The signed (k, k)-domatic number of digraphs

Seyed Mahmoud Sheikholeslami ${ }^{1, *}$ and Lutz Volkmann ${ }^{2}$
${ }^{1}$ Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
${ }^{2}$ Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany

Received November 12, 2010; accepted February 25, 2012

Abstract

Let D be a finite and simple digraph with vertex set $V(D)$, and let $f: V(D) \rightarrow$ $\{-1,1\}$ be a two-valued function. If $k \geq 1$ is an integer and $\sum_{x \in N^{-}[v]} f(x) \geq k$ for each $v \in V(D)$, where $N^{-}[v]$ consists of v and all vertices of D from which arcs go into v, then f is a signed k-dominating function on D. A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed k-dominating functions on D with the property that $\sum_{i=1}^{d} f_{i}(x) \leq k$ for each $x \in V(D)$, is called a signed (k, k)-dominating family (of functions) on D. The maximum number of functions in a signed (k, k)-dominating family on D is the signed (k, k)-domatic number on D, denoted by $d_{S}^{k}(D)$. In this paper, we initiate the study of the signed (k, k)-domatic number of digraphs, and we present different bounds on $d_{S}^{k}(D)$. Some of our results are extensions of well-known properties of the signed domatic number $d_{S}(D)=d_{S}^{1}(D)$ of digraphs D as well as the signed (k, k)-domatic number $d_{S}^{k}(G)$ of graphs G.

AMS subject classifications: 05C20, 05C69, 05C45
Key words: digraph, signed (k, k)-domatic number, signed k-dominating function, signed k-domination number

1. Terminology and introduction

In this paper, D is a finite and simple digraph with vertex set $V(D)$ and arc set $A(D)$. The integers $n(D)=|V(D)|$ and $m(D)=|A(D)|$ are the order and the size of the digraph D, respectively. We write $d_{D}^{+}(v)=d^{+}(v)$ for the outdegree of a vertex v and $d_{D}^{-}(v)=d^{-}(v)$ for its indegree. The minimum and maximum indegree are $\delta^{-}(D)$ and $\Delta^{-}(D)$. The sets $N^{+}(v)=\{x \mid(v, x) \in A(D)\}$ and $N^{-}(v)=\{x \mid(x, v) \in A(D)\}$ are called the outset and inset of the vertex v. Likewise, $N^{+}[v]=N^{+}(v) \cup\{v\}$ and $N^{-}[v]=N^{-}(v) \cup\{v\}$. If $X \subseteq V(D)$, then $D[X]$ is the subdigraph induced by X. For an $\operatorname{arc}(x, y) \in A(D)$, the vertex y is an outer neighbor of x and x is an inner neighbor of y. For a real-valued function $f: V(D) \longrightarrow \mathbf{R}$ the weight of f is $w(f)=\sum_{v \in V(D)} f(v)$, and for $S \subseteq V(D)$, we define $f(S)=\sum_{v \in S} f(v)$, so $w(f)=f(V(D))$. Consult [3] and [4] for notation and terminology which are not defined here.

If $k \geq 1$ is an integer, then the signed k-dominating function is defined as a function $f: V(D) \longrightarrow\{-1,1\}$ such that $f\left(N^{-}[v]\right)=\sum_{x \in N^{-}[v]} f(x) \geq k$ for every $v \in V(D)$. The signed k-domination number for a digraph D is

$$
\gamma_{k S}(D)=\min \{w(f) \mid f \text { is a signed } k \text {-dominating function of } D\}
$$

A $\gamma_{k S}(D)$-function is a signed k-dominating function on D of weight $\gamma_{k S}(D)$. As the assumption $\delta^{-}(D) \geq k-1$ is necessary, we always assume that when we discuss $\gamma_{k S}(D)$, all digraphs involved satisfy $\delta^{-}(D) \geq k-1$ and thus $n(D) \geq k$.

The signed k-domination number of digraphs was introduced by Atapour, Hajypory, Sheikholeslami and Volkmann [1]. When $k=1$, the signed k-domination number $\gamma_{k S}(D)$ is the usual signed domination number $\gamma_{S}(D)$, which was introduced by Zelinka in [13] and has been studied by several authors (see for instance [5] and [10]).

