0 \\
-\frac{3}{8} \alpha-\frac{3}{2} \beta-\frac{1}{20} \delta+\frac{7}{16}=0 \\
\frac{25}{32} \alpha+\frac{45}{16} \beta+\frac{1}{8} \delta-\frac{19}{24}=0
\end{array}\right.
$$

determined by the first three coefficients of this power series gives the best values $\alpha=-\frac{11}{30}, \beta=\frac{23}{60}, \delta=0$ and the corresponding approximation

$$
W(n) \approx \frac{\pi}{2}\left(1-\frac{1}{2 n+1}\right) \exp \left(\frac{n}{4 n^{2}-1}+\frac{11 n}{30\left(4 n^{2}-1\right)^{2}}-\frac{23}{60 n\left(4 n^{2}-1\right)}\right)
$$

Proof of Theorem 2. Denoting

$$
u(x)=\frac{x}{4 x^{2}-1}+\frac{11 x}{30\left(4 x^{2}-1\right)^{2}}-\frac{23}{60 x\left(4 x^{2}-1\right)}-\frac{493}{107520 x^{3}\left(x^{2}-1\right)^{2}}
$$

and

$$
v(x)=u(x)+\frac{493}{107520 x^{3}\left(x^{2}-1\right)^{2}}
$$

we have to prove that

$$
\frac{\pi}{2}\left(1-\frac{1}{2 n+1}\right) \exp u(n)<W(n)<\frac{\pi}{2}\left(1-\frac{1}{2 n+1}\right) \exp v(n)
$$

In fact it suffices to show that the sequence c_{n} is strictly increasing and d_{n} is strictly decreasing, where

$$
c_{n}=\frac{\left(1-\frac{1}{2 n+1}\right) \exp u(n)}{W(n)}, \quad d_{n}=\frac{\left(1-\frac{1}{2 n+1}\right) \exp v(n)}{W(n)}
$$

We have $\ln c_{n+1}-\ln c_{n}=f_{2}(n), \ln d_{n+1}-\ln d_{n}=g_{2}(n)$, where

$$
\begin{aligned}
& f_{2}(x)=\ln \frac{4(x+1)^{2}-1}{4(x+1)^{2}}+\ln \frac{1-\frac{1}{2 x+3}}{1-\frac{1}{2 x+1}}+u(x+1)-u(x) \\
& g_{2}(x)=\ln \frac{4(x+1)^{2}-1}{4(x+1)^{2}}+\ln \frac{1-\frac{1}{2 x+3}}{1-\frac{1}{2 x+1}}+v(x+1)-v(x),
\end{aligned}
$$

with the derivatives

$$
\begin{aligned}
f_{2}^{\prime}(x) & =-\frac{P_{2}(x)}{8960 x^{4}(x-1)^{3}(x+1)^{4}(x+2)^{3}(2 x+3)^{3}\left(4 x^{2}-1\right)^{3}} \\
g_{2}^{\prime}(x) & =\frac{Q_{2}(x)}{60 x^{2}(x+1)^{2}(2 x+3)^{3}\left(4 x^{2}-1\right)^{3}},
\end{aligned}
$$

where

$$
\begin{aligned}
P_{2}(x)= & 26622+115362 x-906057 x^{2}-2812130 x^{3}+8973969 x^{4}+32403996 x^{5} \\
& +5343092 x^{6}-67006464 x^{7}-60727776 x^{8}+23468480 x^{9}+57479616 x^{10} \\
& +28792320 x^{11}+4798720 x^{12}
\end{aligned}
$$

and

$$
Q_{2}(x)=-621-864 x+7024 x^{2}+15776 x^{3}+7888 x^{4}
$$

Since all the coeffcients of the polynomials $P_{2}(x+1)$ and $Q_{2}(x+1)$ are positive, we have $f_{2}^{\prime}(x)<0$ and $g_{2}^{\prime}(x)>0$, for $x>1$.

Now, f_{2} is strictly decreasing, g_{2} is strictly increasing, with $f_{2}(\infty)=g_{2}(\infty)=0$, so $f_{2}>0$ and $g_{2}<0$ and the conclusion follows.

Finally, we are convinced that our new approach presented here can be useful for establishing further improvements and refinements in other related problems.

Acknowledgment

The author thanks the anonymous referees for a careful reading of the initial manuscript and for useful comments and corrections. This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-3-0087.

References

[1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1974.
[2] G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists, Harcourt/Academic Press, San Diego, 2001.
[3] T. J. A. Bromwich, An Introduction to the Theory of Infinite Series, Chelsea Publishing Company, New York, 1991.
[4] P. Henrici, Applied and Computational Complex Analysis, Vol.2, John Wiley \& Sons Inc., New York, 1991.
[5] K. Knopp, Theory and Applications of Infinite Series, Hafner, New York, 1971
[6] V. Lampret, Wallis sequence estimated through the Euler-Maclaurin formula: even from the Wallis product π could be computed fairly accurately, Gaz. Australian Math. Soc. 31(2004), 328-339.
[7] J. Lewin, M. Lewin, An Introduction to Mathematical Analysis, McGraw-Hill Inc., New York, 1993.
[8] C. Mortici, Product approximations via asymptotic integration, Amer. Math. Monthly 117(2010), 434-441.
[9] C. Mortici, Completely monotonic functions associated with gamma function and applications, Carpathian J. Math. 25(2009), 186-191.
[10] C. Mortici, Optimizing the rate of convergence in some new classes of sequences convergent to Euler's constant, Anal. Appl. (Singap.) 8(2010), 99-107.
[11] A. Sofo, Some Representations of Pi, AustMS Gazette 31(2004), 184-189.

[^0]: *Corresponding author. Email address: cmortici@valahia.ro (C. Mortici)

