Stability of Fréchet functional equation in non-Archimedean normed spaces*

Alireza Kamel Mirmostafaee ${ }^{1, \dagger}$
${ }^{1}$ Center of Excellence in Analysis on Algebraic Structures, Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1 159, Mashhad, Iran

Received May 4, 2011; accepted February 13, 2012

Abstract. We will establish stability of Fréchet functional equation

$$
\Delta_{x_{1}, \ldots, x_{n}}^{n} f(y)=0
$$

in non-Archimedean normed spaces for some unbounded control function. Among some applications of our results, we will give a counterexample to show that the nature of stability in non-Archimedean normed spaces is different from one in classical normed spaces.
AMS subject classifications: 39B82, 39B72, 11J61; Secondary 39B52, 46S10
Key words: Fréchet functional equation, stability, non-Archimedean normed spaces

1. Introduction

In 1821, in his famous book [5] A. L. Cauchy proved that a continuous mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ is additive if and only if there is some $c \in \mathbb{R}$ such that $f(x)=c x$ for each $x \in \mathbb{R}$. Since then, the additive functional equation $f(x+y)=f(x)+f(y)$ is known by his name.

Let X and Y be linear spaces. For a function $f: X \rightarrow Y$ and $x \in X$, let

$$
\Delta_{x} f(y)=f(x+y)-f(y) \quad(y \in X)
$$

Inductively, we define

$$
\Delta_{x_{1}, \ldots, x_{n}}^{n} f(y)=\Delta_{x_{1}, \ldots, x_{n-1}}^{n-1}\left(\Delta_{x_{n}} f(y)\right) \quad\left(y, x_{1}, \ldots, x_{n} \in X\right)
$$

If $x_{1}=\cdots=x_{n}=x$, we write $\Delta_{x}^{n} f(y)=\Delta_{x_{1}, \ldots, x_{n}}^{n} f(y)$, where $x, y \in X$.
It is known that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(0)=0$ satisfies the Cauchy equation if and only if $\Delta_{x}^{2} f(y)=0$ for each $x, y \in \mathbb{R}$ (see e. g. [2]).

In 1909, M. Fréchet [7] had showed that a continuous mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ is a polynomial of degree n if and only if $\Delta_{x_{1}, \ldots, x_{n+1}}^{n+1} f(0)=0$ for each $x_{1}, \ldots, x_{n+1} \in \mathbb{R}$ (a simpler proof of this fact can be found in Lemma 2 of [2]).

A function $f: X \rightarrow Y$ is called a polynomial of degree n if it is a solution of the Fréchet functional equation of degree $n+1$,

$$
\begin{equation*}
\Delta_{x_{1}, \ldots, x_{n+1}}^{n+1} f(0)=0 . \tag{1}
\end{equation*}
$$

[^0]The concept of stability of a functional equation arises when one replaces a functional equation by an inequality which acts as a perturbation of the equation. In 1940, Ulam [21] posed the first stability problem. In 1941, Hyers [10] gave the first significant partial solution to his problem. Th. M. Rassias [19] improved Hyers' theorem by weakening the condition for the Cauchy difference controlled by $\|x\|^{p}+\|y\|^{p}, p \in[0,1)$. Taking into consideration a lot of influence of Ulam, Hyers and Rassias on the development of stability problems of functional equations, the stability phenomenon that was proved by Th.M. Rassias is called the Hyers-UlamRassias stability.

In [3], L. M. Arriola and W. A. Beyer initiated the study of the stability of functional equations in non-Archimedean spaces [20]. In fact they established stability of Cauchy functional equations over p-adic fields. In [15], [16] and [18] the stability of Cauchy, quadratic and quartic functional equations in non-Archimedean normed spaces were investigated.

The stability of Fréchet functional equation was initiated by D. H. Hyers in [11]. In 1999 this result was generalized by Borelli et al. [4]. Other versions of this problem have been recently considered by some authors (see, e. g., $[1,6,8,12,14,17,22,23]$ and the references therein).

In this paper, we adopt some ideas from [4], [11] and [15] to establish stability of Fréchet functional equation of degree $m-1, m>2$, in non-Archimedean normed linear spaces. More precisely, we will show that if $f: X \rightarrow Y$ satisfies

$$
\left\|\Delta_{x_{1}, \ldots, x_{m}}^{m} f(0)\right\|_{Y} \leq \varphi_{m}\left(\left\|x_{1}\right\|_{X}, \ldots,\left\|x_{m}\right\|_{X}\right) \quad\left(x_{1}, \ldots, x_{m} \in X\right)
$$

(where X and Y are two non-Archimedean normed vector spaces over the same nonArchimedean vector field \mathbb{K}) for a suitable control function $\varphi_{m}: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}_{+}$, there exists a unique polynomial $p_{m-1}: X \rightarrow Y$ of degree at most $m-1$ such that

$$
\left\|f(x)-p_{m-1}(x)\right\|_{Y} \leq|k|^{-p m} \varphi_{m}\left(\|x\|_{X}, \ldots,\|x\|_{X}\right) \quad(x \in X)
$$

where k is the smallest positive integer $k \in \mathbb{K}$ with $|k|<1$ and $0 \leq p<1$. In section 3, among some applications of our results, we will give an example to show that Hyers' theorem in [11] cannot be applied in non-Archimedean normed spaces. Therefore, Fréchet stability phenomenon in non-Archimedean normed spaces is of different nature from the one in classical normed spaces.

2. Results

Let \mathbb{K} be a field. A non-Archimedean absolute value on \mathbb{K} is a function $|\cdot|: \mathbb{K} \rightarrow \mathbb{R}^{+}$ such that for any $a, b \in \mathbb{K},|a+b| \leq \max \{|a|,|b|\},|a b|=|a||b|$, and $|a|=0$ if and only if $a=0$. The last inequality is called the strong triangle inequality or ultrametric inequality. It is important to note that all valued field \mathbb{K} has zero characteristic. In particular, this implies that, if $(\mathbb{K},|\cdot|)$ is a non-Archimedean field with a non trivial absolute value $|\cdot|$, then $\mathbb{Q} \hookrightarrow \mathbb{K}$ and we will assume in all what follows that $\mathbb{Q} \subseteq \mathbb{K}$.

Let X be a linear space over a scalar field \mathbb{K} with a non-Archimedean valuation $|\cdot|$. A function $\|\|:. X \rightarrow \mathbb{R}_{+}$is a non-Archimedean norm (valuation) if it is a norm over \mathbb{K} with the strong triangle inequality (ultrametric inequality); namely,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\} \quad(x, y \in X)
$$

Then $(X,\|\|$.$) is called a non-Archimedean normed space. By a complete non-$ Archimedean normed space we mean one in which every Cauchy sequence is convergent. It is important, for our objectives, to note that any non-Archimedean vector space X over a non-Archimedean valued field \mathbb{K} is also \mathbb{Q}-vector space, since $\mathbb{Q} \subseteq \mathbb{K}$.

