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Abstract. Robust optimization is a rapidly developing methodology for handling opti-
mization problems affected by non-stochastic uncertain-but-bounded data perturbations.
In this paper, we consider the weighted least squares problems where the coefficient ma-
trices and vector belong to different uncertain bounded sets. We introduce the robust
counterparts of these problems and reformulate them as the tractable convex optimization
problems. Two kinds of approaches for solving the robust counterpart of weighted least
squares problems with ellipsoid uncertainty sets are also given.
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1. Introduction

Many real-world optimization problems involve input data that is noisy or uncer-
tain, due to measurement or modelling errors, or simply the unavailability of the
information at the time of decision. So addressing data uncertainty in mathematical
programming models has long been recognized as a central problem in optimization.

In recent years, a body of literature is developing under the name of robust
optimization which is based on a description of uncertainty sets, as opposed to
probability distribution. The uncertain parameters are only known to belong to
known sets, and one associates with the uncertain problem its robust counterpart
where the constraints are enforced for every possible value of the parameters within
their prescribed sets; under such constraints, the worst-case value of the cost function
is then minimized to obtain a robust solution of the problem. Mulvey et al. [23]
presented an approach that integrates goal programming formulations with scenario-
based description of the problem data. Soyster, in the early 1970s, [25] proposed
a linear optimization model to construct a solution that is feasible for all input
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data such that each uncertain input data can take any value from an interval. This
approach, however, tends to find solutions that are over-conservative. Ben-Tal and
Nemirovski [2, 3, 4, 5, 6, 7], Ben-Tal et al. [8], El-Ghaoui and Lebret [15] and El-
Ghaoui et al. [16] addressed the over-conservatism of robust solutions by allowing the
uncertainty sets for the data to be ellipsoids, and proposed some efficient algorithms
to solve convex optimization problems under data uncertainty. Bertsimas and Sim
[9, 10, 11] proposed a different approach to control the level of conservatism in the
solution that has the advantage that leads to a linear optimization model. Iyengar
[20] and Iyengar and Erdogan [21] studied the problem with chance (probabilistic)
constraints which are ambiguous in the sense that the underlying distribution of
the random parameters is uncertain. They used a robust sampled problem to get
the good approximations to the ambiguous chance constraints. Recently, Yan et
al. [28] treated the split feasibility problem with the uncertain linear operator and
reformulated it as a tractable convex optimization problem. Very recently, Zhao et al.
[29] considered the uncertain extended weighted Steiner problem and reformulated
it as a semidefinite program under the ellipsoidal uncertainty.

There exist many references on the least squares problem. To avoid trying to
list all at the expense of omitting some we adopt the excellent book by Bjorck
[12] as our desktop reference. The problem of uncertainty in (A, b) is addressed by
using several remedies, such as total least squares and variants thereof, Tikhonov
regularization, iterated regularization, L-curve analysis and so on. The interested
reader is directed to Section 7 of Chapter 2 and Section 6 of Chapter 4 in [12]. An
important reference on total least squares and its applications in engineering is by
Van Huffel and Vandevelle [26]. Ample information on regularization methods can
be found in the book by Hansen [19]. For recent related articles on least squares
problems under uncertainty, the reader is directed to [13, 14, 27] as well. Another
important line of research dealing with uncertainty in linear systems of equations
summarized by Kreinovich et al. [22] is the subject of interval computations, with
an emphasis on complexity issues.

It has been well recognized that vector optimization has its roots in economic
modeling and general equilibrium theory. Recently, Bao and Mordukhovich [1]
and Habte and Mordukhovich [18] considered the general nonconvex models of wel-
fare economics involving both private and public goods with finite-dimensional and
infinite-dimensional spaces of commodities. Based on advanced tools of variational
analysis and generalized differentiation, they established appropriate approximate
and exact versions of the extended second welfare theorem for Pareto, weak Pareto,
and strong Pareto optimal allocations in both marginal price and decentralized price
forms.

Motivated by the works mentioned above, in this paper, we use robust method-
ology to solve the weighted least squares problem (for short, WLSP), in which the
coefficient matrices A; and b; belong to uncertainty sets. The rest of paper is orga-
nized as follows. In Section 2, we introduce the robust counterpart of WLSP (for
short, RWLSP) with uncertainty sets. In Section 3, we illustrate the general uncer-
tainty sets and show that RWLSP with general uncertainty sets is equivalent to a
convex programming problem. In Section 4, we use two kinds of approaches to solve
RWLSP with ellipsoid uncertainty sets.
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2. Preliminaries

Throughout this paper, we need the following notations. For a vector z, ||z|| denotes
the 2-norm. For a matrix A € R™*" ||All2 denotes the spectral norm which is
induced by 2-norm in vector space. |A||r denotes the Frobenious norm and

