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Stability of Fréchet functional equation in non-Archimedean
normed spaces∗

Alireza Kamel Mirmostafaee1,†
1 Center of Excellence in Analysis on Algebraic Structures, Department of Pure
Mathematics, Ferdowsi University of Mashhad, P.O. Box 1 159, Mashhad, Iran

Received May 4, 2011; accepted February 13, 2012

Abstract. We will establish stability of Fréchet functional equation

∆n
x1,...,xn

f(y) = 0

in non-Archimedean normed spaces for some unbounded control function. Among some
applications of our results, we will give a counterexample to show that the nature of stability
in non-Archimedean normed spaces is different from one in classical normed spaces.
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Key words: Fréchet functional equation, stability, non-Archimedean normed spaces

1. Introduction

In 1821, in his famous book [5] A. L. Cauchy proved that a continuous mapping
f : R→ R is additive if and only if there is some c ∈ R such that f(x) = cx for each
x ∈ R. Since then, the additive functional equation f(x+ y) = f(x)+ f(y) is known
by his name.

Let X and Y be linear spaces. For a function f : X → Y and x ∈ X, let

∆xf(y) = f(x + y)− f(y) (y ∈ X).

Inductively, we define

∆n
x1,...,xn

f(y) = ∆n−1
x1,...,xn−1

(∆xnf(y)) (y, x1, . . . , xn ∈ X).

If x1 = · · · = xn = x, we write ∆n
xf(y) = ∆n

x1,...,xn
f(y), where x, y ∈ X.

It is known that a function f : R→ R with f(0) = 0 satisfies the Cauchy equation
if and only if ∆2

xf(y) = 0 for each x, y ∈ R (see e. g. [2]).
In 1909, M. Fréchet [7] had showed that a continuous mapping f : R → R is a

polynomial of degree n if and only if ∆n+1
x1,...,xn+1

f(0) = 0 for each x1, . . . , xn+1 ∈ R
(a simpler proof of this fact can be found in Lemma 2 of [2]).

A function f : X → Y is called a polynomial of degree n if it is a solution of the
Fréchet functional equation of degree n + 1,

∆n+1
x1,...,xn+1

f(0) = 0. (1)
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The concept of stability of a functional equation arises when one replaces a func-
tional equation by an inequality which acts as a perturbation of the equation. In
1940, Ulam [21] posed the first stability problem. In 1941, Hyers [10] gave the
first significant partial solution to his problem. Th. M. Rassias [19] improved Hy-
ers’ theorem by weakening the condition for the Cauchy difference controlled by
||x||p + ||y||p, p ∈ [0, 1). Taking into consideration a lot of influence of Ulam, Hyers
and Rassias on the development of stability problems of functional equations, the
stability phenomenon that was proved by Th.M. Rassias is called the Hyers–Ulam–
Rassias stability.

In [3], L. M. Arriola and W. A. Beyer initiated the study of the stability of func-
tional equations in non-Archimedean spaces [20]. In fact they established stability
of Cauchy functional equations over p-adic fields. In [15], [16] and [18] the stability
of Cauchy, quadratic and quartic functional equations in non-Archimedean normed
spaces were investigated.

The stability of Fréchet functional equation was initiated by D. H. Hyers in [11].
In 1999 this result was generalized by Borelli et al. [4]. Other versions of this problem
have been recently considered by some authors (see, e. g., [1, 6, 8, 12, 14, 17, 22, 23]
and the references therein).

In this paper, we adopt some ideas from [4], [11] and [15] to establish stability
of Fréchet functional equation of degree m− 1, m > 2, in non-Archimedean normed
linear spaces. More precisely, we will show that if f : X → Y satisfies

||∆m
x1,...,xm

f(0)||Y ≤ ϕm(||x1||X , . . . , ||xm||X) (x1, . . . , xm ∈ X),

(where X and Y are two non-Archimedean normed vector spaces over the same non-
Archimedean vector field K) for a suitable control function ϕm : Rm

+ → R+, there
exists a unique polynomial pm−1 : X → Y of degree at most m− 1 such that

||f(x)− pm−1(x)||Y ≤ |k|−pmϕm(||x||X , . . . , ||x||X) (x ∈ X),

where k is the smallest positive integer k ∈ K with |k| < 1 and 0 ≤ p < 1. In
section 3, among some applications of our results, we will give an example to show
that Hyers’ theorem in [11] cannot be applied in non-Archimedean normed spaces.
Therefore, Fréchet stability phenomenon in non-Archimedean normed spaces is of
different nature from the one in classical normed spaces.