Hereafter, unless otherwise is explicitly stated, we will assume that X and Y are non-Archimedean normed spaces over a non-Archimedean field \mathbb{K} with a valuation $|\cdot|$ and Y is complete. Furthermore, we suppose that $k \in \mathbb{K}$ is the smallest positive integer with $|k|<1$ and, for each $m \geq 2$, we assume that $\varphi_{m}: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}_{+}$is a non-decreasing mapping with respect to each variable on \mathbb{R}_{+}^{m} such that for some $0 \leq p<1$,

$$
\begin{equation*}
\varphi_{m}\left(|k|^{-1} t_{1}, \ldots,|k|^{-1} t_{m}\right) \leq|k|^{-p} \varphi_{m}\left(t_{1}, \ldots, t_{m}\right) \quad\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{R}_{+}^{m} \tag{2}
\end{equation*}
$$

For example, $\varphi_{m}\left(t_{1}, \ldots, t_{m}\right)=\max \left\{t_{1}^{p}, \ldots, t_{m}^{p}\right\}, t_{1}, \ldots, t_{m} \in \mathbb{R}_{+}$, satisfies the above conditions. We first prove the main result of this paper in the following special case. Although its proof is similar to that of [15, Theorem 2.1], but for the sake of completeness and self-containment, we give here a direct proof.

Theorem 1. Let $f: X \rightarrow Y$ satisfy the inequality

$$
\begin{equation*}
\left\|\Delta_{x_{1}, x_{2}} f(0)\right\|_{Y} \leq \varphi_{2}\left(\left\|x_{1}\right\|_{X},\left\|x_{2}\right\|_{X}\right) \quad\left(x_{1}, x_{2} \in X\right) \tag{3}
\end{equation*}
$$

Then there exists a unique additive mapping $\mathcal{M}_{1}: X \rightarrow Y$ such that

$$
\begin{equation*}
\left\|f(x)-f(0)-\mathcal{M}_{1}(x)\right\|_{Y} \leq|k|^{-p} \varphi_{2}\left(\|x\|_{X},\|x\|_{X}\right) \quad(x \in X) \tag{4}
\end{equation*}
$$

The function \mathcal{M}_{1} is given by the formula

$$
\mathcal{M}_{1}(x)=\lim _{n \rightarrow \infty} k^{n} \Delta_{k^{-n} x} f(0) \quad(x \in X) .
$$

Proof. By (3), we have

$$
\begin{equation*}
\left\|f\left(x_{1}+x_{2}\right)-f\left(x_{1}\right)-f\left(x_{2}\right)+f(0)\right\|_{Y} \leq \varphi_{2}\left(\left\|x_{1}\right\|_{X},\left\|x_{2}\right\|_{X}\right) \quad\left(x_{1}, x_{2} \in X\right) \tag{5}
\end{equation*}
$$

Let $g=f-f(0)$. Then by (5) we have

$$
\begin{equation*}
\left\|g\left(x_{1}+x_{2}\right)-g\left(x_{1}\right)-g\left(x_{2}\right)\right\|_{Y} \leq \varphi_{2}\left(\left\|x_{1}\right\|_{X},\left\|x_{2}\right\|_{X}\right) \quad\left(x_{1}, x_{2} \in X\right) \tag{6}
\end{equation*}
$$

We will show that for each $x \in X$ and $2 \leq j \leq k$,

$$
\begin{equation*}
\|g(j x)-j g(x)\|_{Y} \leq \varphi_{2}\left(\|x\|_{X},\|x\|_{X}\right), \quad(x \in X) \tag{7}
\end{equation*}
$$

Put $x_{1}=x_{2}=x$ into (6) to obtain

$$
\|g(2 x)-2 g(x)\|_{Y} \leq \varphi_{2}\left(\|x\|_{X},\|x\|_{X}\right), \quad(x \in X)
$$

This proves (7) for $j=2$. Let (7) hold for some $2<j<k$. Replacing x_{1} by x and y by $j x$ in (6), we see that

$$
\begin{equation*}
\|g((j+1) x)-g(x)-g(j x)\|_{Y} \leq \varphi_{2}\left(\|x\|_{X},\|j x\|_{X}\right)=\varphi_{2}\left(\|x\|_{X},\|x\|_{X}\right) \tag{8}
\end{equation*}
$$

for each $x \in X$. Since

$$
g((j+1) x)-(j+1) g(x)=g((j+1) x)-g(x)-g(j x)+g(j x)-j g(x)
$$

for each $x \in X$, it follows from (8) and our induction hypothesis that

$$
\begin{aligned}
\|g((j+1) x)-(j+1) g(x)\|_{Y} \leq & \max \left\{\|g((j+1) x)-g(x)-g(j x)\|_{Y}\right. \\
& \left.\|g(j x)-j g(x)\|_{Y}\right\} \\
\leq & \varphi_{2}\left(\|x\|_{X},\|x\|_{X}\right) \quad(x \in X)
\end{aligned}
$$

This proves (7). In particular,

$$
\begin{equation*}
\|g(k x)-k g(x)\|_{Y} \leq \varphi_{2}\left(\|x\|_{X},\|x\|_{X}\right) \quad(x \in X) \tag{9}
\end{equation*}
$$

It follows that for each $n \in \mathbb{N}$ and $x \in X$,

$$
\begin{align*}
\left\|k^{(n-1)} g\left(k^{-(n-1)} x\right)-k^{n} g\left(k^{-n} x\right)\right\|_{Y} & \leq|k|^{(n-1)} \varphi_{2}\left(\left\|k^{-n} x\right\|_{X},\left\|k^{-n} x\right\|_{X}\right) \\
& \leq|k|^{n-1-p n} \varphi_{2}\left(\|x\|_{X},\|x\|_{X}\right) \tag{10}
\end{align*}
$$

Since the right-hand side of the above inequality tends to zero as n tends to infinity, it follows from the altrametric inequality and (10) that $\left\{k^{n} g\left(k^{-n} x\right)\right\}$ is a Cauchy sequence in Y. Thanks to completeness of $Y, \mathcal{M}_{1}(x)=\lim _{n \rightarrow \infty} k^{n} \Delta_{k^{-n} x} f(0)=$ $\lim _{n \rightarrow \infty} k^{n} g\left(k^{-n} x\right)$ for each $x \in X$ exists. Since for each $n \geq 1$ and $x \in X$,

$$
\begin{aligned}
\left\|g(x)-k^{n} g\left(k^{-n} x\right)\right\|_{X} & =\left\|\sum_{i=1}^{n} k^{i-1} g\left(k^{-(i-1)} x\right)-k^{i} g\left(k^{-i} x\right)\right\|_{Y} \\
& \leq \max \left\{\left\|k^{i-1} g\left(k^{-(i-1)} x\right)-k^{i} g\left(k^{-i} x\right)\right\|_{Y}: 1 \leq i \leq n\right\} \\
& \leq|k|^{-p} \varphi\left(\|x\|_{X},\|x\|_{X}\right)
\end{aligned}
$$

the inequality (4) holds. The additivity of \mathcal{M}_{1} follows from the following inequality.

$$
\begin{aligned}
& \left\|\mathcal{M}_{1}(x+y)-\mathcal{M}_{1}(x)-\mathcal{M}_{1}(y)\right\|_{Y} \\
& \quad=\lim _{n \rightarrow \infty}\left\|k^{n} g\left(k^{-n}(x+y)\right)-k^{n} g\left(k^{-n} x\right)-k^{n} g\left(k^{-n} y\right)\right\|_{Y} \\
& \quad \leq \lim _{n \rightarrow \infty}|k|^{n(1-p)} \varphi\left(\|x\|_{X},\|y\|_{X}\right)=0 \quad(x, y \in X)
\end{aligned}
$$