UEC(A) = (a117“' s Am1,A12,° " QM2 , Qln, " 5amn)

denotes the matrix-vector. For given x € R™ and z € R™, the notion x ® y refers to
the Kronecker product with x and y, i.e.,

Tz = (37121,"' y L1Rm,y L2215+ s L28m,y ", Tnil, " 7xnzm)'

In this section, we give an optimization reformulation of Weighted Least Square
problem (WLSP),

min Y w;l| Az — bill, (1)

where A; € R™*". b, € R™,i=1,2,--- N and w;,i = 1,--- , N are fixed positive
weights. When the data (A4;,b;) is uncertain and is only known to belong to some
uncertainty set U;, we speak about the following uncertain weighted least square
problem (UWLSP),

N
i il A — b, (A, by iy i=1,---,N}. 2
xfggln{;wﬂ z=bill, ( ) €U, i } (2)

The robust counterpart of (2) is defined to be the following optimization problem
(RWLSP)

7 A _b Awbz () -:1a"'7N7 3
gg{ArI;’a;é?;wII @ —bill,  (Aiby) €Uy, } (3)

An optimal solution of (3) is called a robust optimal solution of (2). The importance
of these solutions is motivated and illustrated in [3, 4, 5, 6, 7, 8], of course, a
crucial issue regarding the usefulness and applicability of the robust optimization
methodology is the extent of the computational effort needed to solve problems such
as (RWLSP). The goal of this paper is to reformulate the robust counterparts of
these problems as the tractable convex optimization problems.

3. General uncertainty

In this section, we consider the general uncertainty in matrices (4;,b;), i.e., (A;, b;)
belong to the following sets

U = {(Ai,b;) = (Ao, bio) + (AA;, Aby)|[[(AA;, Aby)|| » < p},

where ¢ = 1,--- N, (A0,bip) are the nominal values of WLSP, (AA;, Ab;) are
unknown-but-bounded matrices and p is a given positive constant.
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For x fixed, we define the worst-case residual of RWLSP with U} as

N
i (Ai b, p, ) = max w;i([[(Aio + AA;)x — (bio + Ab)|]),
2 p) H(AAi,Abnupng (A0 )z — (i iy

i=1

where i =1,--- | N.

For every p > 0, it is easy to see that 7} (A;, b;, p,x) = pr}(A;/p,bi/p,1,z). Thus,
we take p = 1 in what follows unless otherwise stated.

From (3), we know that RWLSP with 2} is equivalent to the following reformu-

lation v
i ([ (Aio + AA)z — (big + Ab)||). 4
R oSy 5, 2 (10 A0 = o 800D (@)

Theorem 1. When p = 1, RWLSP (4) is equivalent to the following convex pro-
gramming problem:

N
min »  wi([|Aioz — bioll + /]2 + 1). (5)
i=1

TER™

Proof. It follows from the definition of r1(A4;,b;) that

N
T-l Ai,bi, ].,:E = wj Az + AAZ x — (bo + Abl
i ( ) }fl\pglg [(Aio ) (bio i

ma.
[[(AA;,Ab;)

N
m. T
= ax w; max 2 [(Azox — big) + Az — Ab;
H(AA,;,Ab,;)”FSlz s [(Aio 0) + (A Ab;)]

1=

N
T T
T laAAb) et ;w mile (Ao —bo) + 27 (Adi = Ab)
N
< max w; max ZT(AZ'(){,C — bio)
laanAb) <1 2= HiE
N
T
t R < 2w joax = (Adiz = Ab)

1=

N N
> will Air = bioll + Y wi/ x> + 1.
=1 =1

Moreover, choose A = (AA;, Ab;) as

A= L(H,l),
Vizl?+1

A;ox—b; .
2o =  Taoasir i Awo® 7 bio,
0= .
q, otherwise,

where
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with |lg]] = 1. Then we can conclude that |A|lr = ||A|| =1,]|z]| =1 and

N N
Zwizg(Aiox — sz) + szzg(AAl"E — Abz)

i=1
= ZleA 0T — biol| + Zwl l|z]|Z +
This shows the equivalence between (4) and (5). This completes the proof. O

Remark 1. When N =1, Theorem 1 is reduced to Theorem 3.1 of El-Ghaoui and
Lebret [15].

4. Ellipsoid uncertainty

In this section, we will consider RWLSP with the ellipsoid uncertainty sets as follows:

L
UP = {(Ai,bi) = (Aio,bio) + D (Air, b )ul || < p}, (6)
=1

where i = 1,--+ | N, (A;0,bi0) are the nominal values of the WLSP, (A4;, b;;) are the
given directions of perturbation, u; are the uncertain variables with ||Ju|| < p. When
p>0,let v =1u/p, then ||v]| <1, so we take p = 1 in what follows unless otherwise
stated.