A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed k-dominating functions on D with the property that $\sum_{i=1}^{d} f_{i}(v) \leq k$ for each $v \in V(D)$, is called a signed (k, k)-dominating family on D. The maximum number of functions in a signed (k, k)-dominating family on D is the signed (k, k)-domatic number of D, denoted by $d_{S}^{k}(D)$. When $k=1$, the signed (k, k)-domatic number of a digraph D is the usual signed domatic number $d_{S}(D)$, which was introduced by Sheikholeslami and Volkmann [7] and has also been studied in [10].

In this paper, we initiate the study of the signed (k, k)-domatic number of digraphs, and we present different bounds on $d_{S}^{k}(D)$. Some of our results are extensions of well-known properties of the signed domatic number $d_{S}(D)=d_{S}^{1}(D)$ of digraphs (see for example [7]) as well as the signed (k, k)-domatic number $d_{S}(G)$ of graphs G (see for example $[6,8,9,11]$).

Our first proposition shows that the signed (k, k)-domatic number $d_{S}^{k}(D)$ is welldefined for every digraph D with $\delta^{-}(D) \geq k-1$.
Proposition 1. The signed domatic number $d_{S}^{k}(D)$ is well-defined for each digraph D with $\delta^{-}(D) \geq k-1$.
Proof. Let $k \geq 1$ be an integer, and let $\delta^{-}(D) \geq k-1$. Since the function f : $V(D) \rightarrow\{-1,1\}$ with $f(v)=1$ for each $v \in V(D)$ is a signed k-dominating function on D, the family $\{f\}$ is a signed (k, k)-dominating family on D. Therefore, the set of signed k-dominating functions on D is non-empty and there exists the maximum of their cardinalities, which is the signed (k, k)-domatic number of D.

2. Properties of the signed (k, k)-domatic number

In this section we present basic properties of the signed (k, k)-domatic number and find some sharp bounds for this parameter.
Theorem 1. If D is a digraph with $\delta^{-}(D) \geq k-1$, then

$$
d_{S}^{k}(D) \leq \delta^{-}(D)+1
$$

Moreover, if $d_{S}^{k}(D)=\delta^{-}(D)+1$, then for each function of any signed (k, k) dominating family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ on D and for all vertices v of indegree $\delta^{-}(D)$, $\sum_{x \in N^{-}[v]} f_{i}(x)=k$ and $\sum_{i=1}^{d} f_{i}(x)=k$ for every $x \in N^{-}[v]$.

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a signed (k, k)-dominating family on D such that $d=d_{S}^{k}(D)$. If $v \in V(G)$ is a vertex of minimum indegree $\delta^{-}(D)$, then it follows that

$$
\begin{aligned}
d \cdot k & =\sum_{i=1}^{d} k \leq \sum_{i=1}^{d} \sum_{x \in N^{-}[v]} f_{i}(x) \\
& =\sum_{x \in N^{-}[v]} \sum_{i=1}^{d} f_{i}(x) \\
& \leq \sum_{x \in N^{-}[v]} k=k\left(\delta^{-}(D)+1\right)
\end{aligned}
$$

and this implies the desired upper bound on the signed (k, k)-domatic number.
If $d_{S}^{k}(D)=\delta^{-}(D)+1$, then the two inequalities occurring in the inequality chain above become equalities. Therefore, for all vertices v of indegree $\delta^{-}(D)$, we observe that $\sum_{x \in N^{-}[v]} f_{i}(x)=k$ for $1 \leq i \leq d$ and $\sum_{i=1}^{d} f_{i}(x)=k$ for every $x \in N^{-}[v]$.