Let \mathcal{M}_{1}^{\prime} be another additive map such that

$$
\left\|f(x)-f(0)-\mathcal{M}_{1}^{\prime}(x)\right\| \|_{Y} \leq|k|^{-p} \varphi_{2}\left(\|x\|_{X},\|x\|_{X}\right) \quad(x \in X)
$$

Then by the altrametric inequality

$$
\left\|\mathcal{M}_{1}(x)-\mathcal{M}^{\prime}(x)\right\| \leq|k|^{-p} \varphi_{2}\left(\|x\|_{X},\|x\|_{X}\right) \quad(x \in X)
$$

Therefore for each $n \in \mathbb{N}$ and $x \in X$, we have

$$
\begin{aligned}
\left\|\mathcal{M}_{1}(x)-\mathcal{M}^{\prime}(x)\right\| & =\left\|k^{n} \mathcal{M}_{1}\left(k^{-n} x\right)-k^{n} \mathcal{M}^{\prime}\left(k^{-n} x\right)\right\| \\
& \leq|k|^{n} \varphi_{2}\left(\left\|k^{-n} x\right\|_{X},\left\|k^{-n} x\right\|_{X}\right) \\
& \leq|k|^{n(1-p)} \varphi_{2}\left(\|x\|_{X},\|x\|_{X}\right)
\end{aligned}
$$

Since the right-hand side of the above inequality tends to zero as n tends to infinity $\mathcal{M}_{1}=\mathcal{M}_{1}^{\prime}$.

In order to extend Theorem 1, we need to the following definition.
Definition 1. Let X and Y be two arbitrary \mathbb{Q}-linear spaces. A function $T: X^{n} \rightarrow$ Y is called n-additive if it is additive with respect to each variable. It follows from the definition that if $T: X^{n} \rightarrow Y$ is n-additive and $f: X \rightarrow Y$ is defined by $f(x)=T(x, \ldots, x)$, then for each $r \in \mathbb{Q}$ and $x \in X, f(r x)=r^{n} f(x)$.

A function $\mathcal{M}: X \rightarrow Y$ is said to be a monomial of degree n if $\mathcal{M}(r x)=r^{n} \mathcal{M}(x)$ for all $x \in X$ and $r \in \mathbb{Q}$.

We call a function $p: X \rightarrow Y$ a transformation of degree n if $p(x)=\mathcal{M}_{0}(x)+$ $\cdots+\mathcal{M}_{n}(x)$, where \mathcal{M}_{i} is a monomial of degree i for $0 \leq i \leq n$ and \mathcal{M}_{n} is not identically zero.
S. Mazur and W. Orlicz proved the following.

Theorem 2 (see [13]). Let $\mathcal{M}: X \rightarrow Y$, where X and Y are \mathbb{Q}-linear spaces. If \mathcal{M} is a monomial of degree m, then there is a unique symmetric m-additive mapping $T: X^{m} \rightarrow Y$ such that

$$
\mathcal{M}(x)=T(x, \ldots, x) \quad(x \in X)
$$

The mapping T is defined by the formula

$$
T\left(x_{1}, \ldots, x_{m}\right)=\frac{1}{m!} \Delta_{x_{1}, \ldots, x_{m}}^{m} \mathcal{M}(x) \quad\left(x, x_{1}, \ldots, x_{m} \in X\right)
$$

In particular, if \mathcal{M} is a monomial of degree at most m, then $\Delta_{x_{1}, \ldots, x_{m+1}}^{m+1} \mathcal{M}(x)=0$ for each $x, x_{1}, \ldots, x_{m+1} \in X$.

It follows immediately from Theorem 2 that for any transformation $p: X \rightarrow Y$ of degree at most m,

$$
\Delta_{x_{1}, \ldots, x_{m+1}}^{m+1} p(x)=0 \quad\left(x, x_{1}, \ldots, x_{m+1} \in X\right)
$$

The authors in [13] have shown that the converse of this statement is also true. So that we have the following.

Corollary 1. Let X and Y be \mathbb{Q}-linear spaces. Then for a mapping $p: X \rightarrow Y$, the following is equivalent.
(1) p is a transformation of degree (at most) m;
(2) p is a polynomial of degree (at most) m.

Lemma 1. Let $f: X \rightarrow Y$ satisfy the inequality
$\|f(x+y)-f(x)-f(y)+f(0)-\mathcal{Q}(x, y)-\mathcal{M}(x, y)\|_{Y} \leq \varphi_{2}\left(\|x\|_{X},\|y\|_{X}\right) \quad(x, y \in X)$,
where $\mathcal{Q}(x, y)$ is a polynomial of degree at most $m-2$ with respect to x and $\mathcal{M}(x, y)$ is a monomial of degree $m-1$ with respect to $x,(m>1)$. Then

$$
\mathcal{M}_{m}(x)=\frac{1}{m} \mathcal{M}(x, x) \quad(x \in X)
$$

defines a monomial of degree m. Moreover, we have

$$
\mathcal{M}_{m}(x)=\frac{1}{m!} \lim _{n \rightarrow \infty} k^{n m} \Delta_{k^{-n} x}^{m} f(0) \quad(x \in X)
$$

and

$$
\mathcal{M}(x, y)=\frac{1}{(m-1)!} \lim _{n \rightarrow \infty} k^{(m-1) n} \Delta_{k^{-n} x}^{m-1} g(0, y) \quad(x, y \in X)
$$

where $g(x, y)=f(x+y)-f(x)$ for each $x, y \in X$.
Proof. By Theorem 2, there exits a function $T_{1}: X^{m} \rightarrow Y$ which is additive and symmetric with respect to the first $m-1$ variables such that

$$
\begin{equation*}
\mathcal{M}(x, y)=T_{1}(x, \ldots, x, y) \quad(x, y \in X) \tag{12}
\end{equation*}
$$

and

$$
T_{1}\left(x_{1}, \ldots, x_{m-1}, y\right)=\frac{1}{(m-1)!} \Delta_{x_{1}, \ldots, x_{m-1}} \mathcal{M}(x, y) \quad\left(x, x_{1}, \ldots, x_{m-1}, y \in X\right)
$$

Put $T\left(x_{1}, \ldots, x_{m-1}, y\right)=(m-1)!T_{1}\left(x_{1}, \ldots, x_{m-1}, y\right),\left(x_{1}, \ldots, x_{m-1}, y \in X\right)$. Then

$$
\Delta_{x_{1}, \ldots, x_{m-1}} \mathcal{M}(x, y)=T\left(x_{1}, \ldots, x_{m-1}, y\right) \quad\left(x, x_{1}, \ldots, x_{m-1}, y \in X\right)
$$