2. Results

Let K be a field. A non-Archimedean absolute value on K is a function | · | : K→ R+

such that for any a, b ∈ K, |a+b| ≤ max{|a|, |b|}, |ab| = |a||b|, and |a| = 0 if and only
if a = 0. The last inequality is called the strong triangle inequality or ultrametric
inequality. It is important to note that all valued field K has zero characteristic. In
particular, this implies that, if (K, | · |) is a non-Archimedean field with a non trivial
absolute value | · |, then Q ↪→ K and we will assume in all what follows that Q ⊆ K.

Let X be a linear space over a scalar field K with a non-Archimedean valuation
| · |. A function || . || : X → R+ is a non-Archimedean norm (valuation) if it is a
norm over K with the strong triangle inequality (ultrametric inequality); namely,

||x + y|| ≤ max{||x||, ||y||} (x, y ∈ X).
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Then (X, || . ||) is called a non-Archimedean normed space. By a complete non-
Archimedean normed space we mean one in which every Cauchy sequence is conver-
gent. It is important, for our objectives, to note that any non-Archimedean vector
space X over a non-Archimedean valued field K is also Q-vector space, since Q ⊆ K.

Hereafter, unless otherwise is explicitly stated, we will assume that X and Y are
non-Archimedean normed spaces over a non-Archimedean field K with a valuation
| · | and Y is complete. Furthermore, we suppose that k ∈ K is the smallest positive
integer with |k| < 1 and, for each m ≥ 2, we assume that ϕm : Rm

+ → R+ is a
non-decreasing mapping with respect to each variable on Rm

+ such that for some
0 ≤ p < 1,

ϕm(|k|−1t1, . . . , |k|−1tm) ≤ |k|−pϕm(t1, . . . , tm) (t1, . . . , tm) ∈ Rm
+ . (2)

For example, ϕm(t1, . . . , tm) = max{tp1, . . . , tpm}, t1, . . . , tm ∈ R+, satisfies the above
conditions. We first prove the main result of this paper in the following special case.
Although its proof is similar to that of [15, Theorem 2.1 ], but for the sake of
completeness and self-containment, we give here a direct proof.

Theorem 1. Let f : X → Y satisfy the inequality

||∆x1,x2f(0)||Y ≤ ϕ2(||x1||X , ||x2||X) (x1, x2 ∈ X), (3)

Then there exists a unique additive mapping M1 : X → Y such that

||f(x)− f(0)−M1(x)||Y ≤ |k|−pϕ2(||x||X , ||x||X) (x ∈ X). (4)

The function M1 is given by the formula

M1(x) = lim
n→∞

kn∆k−nxf(0) (x ∈ X).

Proof. By (3), we have

||f(x1 + x2)− f(x1)− f(x2) + f(0)||Y ≤ ϕ2(||x1||X , ||x2||X) (x1, x2 ∈ X). (5)

Let g = f − f(0). Then by (5) we have

||g(x1 + x2)− g(x1)− g(x2)||Y ≤ ϕ2(||x1||X , ||x2||X) (x1, x2 ∈ X). (6)

We will show that for each x ∈ X and 2 ≤ j ≤ k,

||g(jx)− jg(x)||Y ≤ ϕ2(||x||X , ||x||X), (x ∈ X). (7)

Put x1 = x2 = x into (6) to obtain

||g(2x)− 2g(x)||Y ≤ ϕ2(||x||X , ||x||X), (x ∈ X).

This proves (7) for j = 2. Let (7) hold for some 2 < j < k. Replacing x1 by x and
y by jx in (6), we see that

||g((j + 1)x)− g(x)− g(jx)||Y ≤ ϕ2(||x||X , ||jx||X) = ϕ2(||x||X , ||x||X), (8)
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for each x ∈ X. Since

g((j + 1)x)− (j + 1)g(x) = g((j + 1)x)− g(x)− g(jx) + g(jx)− jg(x)

for each x ∈ X, it follows from (8) and our induction hypothesis that

||g((j + 1)x)− (j + 1)g(x)||Y ≤ max{||g((j + 1)x)− g(x)− g(jx)||Y ,

||g(jx)− jg(x)||Y }
≤ ϕ2(||x||X , ||x||X) (x ∈ X).