Next, we will use two kinds of new approaches to solve RWLSP with ellipsoid
uncertainty sets.

4.1. Optimizing the worst-case residual

For z fixed, we define the worst-case residual of RWLSP with U? as

H l<ps

L L
77 (Ai, bi, p,x) = max Z%H w0 + Y Agup)z — (bio + > _ bau)|
=1 =1

where i = 1,--- , N. Then RWLSP with &2 is equivalent to the following reformu-
lation

min max szH 0T + Z Ajup)z — (bio + Z biruy)|| (7)

2€R™ fjull<p 4

Theorem 2. When p = 1, RWLSP (7) is equivalent to the following convex pro-
gramming problem

N
Jnin iz:;wi(HAiOiU — biol| + [|Ai[z]||F) ®)

where AZ[.’E] = (A11$ - bil,Aigx - biQ7 ce 7AiLx - sz) € .Rm><L7 1= ]., ce 7]\/v.
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Proof. We first prove that

N

max Y w; max 27 (Aigz — bio) + (u® 2) vec(A;[z
lull <1< Hzngl[ (Aio 0) + ( ) (Ail=])]

—sz”Asz_ zO||+sz||A HF

In fact, we have

N
T T
max w; max Ajor — big) + (u ® 2)" vec(A;[x
lull<1 & |\<1[ (Aio o) + (u® 2) vee(Aifz])]
N
< max w; max 27 (Ajpx — bip) + max w; max [(u® 2)Tvee(A; [z
fuli<i & j=li<i (Aiow = bio qu mmax [(u ® 2) vee(Aifz])]

- Z%HAmx — biol| + ZwlllA Il p-

Moreover, if we take

Asoz—big
. Ty if Ao 7 bio,
0= : .
q, otherwise,

with [|¢]] =1, and

x T .
uo = { At 20, if | Ailall 0,

0, otherwise,
then we conclude that ||zo|| = 1, |Juol| < 1 and
N N
D wizd (Aigz—bio)+Y_ wi(ue®z) "vec(A szHAzO-T bzoll+zwz|\A 1IF2
i=1 i=1

Hence the desired equation holds.
Next, from the definition of ro(A;, b;, 1, ), we have

(A bi,1,x) = max ZmH 10+ZA7ZUI T — 10+Zbllul

flull<1

L
= max E w; max 27 ((Aox — bio) + E Ajx —by)uyg)
\
=1

||uH<1 |z]|<1
L
T
= max w; max Aoz — big) + 27 i1 — by )ug)
fuli<1 &=z (=" Aoz = buo) l; s = bujuu)
N L
= max Y w; max (27 (Ajpx — bio) + Z(ZT(Ailx —bi)uy))

lul<t &= jzli<1

1
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N
= m w; max ZT(AZ'QIC — bio)

= ax
lull <1 4= llzll<1
=1

uy
+2T (A — bit, Aipz — big, -+, Ajpz — bip) | - )

ur,
N u
= max w; max | 27 (Ajox — big) + 2T Alx] | :
full<1 & zli<1 :
ur,
N
T T
= max w; max (z* (Ajpx — big) + (u ® 2)" vec(A;|x
e D s (4 (o — )+ () et A )
N N
= > willAiox = bioll + Y will Asfa]|| -
i=1 i=1
This shows the equivalence between (7) and (8). This completes the proof. O

4.2. Inner approximation

It is clear that the RWLSP (3) with uncertainty sets U2 is equivalent to the following
optimization problem:

N
min{T D> will A = bil| <7 (Agb) €UP, i=1,2,- N} (9)
T,

i=1
By introducing the variables y; with ¢ = 1,--- | N, it is easy to see that problem (9)
rewritten equivalently as the following problem:
min 7
ZT,Y,T
sit. 1Ty <7,y >0,
i = Yi/wi,
[Aiz = bs[| < Aq, (10)
V(A b)) €UP, i=1,--- N,
where 17 = (1,--- ,1)T and y = (y1, - - yn)-
For a perturbation set as given in (6), the verification of (10) is an NP-hard
problem (see [6]). Therefore, we shall build an inner approximation of the set in

problem (10). To this end, we will use the ideas of semidefinite relaxation (Theorem 3
below). We need the following useful lemmas.

Lemma 1 (see [3]). Let P and Q be two symmetric matrices such that there exists
20 satisfying z& Pzg > 0. Then the implication

2TPz2>0=2TQz>0

holds true if and only if there exists A > 0 such that Q > \P.
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B CT
=(2%)
be a symmetric matriz with k x k block B and I x1 block D. Assume that B is positive

definite. Then A is positive (semi)definite if and only if the matriz D — CB~1CT is
positive (semi)definite (this matric is called the Schur complement of B in A).