Let \mathcal{P}_{m-1} denote the set of all permutations on $\{1, \ldots, m-1\}$. Thanks to (11), it follows that for each $x_{1}, \ldots, x_{m-1}, y \in X$,

$$
\begin{align*}
& \left\|\Delta_{x_{1}, \ldots, x_{m-1}, y}^{m} f(0)-\Delta_{x_{1}, \ldots, x_{m-1}}^{m-1} \mathcal{Q}(0, y)-T\left(x_{1}, \ldots, x_{m-1}, y\right)\right\|_{Y} \tag{13}\\
& \quad \leq \max \left\{\varphi_{2}\left(\left\|\sum_{i=1}^{j} x_{\sigma(i)}\right\|_{X},\|y\|_{X}\right): 1 \leq j \leq m-1, \sigma \in \mathcal{P}_{m-1}\right\}
\end{align*}
$$

Since \mathcal{Q} is a polynomial of degree (at most) $m-2$, by Corollary $1, \Delta_{x_{1}, \ldots, x_{m-1}}^{m-1} \mathcal{Q}(0, y)$ $=0$ for each $x_{1}, \ldots, x_{m-1}, y \in X$. Moreover, by the ultrametric inequality for each $x_{1}, \ldots, x_{m-1} \in X$, we have

$$
\begin{equation*}
\left\|\sum_{i=1}^{j} x_{\sigma(i)}\right\|_{X} \leq \max \left\{\left\|x_{i}\right\|_{X}: 1 \leq i \leq m-1\right\} \quad(1 \leq j \leq m-1) \tag{14}
\end{equation*}
$$

Since φ_{2} is non-decreasing, it follows from (13) and (14) that

$$
\begin{align*}
& \left\|\Delta_{x_{1}, \ldots, x_{m-1}, y} f(x)-T\left(x_{1}, \ldots, x_{m-1}, y\right)\right\|_{Y} \\
& \quad \leq \max \left\{\varphi_{2}\left(\left\|x_{i}\right\|_{X},\|y\|_{X}\right): 1 \leq i \leq m-1\right\} \tag{15}
\end{align*}
$$

Since m-th difference in the above inequality is symmetric in all its increments, by interchanging x_{1} with y in (15), we obtain

$$
\begin{align*}
& \left\|\Delta_{x_{1}, x_{2}, \ldots, x_{m-1}, y} f(0)-T\left(y, x_{2}, \ldots, x_{m-1}, x_{1}\right)\right\|_{Y} \tag{16}\\
& \quad \leq \max \left\{\varphi_{2}\left(\left\|x_{i}\right\|_{X},\left\|x_{1}\right\|_{X}\right), \varphi_{2}\left(\|y\|_{X},\left\|x_{1}\right\|_{X}\right): 2 \leq i \leq m-1\right\}
\end{align*}
$$

for each $x_{1}, \ldots, x_{m-1}, y \in X$. It follows from (15) and (16) that

$$
\begin{align*}
& \left\|T\left(x_{1}, \ldots, x_{m-1}, y\right)-T\left(y, x_{2}, \ldots, x_{m-1}, x_{1}\right)\right\|_{Y} \tag{17}\\
& \quad \leq \max \left\{\varphi_{2}\left(\left\|x_{i}\right\|_{X},\|y\|_{X}\right), \varphi_{2}\left(\left\|x_{j}\right\|_{X},\left\|x_{1}\right\|_{X}\right), \varphi_{2}\left(\|y\|_{X},\left\|x_{1}\right\|_{X}\right):\right. \\
& \quad 1 \leq i \leq m-1,2 \leq j \leq m-1\} \quad\left(x_{1}, \ldots, x_{m-1}, y \in X\right)
\end{align*}
$$

Since T is $(m-1)$-additive, by replacing x_{1} by $k^{-n} x_{1}$ in (17), we get to the following inequality

$$
\begin{aligned}
& \left\|T\left(x_{1}, \ldots, x_{m-1}, y\right)-k^{n} T\left(y, x_{2}, \ldots, x_{m-1}, k^{-n} x_{1}\right)\right\|_{Y} \\
& \quad \leq|k|^{n} \max _{2 \leq i \leq m-1}\left\{\varphi_{2}\left(|k|^{-n}\left\|x_{1}\right\|_{X},\|y\|_{X}\right), \varphi_{2}\left(\left\|x_{i}\right\|_{X},\|y\|_{X}\right),\right. \\
& \left.\quad \varphi_{2}\left(\left\|x_{i}\right\|_{X},|k|^{-n}\left\|x_{1}\right\|_{X}\right), \varphi_{2}\left(\|y\|_{X},|k|^{-n}\left\|x_{1}\right\|_{X}\right)\right\} \\
& \leq|k|^{n} \max _{2 \leq i \leq m-1}\left\{\varphi_{2}\left(|k|^{-n}\left\|x_{1}\right\|_{X},|k|^{-n}\|y\|_{X}\right), \varphi_{2}\left(\left\|x_{i}\right\|_{X},\|y\|_{X}\right),\right. \\
& \left.\quad \varphi_{2}\left(|k|^{-n}\left\|x_{i}\right\|_{X},|k|^{-n}\left\|x_{1}\right\|_{X}\right), \varphi_{2}\left(|k|^{-n}\|y\|_{X},|k|^{-n}\left\|x_{1}\right\|_{X}\right)\right\} \\
& \leq|k|^{n(1-p)} \quad \max _{1 \leq i \leq m-1,2 \leq j \leq m-1}\left\{\varphi_{2}\left(\left\|x_{i}\right\|\left\|_{X},\right\| y \|_{X}\right), \varphi_{2}\left(\left\|x_{j}\right\|_{X},\left\|x_{1}\right\|_{X}\right),\right. \\
& \left.\quad \varphi_{2}\left(\|y\|_{X},\left\|x_{1}\right\|_{X}\right)\right\} \quad\left(x_{1}, \ldots, x_{m-1}, y \in X\right) .
\end{aligned}
$$

Since $0 \leq p<1$ and $|k|<1$, the right-hand side of (18) tends to zero as $n \rightarrow \infty$. Therefore

$$
T\left(x_{1}, \ldots, x_{m-1}, y\right)=\lim _{n \rightarrow \infty} k^{n} T\left(y, x_{2}, \ldots, x_{m-1}, k^{-n} x_{1}\right) \quad\left(x_{1}, \ldots, x_{m-1}, y \in X\right)
$$

By the additivity of T with respect to first variable, we obtain

$$
\begin{aligned}
T\left(x_{1}, \ldots, x_{m-1}, y_{1}+y_{2}\right)= & \lim _{n \rightarrow \infty} k^{n} T\left(y_{1}+y_{2}, x_{2}, \ldots, x_{m-1}, k^{-n} x_{1}\right) \\
= & \lim _{n \rightarrow \infty} k^{n} T\left(y_{1}, x_{2}, \ldots, x_{m-1}, k^{-n} x_{1}\right) \\
& +\lim _{n \rightarrow \infty} k^{n} T\left(y_{2}, x_{2}, \ldots, x_{m-1}, k^{-n} x_{1}\right) \\
= & T\left(x_{1}, \ldots, x_{m-1}, y_{1}\right)+T\left(x_{1}, \ldots, x_{m-1}, y_{2}\right)
\end{aligned}
$$

for each $x_{1}, \ldots, x_{m-1}, y_{1}, y_{2} \in X$. This means that T is additive with respect to each variable. Replace x_{i} by $k^{-n} x_{i}$ for each $1 \leq i \leq m-1$ in (15) and multiply both sides of this inequality by $k^{n(m-1)}$ to obtain