This proves (7). In particular,

||g(kx)− kg(x)||Y ≤ ϕ2(||x||X , ||x||X) (x ∈ X). (9)

It follows that for each n ∈ N and x ∈ X,

||k(n−1)g(k−(n−1)x)− kng(k−nx)||Y ≤ |k|(n−1)ϕ2(||k−nx||X , ||k−nx||X)
≤ |k|n−1−pnϕ2(||x||X , ||x||X). (10)

Since the right-hand side of the above inequality tends to zero as n tends to infinity,
it follows from the altrametric inequality and (10) that {kng(k−nx)} is a Cauchy
sequence in Y . Thanks to completeness of Y , M1(x) = limn→∞ kn∆k−nxf(0) =
limn→∞ kng(k−nx) for each x ∈ X exists. Since for each n ≥ 1 and x ∈ X,

||g(x)− kng(k−nx)||X = ||
n∑

i=1

ki−1g(k−(i−1)x)− kig(k−ix)||Y

≤ max{||ki−1g(k−(i−1)x)− kig(k−ix)||Y : 1 ≤ i ≤ n}
≤ |k|−pϕ(||x||X , ||x||X),

the inequality (4) holds. The additivity of M1 follows from the following inequality.

||M1(x + y)−M1(x)−M1(y)||Y
= lim

n→∞
||kng(k−n(x + y))− kng(k−nx)− kng(k−ny)||Y

≤ lim
n→∞

|k|n(1−p)ϕ(||x||X , ||y||X) = 0 (x, y ∈ X).

Let M′
1 be another additive map such that

||f(x)− f(0)−M′
1(x)||Y ≤ |k|−pϕ2(||x||X , ||x||X) (x ∈ X).

Then by the altrametric inequality

||M1(x)−M′(x)|| ≤ |k|−pϕ2(||x||X , ||x||X) (x ∈ X).

Therefore for each n ∈ N and x ∈ X, we have

||M1(x)−M′(x)|| = ||knM1(k−nx)− knM′(k−nx)||
≤ |k|nϕ2(||k−nx||X , ||k−nx||X)
≤ |k|n(1−p)ϕ2(||x||X , ||x||X).

Since the right-hand side of the above inequality tends to zero as n tends to infinity
M1 = M′

1.
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In order to extend Theorem 1, we need to the following definition.

Definition 1. Let X and Y be two arbitrary Q-linear spaces. A function T : Xn →
Y is called n-additive if it is additive with respect to each variable. It follows from
the definition that if T : Xn → Y is n-additive and f : X → Y is defined by
f(x) = T (x, . . . , x), then for each r ∈ Q and x ∈ X, f(rx) = rnf(x).

A function M : X → Y is said to be a monomial of degree n if M(rx) = rnM(x)
for all x ∈ X and r ∈ Q.

We call a function p : X → Y a transformation of degree n if p(x) = M0(x) +
· · · + Mn(x), where Mi is a monomial of degree i for 0 ≤ i ≤ n and Mn is not
identically zero.

S. Mazur and W. Orlicz proved the following.

Theorem 2 (see [13]). Let M : X → Y , where X and Y are Q-linear spaces. If M
is a monomial of degree m, then there is a unique symmetric m-additive mapping
T : Xm → Y such that

M(x) = T (x, . . . , x) (x ∈ X).

The mapping T is defined by the formula

T (x1, . . . , xm) =
1
m!

∆m
x1,...,xm

M(x) (x, x1, . . . , xm ∈ X).

In particular, if M is a monomial of degree at most m, then ∆m+1
x1,...,xm+1

M(x) = 0
for each x, x1, . . . , xm+1 ∈ X.

It follows immediately from Theorem 2 that for any transformation p : X → Y
of degree at most m,

∆m+1
x1,...,xm+1

p (x) = 0 (x, x1, . . . , xm+1 ∈ X).

The authors in [13] have shown that the converse of this statement is also true. So
that we have the following.

Corollary 1. Let X and Y be Q-linear spaces. Then for a mapping p : X → Y ,
the following is equivalent.

(1) p is a transformation of degree (at most) m;

(2) p is a polynomial of degree (at most) m.