Theorem 2. Let D be an r-regular digraph of order n such that $r \geq 1$ and $\operatorname{gcd}(n, r+$ $1)=1$, and let k be a positive integer. Then $d_{S}^{k}(D) \leq \delta^{-}(D)=r$.
Proof. Suppose to the contrary that $d_{S}^{k}(D)>\delta^{-}(D)$. Then by Theorem $1, d_{S}^{k}(D)$ $=\delta^{-}(D)+1$. Let f belong to a signed (k, k)-dominating family on D of order $\delta^{-}(D)+1$. By Theorem 1, we have $\sum_{x \in N^{-}[v]} f(x)=k$ for every $v \in V(D)$. This implies that
$n k=\sum_{v \in V(D)} \sum_{x \in N^{-}[v]} f(x)=\sum_{x \in V(D)}(r+1) f(x)=(r+1) \sum_{x \in V(D)} f(x)=(r+1) w(f)$.
Since $w(f)$ is an integer and $\operatorname{gcd}(n, r+1)=1$, the number $r+1$ is a divisor of k. It follows from $k \leq \delta^{-}(D)+1=r+1$ that $k=r+1$. Thus $\sum_{x \in N^{-}[v]} f(x)=r+1$ for every $v \in V(D)$. Since $f(x) \leq 1$ for each $x \in V(D)$, we deduce that $f(v)=1$ for each $v \in V(D)$. Hence f is the only element of the signed (k, k)-dominating family on D which is a contradiction. This completes the proof.
Theorem 3. If D is a digraph of order n with $\delta^{-}(D) \geq k-1$, then

$$
\gamma_{k S}(D) \cdot d_{S}^{k}(D) \leq k \cdot n
$$

Moreover, if $\gamma_{k S}(D) \cdot d_{S}^{k}(D)=k \cdot n$, then for each signed (k, k)-dominating family $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ on D with $d=d_{S}^{k}(D)$, each function f_{i} is a $\gamma_{k S}(D)$-function and $\sum_{i=1}^{d} f_{i}(x)=k$ for each $x \in V(D)$.
Proof. If $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ is a signed (k, k)-dominating family on D such that d $=d_{S}^{k}(D)$, then the definitions imply

$$
\begin{aligned}
d \cdot \gamma_{k S}(D) & =\sum_{i=1}^{d} \gamma_{k S}(D) \leq \sum_{i=1}^{d} \sum_{x \in V(D)} f_{i}(x) \\
& =\sum_{x \in V(D)} \sum_{i=1}^{d} f_{i}(x) \leq \sum_{x \in V(D)} k=k \cdot n
\end{aligned}
$$

If $\gamma_{k S}(D) \cdot d_{S}^{k}(D)=k \cdot n$, then the two inequalities occurring in the inequality chain above become equalities. Hence $\gamma_{k S}(D)=\sum_{x \in V(D)} f_{i}(x)$ for each $i \in$ $\{1,2, \ldots, d\}$, and thus each function f_{i} is a $\gamma_{k S}(D)$-function. In addition, we see that $\sum_{i=1}^{d} f_{i}(x)=k$ for each $x \in V(D)$.

The special case $k=1$ in Theorems 1 and 3 can be found in [7].
Theorem 4. If v is a vertex of a digraph D such that $d^{-}(v)$ is odd and k is odd or $d^{-}(v)$ is even and k is even, then

$$
d_{S}^{k}(D) \leq \frac{k}{k+1}\left(d^{-}(v)+1\right)
$$

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a signed (k, k)-dominating family on D such that $d=d_{S}^{k}(D)$. Assume first that $d^{-}(v)$ and k are odd. The definition yields to $\sum_{x \in N^{-}[v]} f_{i}(x) \geq k$ for each $i \in\{1,2, \ldots, d\}$. On the left-hand side of this inequality a sum of an even number of odd summands occurs. Therefore, it is an even number, and as k is odd, we obtain $\sum_{x \in N^{-}[v]} f_{i}(x) \geq k+1$ for each $i \in\{1,2, \ldots, d\}$. It follows that

$$
\begin{aligned}
k\left(d^{-}(v)+1\right) & =\sum_{x \in N^{-}[v]} k \geq \sum_{x \in N^{-}[v]} \sum_{i=1}^{d} f_{i}(x) \\
& =\sum_{i=1}^{d} \sum_{x \in N^{-}[v]} f_{i}(x) \\
& \geq \sum_{i=1}^{d}(k+1)=d(k+1),
\end{aligned}
$$

and this leads to the desired bound. Assume next that $d^{-}(v)$ and k are even integers. Note that $\sum_{x \in N^{-}[v]} f_{i}(x) \geq k$ for each $i \in\{1,2, \ldots, d\}$. On the left-hand side of this inequality a sum of an odd number of odd summands occurs. Therefore, it is an odd number, and as k is even, we obtain $\sum_{x \in N^{-}[v]} f_{i}(x) \geq k+1$ for each $i \in\{1,2, \ldots, d\}$. Now the desired bound follows as above, and the proof is complete.