$$
\begin{align*}
& \left\|k^{n(m-1)} \Delta_{k^{-n} x_{1}, \ldots, k^{-n} x_{m-1}} g(0, y)-T\left(x_{1}, \ldots, x_{m-1}, y\right)\right\|_{Y} \tag{19}\\
& \quad \leq|k|^{n(m-1)} \max _{1 \leq i \leq m-1} \varphi_{2}\left(\left.\| \| k\right|^{-n} x_{i}\left\|_{X},\right\| y \|_{X}\right) \\
& \quad \leq|k|^{n(m-1-p)} \max _{1 \leq i \leq m-1} \varphi_{2}\left(\left\|x_{i}\right\|_{X},\|y\|_{X}\right)
\end{align*}
$$

for each $x_{1}, \ldots, x_{m-1}, y \in X$. Since the right-hand side of the above inequality tends to zero as $n \rightarrow \infty$, we have
$T\left(x_{1}, \ldots, x_{m-1}, y\right)=\lim _{n \rightarrow \infty} k^{n(m-1)} \Delta_{k^{-n} x_{1}, \ldots, k^{-n} x_{m-1}} g(0, y) \quad\left(x_{1}, \ldots, x_{m-1}, y \in X\right)$.

In particular,

$$
\mathcal{M}(x, y)=\frac{1}{(m-1)!} T(x, \ldots, x, y)=\lim _{n \rightarrow \infty} k^{n(m-1)} \Delta_{k^{-n} x}^{m-1} g(0, y) \quad(x, y \in X)
$$

Let $\mathcal{M}_{m}(x)=\frac{1}{m} \mathcal{M}(x, x)$. The additivity of T with respect to all of its variables implies that \mathcal{M}_{m} is a monomial of degree m. Since for each $x \in X$ and $n \in \mathbb{N}$, we have $g\left(0, k^{-n} x\right)=\Delta_{k^{-n} x} f(0)$, by putting $x_{1}=\ldots, x_{m-1}=y=k^{-n} x$ in (19) we see that

$$
\begin{equation*}
\mathcal{M}_{m}(x)=\frac{1}{m!} T(x, \ldots, x)=\frac{1}{m!} \lim _{n \rightarrow \infty} k^{n m} \Delta_{k^{-n} x}^{m} f(0) \quad(x \in X) \tag{20}
\end{equation*}
$$

This completes our proof.
Lemma 2. Let f, \mathcal{Q} and \mathcal{M} satisfy the conditions of Lemma 1 for some $m>1$ and $f^{\prime}(x)=f(x)-\mathcal{M}_{m}(x)$ for each $x \in X$. Then there are $\mathcal{Q}^{\prime}, \mathcal{M}^{\prime}: X \times X \rightarrow Y$, where $\mathcal{Q}^{\prime}(x, y)$ is a polynomial of degree at most $m-3$ in x and $\mathcal{M}^{\prime}(x, y)$ is a monomial of degree $m-2$ in x such that for each $x, y \in X$,

$$
\begin{equation*}
\left\|f^{\prime}(x+y)-f^{\prime}(x)-f^{\prime}(y)+f^{\prime}(0)-\mathcal{Q}^{\prime}(x, y)-\mathcal{M}^{\prime}(x, y)\right\|_{Y} \leq \varphi_{2}\left(\|x\|_{X},\|y\|_{X}\right) . \tag{21}
\end{equation*}
$$

Proof. We have

$$
\begin{gather*}
f(x+y)-f(x)-f(y)+f(0)-\mathcal{Q}(x, y)-\mathcal{M}(x, y) \\
=f^{\prime}(x+y)-f^{\prime}(x)-f^{\prime}(y)+f^{\prime}(0)+\mathcal{M}_{m}(x+y) \\
\quad-\mathcal{M}_{m}(x)-\mathcal{M}_{m}(y)-\mathcal{Q}(x, y)-\mathcal{M}(x, y) \tag{22}
\end{gather*}
$$

Thanks to (20), we have

$$
\begin{aligned}
& \mathcal{M}_{m}(x+y)-\mathcal{M}_{m}(x)-\mathcal{M}_{m}(y) \\
& \quad=\frac{1}{m!}(T(x+y, \ldots, x+y)-T(x, \ldots, x)-T(y, \ldots, y))
\end{aligned}
$$

for each $x, y \in X$. Since T is m-additive and symmetric, for each $x, y \in X$,

$$
\begin{aligned}
T(x+y, \ldots, x+y)= & \sum_{i=0}^{m}\binom{m}{i} T(\underbrace{x, \ldots, x}_{i-\text { terms }}, \underbrace{y, \ldots, y}_{(m-i)-\text { terms }}) \\
= & T(x, \ldots, x)+m T(x, \ldots, x, y)+T(y, \ldots, y) \\
& +\sum_{i=1}^{m-2}\binom{m}{i} T(\underbrace{x, \ldots, x}_{i-\text { terms }}, \underbrace{y, \ldots, y}_{(m-i)-\text { terms }})
\end{aligned}
$$

Therefore for each $x, y \in X$, we have

$$
\begin{align*}
\mathcal{M}_{m} & (x+y)-\mathcal{M}_{m}(x)-\mathcal{M}_{m}(y) \\
& =\frac{1}{m!}(m T(x, \ldots, x, y)+\sum_{i=1}^{m-2}\binom{m}{i} T(\underbrace{x, \ldots, x}_{i-\text { terms }}, \underbrace{y, \ldots, y}_{(m-i)-\text { terms }})) \tag{23}\\
& =\mathcal{M}(x, y)+\frac{1}{m!} \sum_{i=1}^{m-2}\binom{m}{i} T(\underbrace{x, \ldots, x}_{i-\text { terms }}, \underbrace{y, \ldots, y}_{(m-i)-\text { terms }}),
\end{align*}
$$

for each $x, y \in X$. Since T is m-additive, for each $1 \leq i \leq m-2$,

$$
T(\underbrace{x, \ldots, x}_{i-\text { terms }}, \underbrace{y, \ldots, y}_{(m-i)-\text { terms }})
$$

defines a monomial of degree i in x. Therefore, the last term in (23) is a polynomial of degree at most $m-2$, which vanishes at $x=0$. Let

$$
h(x, y)=\frac{1}{m!} \sum_{i=1}^{m-2}\binom{m}{i} T(\underbrace{x, \ldots, x}_{i-\text { terms }}, \underbrace{y, \ldots, y}_{(m-i)-\text { terms }}) \quad(x, y \in X) .
$$

Then for each $x, y \in X$, we have

$$
\begin{align*}
\mathcal{M}_{m}(x+y)-\mathcal{M}_{m}(x)-\mathcal{M}_{m}(y)-\mathcal{M}(x, y)-\mathcal{Q}(x, y) & =h(x, y)-\mathcal{Q}(x, y) \\
& =\mathcal{Q}^{\prime}(x, y)+\mathcal{M}^{\prime}(x, y) \tag{24}
\end{align*}
$$

where $\mathcal{Q}^{\prime}(x, y)$ is a polynomial of degree $m-3$ in x and $\mathcal{M}^{\prime}(x, y)$ is a monomial of degree $m-2$ in x. Therefore, the Lemma follows from (11), (22) and (24).