Lemma 1. Let f : X → Y satisfy the inequality

||f(x+y)−f(x)−f(y)+f(0)−Q(x, y)−M(x, y)||Y ≤ ϕ2(||x||X , ||y||X) (x, y ∈ X),
(11)

where Q(x, y) is a polynomial of degree at most m− 2 with respect to x and M(x, y)
is a monomial of degree m− 1 with respect to x, (m > 1). Then

Mm(x) =
1
m
M(x, x) (x ∈ X)
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defines a monomial of degree m. Moreover, we have

Mm(x) =
1
m!

lim
n→∞

knm∆m
k−nxf(0) (x ∈ X),

and
M(x, y) =

1
(m− 1)!

lim
n→∞

k(m−1)n∆m−1
k−nxg(0, y) (x, y ∈ X)

where g(x, y) = f(x + y)− f(x) for each x, y ∈ X.

Proof. By Theorem 2, there exits a function T1 : Xm → Y which is additive and
symmetric with respect to the first m− 1 variables such that

M(x, y) = T1(x, . . . , x, y) (x, y ∈ X) (12)

and

T1(x1, . . . , xm−1, y) =
1

(m− 1)!
∆x1,...,xm−1M(x, y) (x, x1, . . . , xm−1, y ∈ X).

Put T (x1, . . . , xm−1, y) = (m−1)!T1(x1, . . . , xm−1, y), (x1, . . . , xm−1, y ∈ X). Then

∆x1,...,xm−1M(x, y) = T (x1, . . . , xm−1, y) (x, x1, . . . , xm−1, y ∈ X).

Let Pm−1 denote the set of all permutations on {1, . . . , m − 1}. Thanks to (11), it
follows that for each x1, . . . , xm−1, y ∈ X,

||∆m
x1,...,xm−1,yf(0)−∆m−1

x1,...,xm−1
Q(0, y)− T (x1, . . . , xm−1, y)||Y (13)

≤ max{ϕ2(||
j∑

i=1

xσ(i)||X , ||y||X) : 1 ≤ j ≤ m− 1, σ ∈ Pm−1}.

Since Q is a polynomial of degree (at most) m−2, by Corollary 1, ∆m−1
x1,...,xm−1

Q(0, y)
= 0 for each x1, . . . , xm−1, y ∈ X. Moreover, by the ultrametric inequality for each
x1, . . . , xm−1 ∈ X, we have

||
j∑

i=1

xσ(i)||X ≤ max{||xi||X : 1 ≤ i ≤ m− 1} (1 ≤ j ≤ m− 1). (14)

Since ϕ2 is non-decreasing, it follows from (13) and (14) that

||∆x1,...,xm−1,yf(x)− T (x1, . . . , xm−1, y)||Y
≤ max{ϕ2(||xi||X , ||y||X) : 1 ≤ i ≤ m− 1}. (15)

Since m-th difference in the above inequality is symmetric in all its increments, by
interchanging x1 with y in (15), we obtain

||∆x1,x2,...,xm−1,yf(0)− T (y, x2, . . . , xm−1, x1)||Y (16)
≤ max{ϕ2(||xi||X , ||x1||X), ϕ2(||y||X , ||x1||X) : 2 ≤ i ≤ m− 1}
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for each x1, . . . , xm−1, y ∈ X. It follows from (15) and (16) that

||T (x1, . . . , xm−1, y)− T (y, x2, . . . , xm−1, x1)||Y (17)
≤ max{ϕ2(||xi||X , ||y||X), ϕ2(||xj ||X , ||x1||X), ϕ2(||y||X , ||x1||X) :

1 ≤ i ≤ m− 1, 2 ≤ j ≤ m− 1} (x1, . . . , xm−1, y ∈ X).

Since T is (m−1)-additive, by replacing x1 by k−nx1 in (17), we get to the following
inequality

||T (x1, . . . , xm−1, y)− knT (y, x2, . . . , xm−1, k
−nx1)||Y (18)

≤ |k|n max
2≤i≤m−1

{ϕ2(|k|−n||x1||X , ||y||X), ϕ2(||xi||X , ||y||X),

ϕ2(||xi||X , |k|−n||x1||X), ϕ2(||y||X , |k|−n||x1||X)}
≤ |k|n max

2≤i≤m−1
{ϕ2(|k|−n||x1||X , |k|−n||y||X), ϕ2(||xi||X , ||y||X),

ϕ2(|k|−n||xi||X , |k|−n||x1||X), ϕ2(|k|−n||y||X , |k|−n||x1||X)}
≤ |k|n(1−p) max

1≤i≤m−1, 2≤j≤m−1
{ϕ2(||xi||X , ||y||X), ϕ2(||xj ||X , ||x1||X),

ϕ2(||y||X , ||x1||X)} (x1, . . . , xm−1, y ∈ X).