The next result is an immediate consequence of Theorem 4.
Corollary 1. If D is a digraph such that $\delta^{-}(D)$ and k are odd or $\delta^{-}(D)$ and k are even, then

$$
d_{S}^{k}(D) \leq \frac{k}{k+1}\left(\delta^{-}(D)+1\right)
$$

For special digraphs D we will improve the upper bound on $d_{S}^{k}(D)$ given in Theorem 1.

Corollary 2. Let $k \geq 1$ be an integer. If D is a digraph such that $\delta^{-}(D)=k+2 t$ for an integer $t \geq 1$, then

$$
d_{S}^{k}(D) \leq \delta^{-}(D)-1
$$

Proof. Since k and $\delta^{-}(D)$ are of the same parity, Corollary 1 implies that

$$
d_{S}^{k}(D) \leq \frac{k}{k+1}\left(\delta^{-}(D)+1\right)=\frac{k}{k+1}(k+2 t+1)<k+2 t
$$

and therefore $d_{S}^{k}(D) \leq k+2 t-1=\delta^{-}(D)-1$.
Theorem 5. If D is a digraph such that k is odd and $d_{S}^{k}(D)$ is even or k is even and $d_{S}^{k}(D)$ is odd, then

$$
d_{S}^{k}(D) \leq \frac{k-1}{k}\left(\delta^{-}(D)+1\right) .
$$

Proof. Let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a signed (k, k)-dominating family on D such that $d=d_{S}^{k}(D)$. Assume first that k is odd and d is even. If $x \in V(D)$ is an arbitrary vertex, then $\sum_{i=1}^{d} f_{i}(x) \leq k$. On the left-hand side of this inequality a sum of an even number of odd summands occurs. Therefore, it is an even number, and as k is odd, we obtain $\sum_{i=1}^{d} f_{i}(x) \leq k-1$ for each $x \in V(G)$. If v is a vertex with $d^{-}(v)=\delta^{-}(D)$, then it follows that

$$
\begin{aligned}
d \cdot k & =\sum_{i=1}^{d} k \leq \sum_{i=1}^{d} \sum_{x \in N^{-}[v]} f_{i}(x) \\
& =\sum_{x \in N^{-}[v]} \sum_{i=1}^{d} f_{i}(x) \\
& \leq \sum_{x \in N^{-}[v]}(k-1) \\
& =\left(\delta^{-}(D)+1\right)(k-1),
\end{aligned}
$$

and this yields to the desired bound. Assume secondly that k is even and d is odd. If $x \in V(G)$ is an arbitrary vertex, then $\sum_{i=1}^{d} f_{i}(x) \leq k$. On the left-hand side of this inequality a sum of an odd number of odd summands occurs. Therefore, it is an odd number, and as k is even, we obtain $\sum_{i=1}^{d} f_{i}(x) \leq k-1$ for each $x \in V(G)$. Now the desired bound follows as above, and the proof is complete.

According to Proposition $1, d_{S}^{k}(D)$ is a positive integer. If we suppose in the case $k=1$ that $d_{S}(D)=d_{S}^{1}(D)$ is an even integer, then Theorem 5 leads to the contradiction $d_{S}(D) \leq 0$. Consequently, we obtain the next known result.

Corollary 3 (Sheikholeslami, Volkmann [7]). The signed domatic number $d_{S}(D)$ is an odd integer.

Theorem 6. Let $k \geq 2$ be an integer, and let D be a digraph with $\delta^{-}(D) \geq k-1$. Then $d_{S}^{k}(D)=1$ if and only if for every vertex $v \in V(D)$ the set $N^{+}[v]$ contains a vertex x such that $d^{-}(x) \leq k$.