Now, we are ready to state the main result of this paper.
Theorem 3. Let $f: X \rightarrow Y$ for some $m>1$ satisfy

$$
\begin{equation*}
\left\|\Delta_{x_{1}, \ldots, x_{m}} f(0)\right\|_{Y} \leq \varphi_{m}\left(\left\|x_{1}\right\|_{X}, \ldots,\left\|x_{m}\right\|_{X}\right) \quad\left(x_{1}, \ldots, x_{m} \in X\right) \tag{25}
\end{equation*}
$$

Then there exists a unique polynomial p_{m-1} of degree at most $m-1$ such that

$$
\begin{equation*}
\left\|f(x)-p_{m-1}(x)\right\|_{Y} \leq|k|^{-(m-1) p} \varphi_{m}\left(\|x\|_{X}, \ldots,\|x\|_{X}\right) \quad(x \in X) \tag{26}
\end{equation*}
$$

The polynomial p_{m-1} is given by the formula

$$
p_{m-1}(x)=f(0)+\mathcal{M}_{1}(x)+\cdots+\mathcal{M}_{m-1}(x) \quad(x \in X)
$$

where each \mathcal{M}_{i} is either a monomial of degree i or identically zero $(1 \leq i \leq m-1)$. Finally, for each $x \in X$,

$$
\mathcal{M}_{m-1}(x)=\frac{1}{(m-1)!} \lim _{n \rightarrow \infty} k^{n(m-1)} \Delta_{k^{-n} x}^{m-1} f(0)
$$

and for each $1 \leq i<m-1$,

$$
\begin{equation*}
\mathcal{M}_{i}(x)=\frac{1}{i!} \lim _{n \rightarrow \infty} k^{i}\left\{\Delta_{k^{-n} x}^{i} f(0)-\sum_{j=i+1}^{m-1} \Delta_{k^{-n} x}^{j} \mathcal{M}_{j}(0)\right\} \quad(x \in X) \tag{27}
\end{equation*}
$$

Proof. We first prove uniqueness assertion of the theorem. Let p_{m-1} and p_{m-1}^{\prime} be two polynomials such that for each $x \in X$

$$
\begin{aligned}
\left\|f(x)-f(0)-p_{m-1}(x)\right\| & \leq \varphi_{m}\left(\|x\|_{X}, \ldots,\|x\|_{X}\right) \\
p_{m-1}(x) & =f(0)+\mathcal{M}_{1}(x)+\cdots+\mathcal{M}_{m-1}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|f(x)-f(0)-p_{m-1}^{\prime}(x)\right\|_{Y} & \leq \varphi_{m}\left(\|x\|_{X}, \ldots,\|x\|_{X}\right) \\
p_{m-1}^{\prime}(x) & =f(0)+\mathcal{M}_{1}^{\prime}(x)+\cdots+\mathcal{M}_{m-1}^{\prime}(x)
\end{aligned}
$$

where \mathcal{M}_{i} and \mathcal{M}_{i}^{\prime} are either a monomial of degree i or identically zero $(1 \leq i \leq$ $m-1)$. We have

$$
\begin{equation*}
p_{m-1}(x)-p_{m-1}^{\prime}(x)=\mathcal{M}_{1}(x)-\mathcal{M}_{1}^{\prime}(x)+\cdots+\mathcal{M}_{m-1}(x)-\mathcal{M}_{m-1}^{\prime}(x) \quad(x \in X) \tag{28}
\end{equation*}
$$

Let $p_{m-1} \neq p_{m-1}^{\prime}$ and i be the greatest index for which $\mathcal{M}_{i} \neq \mathcal{M}_{i}^{\prime}, 1 \leq i \leq m-1$. By the ultrametric inequality for each $x \in X$, we have

$$
\begin{align*}
|k|^{-(m-2) p} \varphi_{m-1}\left(\|x\|_{X}, \ldots,\|x\|_{X}\right) \geq & \left\|p_{m}(x)-p_{m}^{\prime}(x)\right\|_{Y}=\left\|\sum_{j=1}^{i} \mathcal{M}_{j}(x)-\mathcal{M}_{j}^{\prime}(x)\right\|_{Y} \\
\geq & \left\|\mathcal{M}_{i}(x)-\mathcal{M}_{i}^{\prime}(x)\right\|_{Y} \\
& -\max _{1 \leq j \leq i-1}\left\|\mathcal{M}_{j}(x)-\mathcal{M}_{j}^{\prime}(x)\right\|_{Y} \quad(x \in X) .(29) \tag{29}
\end{align*}
$$

By replacing x by $k^{-n} x$ in (29), we obtain

$$
\begin{align*}
& |k|^{-n p-(m-2) p} \varphi_{m-1}\left(\|x\|_{X}, \ldots,\|x\|_{X}\right) \\
& \geq \geq|k|^{-(m-2) p} \varphi_{m-1}\left(|k|^{-n}\|x\|_{X}, \ldots,|k|^{-n}\|x\|_{X}\right) \\
& \geq \tag{30}\\
& \quad|k|^{-n i}\left\|\mathcal{M}_{i}(x)-\mathcal{M}_{i}^{\prime}(x)\right\|_{Y} \\
& \quad \max _{1 \leq j \leq i-1}|k|^{-n j}\left\|\mathcal{M}_{j}(x)-\mathcal{M}_{j}^{\prime}(x)\right\|_{Y}(x \in X)
\end{align*}
$$

It follows from (30) that for each $x \in X$,

$$
\begin{aligned}
\left\|\mathcal{M}_{i}(x)-\mathcal{M}_{i}^{\prime}(x)\right\|_{Y} \leq & |k|^{n(i-p)-(m-2) p} \mid \varphi_{m-1}\left(\|x\|_{X}, \ldots,\|x\|_{X}\right) \\
& +\max _{1 \leq j \leq i-1}|k|^{n(i-j)}\left\|\mathcal{M}_{j}(x)-\mathcal{M}_{j}^{\prime}(x)\right\|_{Y}
\end{aligned}
$$

Since $|k|<1$ and $i>\max \{p, j ; 1 \leq j \leq i-1\}$, the right-hand side of the above inequality tends to zero as $n \rightarrow \infty$. It follows that $\mathcal{M}_{i}(x)=\mathcal{M}_{i}^{\prime}(x)$ for each $x \in X$. This contradiction proves the uniqueness assertion of the theorem.