Since 0 ≤ p < 1 and |k| < 1, the right-hand side of (18) tends to zero as n → ∞.
Therefore

T (x1, . . . , xm−1, y) = lim
n→∞

knT (y, x2, . . . , xm−1, k
−nx1) (x1, . . . , xm−1, y ∈ X).

By the additivity of T with respect to first variable, we obtain

T (x1, . . . , xm−1, y1 + y2) = lim
n→∞

knT (y1 + y2, x2, . . . , xm−1, k
−nx1)

= lim
n→∞

knT (y1, x2, . . . , xm−1, k
−nx1)

+ lim
n→∞

knT (y2, x2, . . . , xm−1, k
−nx1)

= T (x1, . . . , xm−1, y1) + T (x1, . . . , xm−1, y2)

for each x1, . . . , xm−1, y1, y2 ∈ X. This means that T is additive with respect to
each variable. Replace xi by k−nxi for each 1 ≤ i ≤ m−1 in (15) and multiply both
sides of this inequality by kn(m−1) to obtain

|| kn(m−1)∆k−nx1,...,k−nxm−1g(0, y)− T (x1, . . . , xm−1, y)||Y (19)

≤ |k|n(m−1) max
1≤i≤m−1

ϕ2(|||k|−nxi||X , ||y||X)

≤ |k|n(m−1−p) max
1≤i≤m−1

ϕ2(||xi||X , ||y||X)

for each x1, . . . , xm−1, y ∈ X. Since the right-hand side of the above inequality tends
to zero as n →∞, we have

T (x1, . . . , xm−1, y) = lim
n→∞

kn(m−1)∆k−nx1,...,k−nxm−1g(0, y) (x1, . . . , xm−1, y ∈ X).
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In particular,

M(x, y) =
1

(m− 1)!
T (x, . . . , x, y) = lim

n→∞
kn(m−1)∆m−1

k−nxg(0, y) (x, y ∈ X).

Let Mm(x) = 1
mM(x, x). The additivity of T with respect to all of its variables

implies that Mm is a monomial of degree m. Since for each x ∈ X and n ∈ N, we
have g(0, k−nx) = ∆k−nxf(0), by putting x1 = . . . , xm−1 = y = k−nx in (19) we see
that

Mm(x) =
1
m!

T (x, . . . , x) =
1
m!

lim
n→∞

knm∆m
k−nxf(0) (x ∈ X). (20)

This completes our proof.

Lemma 2. Let f,Q and M satisfy the conditions of Lemma 1 for some m > 1 and
f ′(x) = f(x)−Mm(x) for each x ∈ X. Then there are Q′,M′ : X ×X → Y , where
Q′(x, y) is a polynomial of degree at most m − 3 in x and M′(x, y) is a monomial
of degree m− 2 in x such that for each x, y ∈ X,

||f ′(x+ y)− f ′(x)− f ′(y)+ f ′(0)−Q′(x, y)−M′(x, y)||Y ≤ ϕ2(||x||X , ||y||X). (21)

Proof. We have

f(x + y)− f(x)− f(y) + f(0)−Q(x, y)−M(x, y)
= f ′(x + y)− f ′(x)− f ′(y) + f ′(0) +Mm(x + y)
−Mm(x)−Mm(y)−Q(x, y)−M(x, y) (22)

Thanks to (20), we have

Mm(x + y)−Mm(x)−Mm(y)

=
1
m!

(
T (x + y, . . . , x + y)− T (x, . . . , x)− T (y, . . . , y)

)

for each x, y ∈ X. Since T is m-additive and symmetric, for each x, y ∈ X,

T (x + y, . . . , x + y) =
m∑

i=0

(
m

i

)
T (x, . . . , x︸ ︷︷ ︸

i−terms

, y, . . . , y︸ ︷︷ ︸
(m−i)−terms

)

= T (x, . . . , x) + mT (x, . . . , x, y) + T (y, . . . , y)

+
m−2∑

i=1

(
m

i

)
T (x, . . . , x︸ ︷︷ ︸

i−terms

, y, . . . , y︸ ︷︷ ︸
(m−i)−terms

).