Proof. Assume that $N^{+}[v]$ contains a vertex x such that $d^{-}(x) \leq k$ for every vertex $v \in V(D)$, and let f be a signed k-dominating function on D. If $d^{-}(v) \leq k$, then it follows that $f(v)=1$. If $d^{-}(x) \leq k$ for a vertex $x \in N^{+}(v)$, then we observe $f(v)=1$ too. Hence $f(v)=1$ for each $v \in V(D)$ and thus $d_{S}^{k}(D)=1$.

Conversely, assume that $d_{S}^{k}(D)=1$. If D contains a vertex w such that $d^{-}(x) \geq$ $k+1$ for each $x \in N^{+}[w]$, then the functions $f_{i}: V(D) \rightarrow\{-1,1\}$ such that $f_{1}(x)=1$ for each $x \in V(D)$ and $f_{2}(w)=-1$ and $f_{2}(x)=1$ for each $x \in V(D) \backslash\{w\}$ are signed k-dominating functions on D such that $f_{1}(x)+f_{2}(x) \leq 2 \leq k$ for each vertex $x \in V(D)$. Thus $\left\{f_{1}, f_{2}\right\}$ is a signed (k, k)-dominating family on D, a contradiction to $d_{S}^{k}(D)=1$. This completes the proof.

Theorem 7. If D is a digraph with $\delta^{-}(D) \geq k+1$, then $d_{S}^{k}(D) \geq k$.
Proof. Let $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \subset V(D)$ be a subset of k vertices. The hypothesis $\delta^{-}(D) \geq k+1$ implies that the functions $f_{i}: V(D) \rightarrow\{-1,1\}$ such that $f_{i}\left(u_{i}\right)=-1$ and $f_{i}(x)=1$ for each vertex $x \in V(D) \backslash\left\{u_{i}\right\}$ are signed k-dominating functions on D for $i \in\{1,2, \ldots, k\}$. Since $f_{1}(x)+f_{2}(x)+\ldots+f_{k}(x) \leq k$ for each vertex $x \in V(D)$, we observe that $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ is a signed (k, k)-dominating family on D, and Theorem 7 is proved.

Theorem 8. Let $k \geq 1$ be an integer, and let D be a $(k+1)$-regular digraph of order n. If $n \not \equiv 0(\bmod (k+2))$, then $d_{S}^{k}(D)=k$.

Proof. Since D is $(k+1)$-regular, we have $d^{+}(x)=d^{-}(x)=k+1$ for each vertex $x \in V(D)$. Let f be an arbitrary signed k-dominating function on D. If we define the sets $P=\{v \in V(D) \mid f(v)=1\}$ and $M=\{v \in V(D) \mid f(v)=-1\}$, then we firstly show that

$$
\begin{equation*}
|P| \geq\left\lceil\frac{n(k+1)}{k+2}\right\rceil \tag{1}
\end{equation*}
$$

Because of $\sum_{x \in N^{-[y]}} f(x) \geq k$ for each vertex $y \in V(D)$, the $(k+1)$-regularity of D implies that each vertex $u \in P$ has at most one inner neighbor in M and each vertex $v \in M$ has exactly $k+1$ inner neighbors in P. Therefore, the subdigraph $D[M]$ contains no arc, and since $d^{+}(v)=k+1$, each vertex $v \in M$ has exactly $k+1$ outer neighbors in P. Altogether, we obtain

$$
|P| \geq|M|(k+1)=(n-|P|)(k+1)
$$

and immediately this leads to (1).
Now let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a signed (k, k)-dominating family on D with $d=$ $d_{S}^{k}(D)$. Since $\sum_{i=1}^{d} f_{i}(u) \leq k$ for every vertex $u \in V(D)$, each of these sums contains at least $\lceil(d-k) / 2\rceil$ summands of value -1 (note that Theorem 7 implies that $d \geq k$). Using this and inequality (1), we see that the sum

$$
\begin{equation*}
\sum_{x \in V(D)} \sum_{i=1}^{d} f_{i}(x)=\sum_{i=1}^{d} \sum_{x \in V(D)} f_{i}(x) \tag{2}
\end{equation*}
$$

contains at least $n\lceil(d-k) / 2\rceil$ summands of value -1 and at least $d\lceil n(k+1) /(k+2)\rceil$ summands of value 1 . As the sum (2) consists of exactly $d n$ summands, we deduce that

$$
\begin{equation*}
n\left\lceil\frac{d-k}{2}\right\rceil+d\left\lceil\frac{n(k+1)}{k+2}\right\rceil \leq d n \tag{3}
\end{equation*}
$$