Next, we will prove the existence of p_{m-1} by induction on m. For $m=2$, the result follows from Theorem 1. Let the theorem hold for some $m \geq 2$ and $f: X \rightarrow Y$ satisfy the inequality

$$
\begin{equation*}
\left\|\Delta_{x_{1}, \ldots, x_{m+1}}^{m+1} f(0)\right\|_{Y} \leq \varphi_{m+1}\left(\left\|x_{1}\right\|_{X}, \ldots,\left\|x_{m+1}\right\|_{X}\right) \quad(x \in X) \tag{31}
\end{equation*}
$$

Fix some $y \in X$, and let

$$
\varphi_{m}\left(x_{1}, \ldots, x_{m}\right)=\varphi_{m+1}\left(\left\|x_{1}\right\|_{X}, \ldots,\left\|x_{m}\right\|_{X},\|y\|_{X}\right) \text { for each } x_{1}, \ldots, x_{m} \in X
$$

Then we have

$$
\begin{equation*}
\left\|\Delta_{x_{1}, \ldots, x_{m}}^{m}\left(\Delta_{y} f\right)(0)\right\|_{Y} \leq \varphi_{m}\left(\left\|x_{1}\right\|_{X}, \ldots,\left\|x_{m}\right\|_{X}\right) \quad\left(x_{1}, \ldots, x_{m} \in X\right) \tag{32}
\end{equation*}
$$

By our hypothesis, there exists a polynomial $p_{m-1}(x, y)$ of degree $m-1$ in x on X such that

$$
\begin{equation*}
\left\|\Delta_{y} f(x)-p_{m-1}(x, y)\right\|_{Y} \leq|k|^{-p(m-1)} \varphi_{m+1}\left(\|x\|_{X}, \ldots,\|x\|_{X},\|y\|_{X}\right) \quad(x \in X) . \tag{33}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
p_{m-1}(x, y)=\Delta_{y} f(0)+\mathcal{Q}(x, y)+\mathcal{M}(x, y) \quad(x \in X) \tag{34}
\end{equation*}
$$

where $\mathcal{Q}(x, y)$ is a polynomial of degree $m-2$ in $x, \mathcal{Q}(0, y)=0$ and $\mathcal{M}(x, y)$ is a monomial of degree $m-1$ in x. Define

$$
\varphi_{2}\left(\|x\|_{X},\|y\|_{X}\right)=|k|^{-p(m-1)} \varphi_{m+1}\left(\|x\|_{X}, \ldots,\|x\|_{X},\|y\|_{X}\right) \quad(x, y \in X)
$$

By substituting (34) in (33), for each $x, y \in X$, we obtain

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)+f(0)-\mathcal{Q}(x, y)-\mathcal{M}(x, y)\|_{Y} \leq \varphi_{2}\left(\|x\|_{X},\|y\|_{X}\right) \tag{35}
\end{equation*}
$$

The inequality (35) shows that the conditions of Lemma 1 hold. Therefore

$$
\mathcal{M}_{m}(x)=\frac{1}{m!} \lim _{n \rightarrow \infty} k^{n m} \Delta_{k^{-n} x^{n}} f(0) \quad(x \in X)
$$

is either zero or a monomial of degree m. Thanks to Lemma 2, $f_{1}(x)=f(x)-\mathcal{M}_{m}(x)$ defines a mapping from X to Y which satisfies the conditions of Lemma 1 for $m-1$. Therefore

$$
\begin{aligned}
\mathcal{M}_{m-1}(x) & =\frac{1}{(m-1)!} \lim _{n \rightarrow \infty} k^{(m-1) n} \Delta_{k^{-n} x}^{m-1} f_{1}(0) \\
& =\frac{1}{(m-1)!} \lim _{n \rightarrow \infty} k^{(m-1) n}\left(\Delta_{k^{-n} x}^{m-1} f(0)-\Delta_{k^{-n} x}^{m-1} \mathcal{M}_{m}(0)\right) \quad(x \in X)
\end{aligned}
$$

defines a mapping from X to Y which is either identically zero or a monomial of degree $m-1$. By continuing this manner, we get to $f_{m-2}: X \rightarrow Y$, which is defined by

$$
f_{m-2}(x)=f(x)-\mathcal{M}_{3}(x)-\cdots-\mathcal{M}_{m}(x) \quad(x \in X)
$$

where \mathcal{M}_{i} is given by (27) and

$$
\begin{aligned}
& \left\|f_{m-2}(x+y)-f_{m-2}(x)-f_{m-2}(y)+f_{m-2}(0)-\mathcal{T}(x, y)\right\|_{Y} \\
& \quad \leq \varphi_{2}\left(\|x\|_{X},\|y\|_{X}\right) \quad(x, y \in X)
\end{aligned}
$$

where either $\mathcal{T}(x, y)=0$ for each $x, y \in X$ or $\mathcal{T}(x, y)$ defines a monomial of degree one in x. Apply Lemma 1 once more and put $\mathcal{M}_{2}(x)=\frac{1}{2} \mathcal{T}(x, x), x \in X$, then

$$
\mathcal{M}_{2}(x)=\frac{1}{2!} \lim _{n \rightarrow \infty} k^{2 n} \Delta_{k^{-n} x}^{2} f_{m-2}(0) \quad(x \in X)
$$

Define $f_{m-1}(x)=f_{m-2}(x)-\mathcal{M}_{2}(x)=f(x)-\sum_{i=2}^{m} \mathcal{M}_{i}(x)$ for each $x \in X$. By applying Lemma 2 once again, we see that

$$
\begin{align*}
& \left\|f_{m-1}(x+y)-f_{m-1}(x)-f_{m-1}(y)+f_{m-1}(0)\right\|_{Y} \\
& \quad \leq \varphi_{2}\left(\|x\|_{X},\|y\|_{X}\right) \quad(x, y \in X) . \tag{36}
\end{align*}
$$

Thanks to Theorem 1, there exists an additive (monomial of degree one) \mathcal{M}_{1} : $X \rightarrow Y$ such that for each $x \in X$

$$
\begin{aligned}
\left\|f_{m-1}(x)-f_{m-1}(0)-\mathcal{M}_{1}(x)\right\|_{Y} & \leq|k|^{-p} \varphi_{2}\left(\|x\|_{X},\|x\|_{X}\right) \\
& =|k|^{-m p} \varphi_{m+1}\left(\|x\|_{X}, \ldots,\|x\|_{X}\right)
\end{aligned}
$$

Since $f_{m-1}(0)=f(0)$, we have

$$
\left\|f(x)-p_{m}(x)\right\|_{Y} \leq|k|^{-m p} \varphi_{m+1}\left(\|x\|_{X}, \ldots,\|x\|_{X}\right) \quad(x \in X)
$$

where $p_{m}(x)=f(0)+\mathcal{M}_{1}(x)+\cdots+\mathcal{M}_{m}(x)$ for each $x \in X$. This proves our theorem with m replaced by $m+1$. Thus by induction on m, the existence assertion of our theorem has been proved. This completes the proof of the theorem.

3. Applications

In [11], D. H. Hyers proved the following.
Theorem 4. Let X be a vector space over the rational numbers, S be a convex cone in X and B be Banach space. If β is fixed positive number and if $f: S \rightarrow B$ satisfies the condition

$$
\begin{equation*}
\left\|\Delta_{h}^{2} f(x)\right\|_{Y} \leq \beta \quad(x, h \in S) \tag{37}
\end{equation*}
$$

then there exists an additive mapping $T: S \rightarrow B$ such that $\|f(x)-f(0)-T(x)\|_{Y} \leq \beta$ for all $x \in S$. The function T is given by the formula $T(x)=\lim _{n \rightarrow \infty} n^{-1} f(n x)$.