Therefore for each x, y ∈ X, we have

Mm(x + y)−Mm(x)−Mm(y)

=
1
m!

(
mT (x, . . . , x, y) +

m−2∑

i=1

(
m

i

)
T (x, . . . , x︸ ︷︷ ︸

i−terms

, y, . . . , y︸ ︷︷ ︸
(m−i)−terms

)
)

(23)

= M(x, y) +
1
m!

m−2∑

i=1

(
m

i

)
T (x, . . . , x︸ ︷︷ ︸

i−terms

, y, . . . , y︸ ︷︷ ︸
(m−i)−terms

),
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for each x, y ∈ X. Since T is m-additive, for each 1 ≤ i ≤ m− 2,

T (x, . . . , x︸ ︷︷ ︸
i−terms

, y, . . . , y︸ ︷︷ ︸
(m−i)−terms

)

defines a monomial of degree i in x. Therefore, the last term in (23) is a polynomial
of degree at most m− 2, which vanishes at x = 0. Let

h(x, y) =
1
m!

m−2∑

i=1

(
m

i

)
T (x, . . . , x︸ ︷︷ ︸

i−terms

, y, . . . , y︸ ︷︷ ︸
(m−i)−terms

) (x, y ∈ X).

Then for each x, y ∈ X, we have

Mm(x + y)−Mm(x)−Mm(y)−M(x, y)−Q(x, y) = h(x, y)−Q(x, y)
= Q′(x, y) +M′(x, y), (24)

where Q′(x, y) is a polynomial of degree m− 3 in x and M′(x, y) is a monomial of
degree m− 2 in x. Therefore, the Lemma follows from (11), (22) and (24).

Now, we are ready to state the main result of this paper.

Theorem 3. Let f : X → Y for some m > 1 satisfy

||∆x1,...,xmf(0)||Y ≤ ϕm(||x1||X , . . . , ||xm||X) (x1, . . . , xm ∈ X). (25)

Then there exists a unique polynomial pm−1 of degree at most m− 1 such that

||f(x)− pm−1(x)||Y ≤ |k|−(m−1)pϕm(||x||X , . . . , ||x||X) (x ∈ X). (26)

The polynomial pm−1 is given by the formula

pm−1(x) = f(0) +M1(x) + · · ·+Mm−1(x) (x ∈ X),

where each Mi is either a monomial of degree i or identically zero (1 ≤ i ≤ m− 1).
Finally, for each x ∈ X,

Mm−1(x) =
1

(m− 1)!
lim

n→∞
kn(m−1)∆m−1

k−nxf(0)

and for each 1 ≤ i < m− 1,

Mi(x) =
1
i!

lim
n→∞

ki



∆i

k−nxf(0)−
m−1∑

j=i+1

∆j
k−nxMj(0)



 (x ∈ X). (27)

Proof. We first prove uniqueness assertion of the theorem. Let pm−1 and p′m−1 be
two polynomials such that for each x ∈ X

||f(x)− f(0)− pm−1(x)|| ≤ ϕm(||x||X , . . . , ||x||X),
pm−1(x) = f(0) +M1(x) + · · ·+Mm−1(x)

and
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||f(x)− f(0)− p′m−1(x)||Y ≤ ϕm(||x||X , . . . , ||x||X),
p′m−1(x) = f(0) +M′

1(x) + · · ·+M′
m−1(x),

where Mi and M′
i are either a monomial of degree i or identically zero (1 ≤ i ≤

m− 1). We have

pm−1(x)−p′m−1(x) = M1(x)−M′
1(x)+· · ·+Mm−1(x)−M′

m−1(x) (x ∈ X). (28)

Let pm−1 6= p′m−1 and i be the greatest index for which Mi 6= M′
i, 1 ≤ i ≤ m− 1.