Lemma 2 (see [6]). Let

Theorem 3. When p =1, WRMLSP (10) corresponding to the uncertainty sets U?
1s equivalent to the following semidefinite programming:

min T

wrt € R A, , AN ER, 1, ,un €ER
subject to 1Ty <7, wy; >0, X\ =y;/w; and

/\i — M4 0 0 e 0 (AZ()LL' — bio)T
0 i 0 E 0 (Apz —bn)T
0 0 i e 0 (Aioz — bin) ™
' _ >0 (11)
0 0 0 a i (Airz — b;p)”
Aio.’L‘ — biO Ailx — bil AZ'QII} — big N AiL.T — biL )\iI

fori=1,--- N.
Proof. We consider every uncertain constraint of (10)

It follows that in order to understand what is, analytically, WRMLSP, it suffices to
understand what is the robust version of a single constraint of WRMLSP; to simplify
notation, we drop the index i, so that the robust constraint in question becomes

Az — b <X, V(A,b) €U (12)
L

u* = {(Avb) = (Ao,b0) + Y _(Ai,b)uy | Jlul| < 1}~
=1

Let us set
alz] = Aoz — by, Alz] = (Ayz — by, Agx — bo,--- , Az — by).
In the above notation the robust constraint (12) becomes the following constraints
A =0, (13)
and

lajz] + Alz]ul|®* < A2, Vu: [jul| < 1. (14)
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The constraint (14) is equivalent to the constraint
V((t,u), uTu <t?) : ||afz]t + Alz]ul|* < N2

In other words, a pair (z, ) satisfies (13) and (14) if and only if A is nonnegative,
and nonnegativity of quadratic form (> — u’u) of variables ¢ and u implies the
nonnegativity of quadratic form

N2 — |a[z]t + Alz]ul)?

of the same variables. By Lemma 1, the indicated property is equivalent to the
existence of nonnegative v such that the quadratic form

U(t,u) = N2 — |alz]t + Alz]ul|® — v(t* — uTw)

is positive semidefinite. We claim that v can be represented as puA with some non-
negative p and p = 0 in the case of A = 0. Indeed, our claim is evident if A > 0. In
the case of A = 0, the form W(¢,u) clearly can be positive semidefinite only if v = 0,
and we indeed have v = pA with p = 0.
We have demonstrated that a pair (z,\) satisfies (13) and (14) if and only if
there exists a u such that the triple (x, \, u) possesses the following property (7):
(m) : A, p>0; when A =0, then the quadratic form

U(t,u) = M\ — p)t? + e — (t,u” )R () R(z) (Z)

of t,u is positive semidefinite, where

Now let us prove that the property (m) of (z, A, u) is equivalent to positive
semidefiniteness of the matrix S = S(z, A, p) in left hand side of (11). Indeed,
if A > 0, positive semidefiniteness of ¥ is equivalent to positive semidefiniteness of
quadratic form

(= e+ T (" R @00 RG) (1)

which, by Lemma 2, is exactly the same as positive semidefiniteness of S(z, A, u).
Of course, the matrix in the left-hand side of (11) can be positive semidefinite only
when A = A\, = p; are nonnegative. Thus, for triple (z, A, ) with A > 0 the
property () indeed is equivalent to the positive semidefiniteness of S(x, A, ). Now
we consider the case of A =0, and let (z,0, 1) satisfy (7). Due to (), £ =0 and ¥
is positive semidefinite, which for A = 0 is possible if and only if R(xz) = 0; of course,
in the case of u = 0, S(x,0,0) is positive semidefinite. Vice versa, if A = 0 and
S(xz, A, 1) is positive semidefinite, then, of course, R(z) = 0 and p = 0 and triple
(x, A\, ) possesses the property ().

The summary of our equivalences is that (z,\) with A = \; satisfies (10) if and
only if there exists p = p; such that the triple (z, A, 1) satisfies (11). This is exactly
the assertion of the theorem. O
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5. Conclusion

This paper suggests a robust optimization approach to formulate and solve the
weighted least squares problems where the coefficient matrices A; and b; belong to
two different uncertain-but-bounded sets. We introduce the robust counterpart of
the weighted least squares problems with uncertainty sets and illustrate the general
uncertainty sets. We also show that the robust counterpart of the weighted least
squares problems with general uncertainty sets is equivalent to a convex program-
ming problem under some suitable conditions and use two kinds of approaches to
solve the robust counterpart of the weighted least squares problems with ellipsoid
uncertainty sets.

As pointed out by the referee, “In the context of robust optimization, it might
help to use some ideas from parametric programming such as input optimization,
regions of stability and structural optima (see, for example, [30]). It may lead to
robust optimization over regions of stability”. In the future work, these regions need
to be established. Furthermore, we should construct some effective algorithms for
solving the weighted least squares problems.
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