The following example shows that the theorem of Hyers is not true in nonArchimedean normed spaces.
Example 1. Let $p>2$ be a prime number. For any nonzero rational number $a=p^{r} \frac{m}{n}$ such that m and n are coprime to the prime number p, define the p adic absolute value $|a|_{p}=p^{-r}$. Then $|\cdot|$ is a non-Archimedean norm on \mathbb{Q}. The completion of \mathbb{Q} with respect to $|\cdot|_{p}$ is denoted by \mathbb{Q}_{p} and is called the p-adic number field [9]. Define $f: \mathbb{Q}_{p} \rightarrow \mathbb{Q}_{p}$ by $f(x)=x+p$ for each $x \in \mathbb{Q}_{p}$. Then $\Delta_{h}^{2} f(x)=0$. Therefore (37) holds. However, $\lim _{n \rightarrow \infty} n^{-1} f(n x)$ is not Cauchy. In fact for the subsequence $\left\{p^{n}\right\}$ of $\{n\}$, we have $p^{-n} f\left(p^{n} x\right)=x+p^{-n+1}$. Therefore

$$
\begin{aligned}
\left|p^{-n} f\left(p^{n} x\right)-p^{-(n+1)} f\left(p^{n+1} x\right)\right|_{p} & =\left|x+p^{-(n-1)}-x-p^{-n}\right|_{p} \\
& =\left|p^{-n}\right|_{p}|p-1|_{p}=p^{n}
\end{aligned}
$$

Since the right-hand side of the above equation tends to infinity as $n \rightarrow \infty$, the subsequence $\left\{p^{-n} f\left(p^{n} x\right)\right\}$ is not Cauchy. Hence $\lim _{n \rightarrow \infty} n^{-1} f(n x)$ in $\left(\mathbb{Q}_{p},|\cdot|_{p}\right)$ does not exist.

Here we give some applications of Theorem 3.
Corollary 2. Let $f: X \rightarrow Y$ for some $0 \leq p<1$ and $\varepsilon>0$ satisfy the inequality

$$
\left\|\Delta_{x_{1}, \ldots, x_{m}}^{m} f(0)\right\|_{Y} \leq \varepsilon \max \left\{\left\|x_{1}\right\|_{X}^{p}, \ldots,\left\|x_{m}\right\|_{X}^{p}\right\} \quad\left(x_{1}, \ldots, x_{m} \in X\right)
$$

Then there exists a unique polynomial p_{m-1} of degree $m-1$ such that

$$
\left\|f(x)-p_{m-1}(x)\right\|_{Y} \leq \varepsilon|k|^{-(m-1) p}\|x\|_{X}^{p} \quad(x \in X) .
$$

Proof. Take

$$
\varphi_{m}\left(\left\|x_{1}\right\|_{X}, \ldots,\left\|x_{m}\right\|_{X}\right)=\varepsilon \max \left\{\left\|x_{1}\right\|_{X}^{p}, \ldots,\left\|x_{m}\right\|_{X}^{p}\right\} \quad\left(x_{1}, \ldots, x_{m} \in X\right)
$$

in Theorem 3.
The following result can be considered as a generalization of the main result in [19].

Corollary 3. Let $f: X \rightarrow Y$ for some $0 \leq p<1$ and $\varepsilon>0$ satisfy the inequality

$$
\left\|\Delta_{x_{1}, \ldots, x_{m}}^{m} f(0)\right\|_{Y} \leq \varepsilon \sum_{i=1}^{m}\left\|x_{i}\right\|_{X}^{p} \quad\left(x_{1}, \ldots, x_{m} \in X\right)
$$

Then there exists a unique polynomial p_{m-1} of degree $m-1$ such that

$$
\left\|f(x)-p_{m-1}(x)\right\|_{Y} \leq m \varepsilon|k|^{-(m-1) p}\|x\|_{X}^{p} \quad(x \in X)
$$

Proof. Apply Theorem 3 for

$$
\varphi_{m}\left(\left\|x_{1}\right\|_{X}, \ldots,\left\|x_{m}\right\|_{X}\right)=\varepsilon \sum_{i=1}^{m}\left\|x_{i}\right\|_{X}^{p} \quad\left(x_{1}, \ldots, x_{m} \in X\right)
$$

Acknowledgement

The author would like to thank two anonymous reviewers for their useful comments and suggestions which helped to improve the quality of the paper.

References

[1] J. M. Almira, A note on classical and p-adic Fréchet functional equations, preprint, available at http://arxiv.org/pdf/1104.5336.
[2] J. M. Almira, A. L. López-Moreno, On solutions of Fréchet functional equation, J. Math. Anal. Appl. 332(2007), 1119-1133.
[3] L. M. Arriola, W. A. Beyer, Stability of the Cauchy functional equation over p-adic fields, Real Anal. Exchange 31(2005/2006), 125-132.
[4] C. Borelli, C. Invernizzi, Sulla stabilità dell'equazione funzionale dei polinomi, Rend. Sem. Mat. Univ. Pol. Torino 57(1999), 199-210.
[5] A. L. Cauchy, Cours d'analyse de l'Ecole polytechnique, Analyse Algébrique, Paris, 1821.
[6] S. Czerwik, Functional equations and inequalities in several variables, World Scientific Publishing Co. Inc., River Edge, New York, 2002.
[7] M. Fréchet, Une définition fonctionnelle des polynomes, Nouv. Ann. Math. 9(1909), 145-162.
[8] A. Gilányi, On the stability of monomial functional equations, Publ. Math. Debrecen 56(2000), 201-212.
[9] K. Hensel, Über eine neue Begrundung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein 6(1897), 83-88.
[10] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27(1941), 222-224.
[11] D. H. Hyers, Transformations with bounded m-th differences, Pacific J. Math. 11(1961), 591-602.
[12] Z. KAISER, On stability of the monomial functional equation in normed spaces over fields with valuation J. Math. Appl. 322(2006), 1188-1198.
[13] S. Mazur, W. Orlicz, Grundlegende Eigenschaften der polynomischen Operationen, Zweite Mitteilung. Studia Math. 5(1934), 179-189.
[14] M. A. Mckiernan, On vanishing n-th ordered differences and Hamel bases, Ann. Pol. Math. 19(1967), 331-336.
[15] A. K. Mirmostafaee, Approximately additive mappings in non-Archimedean normed spaces, Bull. Korean Math. Soc. 46(2009), 387-400.
[16] A. K. Mirmostafaee, Stability of quartic mappings in non-Archimedean normed spaces, Kyungpook Math. J. 49(2009), 289-297.
[17] A. K. Mirmostafaee, Stability of monomial functional equation in quasi normed spaces, Bull. Korean Math. Soc. 47(2010), 777-785.
[18] M. S. Moslehian, T. M. Rassias, Stability of functional equations in non Archimedean spaces, Appl. Anal. Discrete Math. 1(2007), 325-334.
[19] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72(1978), 297-300.
[20] A. M. Robert, A course in p-adic analysis, Graduate Texts in Mathematics, Springer Verlag, New York, 2000.
[21] S. M. Ulam, Problems in Modern Mathematics (Chapter VI, Some Questions in Analysis: §1, Stability), Science Editions, John Wiley \& Sons Inc., New York, 1964.
[22] D. Wolna, The stability of monomials on a restricted domain, Aequationes Math. 72(2006), 100-109.
[23] B. Xu, W. Zhang, Construction of continuous solutions and stability for the polynomial-like iterative equation, J. Math. Anal. Appl. 325(2007), 1160-1170.

[^0]: *This work was supported by Ferdowsi University of Mashhad, No. MP89186MIM.
 ${ }^{\dagger}$ Corresponding author. Email address: mirmostafaei@ferdowsi.um.ac.ir (A. K. Mirmostafaee)