By the ultrametric inequality for each x ∈ X, we have

|k|−(m−2)p ϕm−1(||x||X , . . . , ||x||X)≥ ||pm(x)− p′m(x)||Y = ||
i∑

j=1

Mj(x)−M′
j(x)||Y

≥ ||Mi(x)−M′
i(x)||Y

− max
1≤j≤i−1

||Mj(x)−M′
j(x)||Y (x ∈ X). (29)

By replacing x by k−nx in (29), we obtain

|k|−np−(m−2)pϕm−1(||x||X , . . . , ||x||X)
≥ |k|−(m−2)pϕm−1(|k|−n||x||X , . . . , |k|−n||x||X)
≥ |k|−ni||Mi(x)−M′

i(x)||Y (30)
− max

1≤j≤i−1
|k|−nj ||Mj(x)−M′

j(x)||Y (x ∈ X).

It follows from (30) that for each x ∈ X,

||Mi(x)−M′
i(x)||Y ≤ |k|n(i−p)−(m−2)p|ϕm−1(||x||X , . . . , ||x||X)

+ max
1≤j≤i−1

|k|n(i−j)||Mj(x)−M′
j(x)||Y .

Since |k| < 1 and i > max{p, j; 1 ≤ j ≤ i − 1}, the right-hand side of the above
inequality tends to zero as n →∞. It follows that Mi(x) = M′

i(x) for each x ∈ X.
This contradiction proves the uniqueness assertion of the theorem.

Next, we will prove the existence of pm−1 by induction on m. For m = 2, the
result follows from Theorem 1. Let the theorem hold for some m ≥ 2 and f : X → Y
satisfy the inequality

||∆m+1
x1,...,xm+1

f(0)||Y ≤ ϕm+1(||x1||X , . . . , ||xm+1||X) (x ∈ X). (31)

Fix some y ∈ X, and let

ϕm(x1, . . . , xm) = ϕm+1(||x1||X , . . . , ||xm||X , ||y||X) for each x1, . . . , xm ∈ X.

Then we have

||∆m
x1,...,xm

(∆yf)(0)||Y ≤ ϕm(||x1||X , . . . , ||xm||X) (x1, . . . , xm ∈ X). (32)
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By our hypothesis, there exists a polynomial pm−1(x, y) of degree m− 1 in x on X
such that

||∆yf(x)− pm−1(x, y)||Y ≤ |k|−p(m−1)ϕm+1(||x||X , . . . , ||x||X , ||y||X) (x ∈ X).(33)

Moreover,
pm−1(x, y) = ∆yf(0) +Q(x, y) +M(x, y) (x ∈ X), (34)

where Q(x, y) is a polynomial of degree m − 2 in x, Q(0, y) = 0 and M(x, y) is a
monomial of degree m− 1 in x. Define

ϕ2(||x||X , ||y||X) = |k|−p(m−1)ϕm+1(||x||X , . . . , ||x||X , ||y||X) (x, y ∈ X).

By substituting (34) in (33), for each x, y ∈ X, we obtain

||f(x + y)− f(x)− f(y) + f(0)−Q(x, y)−M(x, y)||Y ≤ ϕ2(||x||X , ||y||X). (35)

The inequality (35) shows that the conditions of Lemma 1 hold. Therefore

Mm(x) =
1
m!

lim
n→∞

knm∆k−nxnf(0) (x ∈ X)

is either zero or a monomial of degree m. Thanks to Lemma 2, f1(x) = f(x)−Mm(x)
defines a mapping from X to Y which satisfies the conditions of Lemma 1 for m−1.
Therefore

Mm−1(x) =
1

(m− 1)!
lim

n→∞
k(m−1)n∆m−1

k−nxf1(0)

=
1

(m− 1)!
lim

n→∞
k(m−1)n

(
∆m−1

k−nxf(0)−∆m−1
k−nxMm(0)

)
(x ∈ X)

defines a mapping from X to Y which is either identically zero or a monomial of
degree m−1. By continuing this manner, we get to fm−2 : X → Y , which is defined
by

fm−2(x) = f(x)−M3(x)− · · · −Mm(x) (x ∈ X),

where Mi is given by (27) and

||fm−2(x + y)− fm−2(x)− fm−2(y) + fm−2(0)− T (x, y)||Y
≤ ϕ2(||x||X , ||y||X) (x, y ∈ X),

where either T (x, y) = 0 for each x, y ∈ X or T (x, y) defines a monomial of degree
one in x. Apply Lemma 1 once more and put M2(x) = 1

2T (x, x), x ∈ X, then

M2(x) =
1
2!

lim
n→∞

k2n∆2
k−nxfm−2(0) (x ∈ X).

Define fm−1(x) = fm−2(x) −M2(x) = f(x) − ∑m
i=2Mi(x) for each x ∈ X. By

applying Lemma 2 once again, we see that

||fm−1(x + y)− fm−1(x)− fm−1(y) + fm−1(0)||Y
≤ ϕ2(||x||X , ||y||X) (x, y ∈ X). (36)
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Thanks to Theorem 1, there exists an additive (monomial of degree one) M1 :
X → Y such that for each x ∈ X

||fm−1(x)− fm−1(0)−M1(x)||Y ≤ |k|−pϕ2(||x||X , ||x||X)
= |k|−mpϕm+1(||x||X , . . . , ||x||X).

Since fm−1(0) = f(0), we have

||f(x)− pm(x)||Y ≤ |k|−mpϕm+1(||x||X , . . . , ||x||X) (x ∈ X),

where pm(x) = f(0) + M1(x) + · · · + Mm(x) for each x ∈ X. This proves our
theorem with m replaced by m+1. Thus by induction on m, the existence assertion
of our theorem has been proved. This completes the proof of the theorem.

3. Applications

In [11], D. H. Hyers proved the following.

Theorem 4. Let X be a vector space over the rational numbers, S be a convex cone
in X and B be Banach space. If β is fixed positive number and if f : S → B satisfies
the condition

||∆2
hf(x)||Y ≤ β (x, h ∈ S), (37)

then there exists an additive mapping T : S → B such that ||f(x)−f(0)−T (x)||Y ≤ β
for all x ∈ S. The function T is given by the formula T (x) = limn→∞ n−1f(nx).

The following example shows that the theorem of Hyers is not true in non-
Archimedean normed spaces.

Example 1. Let p > 2 be a prime number. For any nonzero rational number
a = pr m

n such that m and n are coprime to the prime number p, define the p-
adic absolute value |a|p = p−r. Then | · | is a non-Archimedean norm on Q. The
completion of Q with respect to | · |p is denoted by Qp and is called the p-adic number
field [9]. Define f : Qp → Qp by f(x) = x + p for each x ∈ Qp. Then ∆2

hf(x) = 0.
Therefore (37) holds. However, limn→∞ n−1f(nx) is not Cauchy. In fact for the
subsequence {pn} of {n}, we have p−nf(pnx) = x + p−n+1. Therefore

|p−nf(pnx)− p−(n+1)f(pn+1x)|p = |x + p−(n−1) − x− p−n|p
= |p−n|p|p− 1|p = pn.

Since the right-hand side of the above equation tends to infinity as n → ∞, the
subsequence {p−nf(pnx)} is not Cauchy. Hence limn→∞ n−1f(nx) in (Qp, | · |p)
does not exist.

Here we give some applications of Theorem 3.

Corollary 2. Let f : X → Y for some 0 ≤ p < 1 and ε > 0 satisfy the inequality

||∆m
x1,...,xm

f(0)||Y ≤ εmax {||x1||pX , . . . , ||xm||pX} (x1, . . . , xm ∈ X).

Then there exists a unique polynomial pm−1 of degree m− 1 such that

||f(x)− pm−1(x)||Y ≤ ε|k|−(m−1)p||x||pX (x ∈ X).
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Proof. Take

ϕm(||x1||X , . . . , ||xm||X) = εmax {||x1||pX , . . . , ||xm||pX} (x1, . . . , xm ∈ X),

in Theorem 3.

The following result can be considered as a generalization of the main result in
[19].

Corollary 3. Let f : X → Y for some 0 ≤ p < 1 and ε > 0 satisfy the inequality

||∆m
x1,...,xm

f(0)||Y ≤ ε

m∑

i=1

||xi||pX (x1, . . . , xm ∈ X).

Then there exists a unique polynomial pm−1 of degree m− 1 such that

||f(x)− pm−1(x)||Y ≤ mε|k|−(m−1)p||x||pX (x ∈ X).

Proof. Apply Theorem 3 for

ϕm(||x1||X , . . . , ||xm||X) = ε

m∑

i=1

||xi||pX (x1, . . . , xm ∈ X).
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