It follows from the hypothesis $n \not \equiv 0(\bmod (k+2))$ that

$$
\left\lceil\frac{n(k+1)}{k+2}\right\rceil>\frac{n(k+1)}{k+2},
$$

and thus (3) leads to

$$
\frac{n(d-k)}{2}+\frac{d n(k+1)}{k+2}<d n .
$$

A simple calculation shows that this inequality implies $d<k+2$ and so $d \leq k+1$. If we suppose that $d=k+1$, then we observe that d and k are of different parity. Applying Theorem 5, we obtain the contradiction

$$
k+1=d \leq \frac{k-1}{k}(k+2)<k+1 .
$$

Therefore, $d \leq k$, and Theorem 7 yields to the desired result $d=k$.
On the one hand, Theorem 8 demonstrates that the bound in Theorem 7 is sharp, on the other hand, the following example shows that Theorem 8 is not valid in general when $n \equiv 0(\bmod (k+2))$.

Let $v_{1}, v_{2}, \ldots, v_{k+2}$ be the vertex set of the complete digraph $D=K_{k+2}^{*}$. We define the functions $f_{i}: V(D) \rightarrow\{-1,1\}$ such that $f_{i}\left(v_{i}\right)=-1$ and $f_{i}(x)=1$ for each vertex $x \in V(D) \backslash\left\{v_{i}\right\}$ and each $i \in\{1,2, \ldots, k+2\}$. Then we observe that f_{i} is a signed k-dominating function on K_{k+2}^{*} for each $i \in\{1,2, \ldots, k+2\}$ and $\sum_{i=1}^{k+2} f_{i}(x)=k$ for each vertex $x \in V\left(K_{k+2}^{*}\right)$. Therefore, $\left\{f_{1}, f_{2}, \ldots, f_{k+2}\right\}$ is a signed (k, k)-dominating family on D and thus $d_{S}^{k}\left(K_{k+2}^{*}\right) \geq k+2$. Using Theorem 1, we obtain $d_{S}^{k}\left(K_{k+2}^{*}\right)=k+2$.
Theorem 9. Let $k \geq 1$ be an integer. If D is a $(k+2)$-regular digraph, then $d_{S}^{k}(D)=k$.

Proof. Let f be an arbitrary signed k-dominating function on D. If we define the sets $P=\{v \in V(D) \mid f(v)=1\}$ and $M=\{v \in V(D) \mid f(v)=-1\}$, then we obtain analogously to the proof of Theorem 8 the inequality

$$
\begin{equation*}
|P| \geq\left\lceil\frac{n(k+2)}{k+3}\right\rceil \tag{4}
\end{equation*}
$$

Now let $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ be a signed (k, k)-dominating family on D such that d $=d_{S}^{k}(D)$. Since $\sum_{i=1}^{d} f_{i}(u) \leq k$ for every vertex $u \in V(D)$, each of these sums contains at least $\lceil(d-k) / 2\rceil$ summands of value -1 . Using this and inequality (4), we see that the sum

$$
\begin{equation*}
\sum_{x \in V(D)} \sum_{i=1}^{d} f_{i}(x)=\sum_{i=1}^{d} \sum_{x \in V(D)} f_{i}(x) \tag{5}
\end{equation*}
$$

contains at least $n\lceil(d-k) / 2\rceil$ summands of value -1 and at least $d\lceil n(k+2) /(k+3)\rceil$ summands of value 1 . As the sum (5) consists of exactly $d n$ summands, we deduce that

$$
\begin{equation*}
n\left\lceil\frac{d-k}{2}\right\rceil+d\left\lceil\frac{n(k+2)}{k+3}\right\rceil \leq d n \tag{6}
\end{equation*}
$$

In view of Corollary 2 , we deduce that $d \leq k+1$. If we suppose that $d=k+1$, then inequality (6) leads to

$$
n+\frac{n(k+1)(k+2)}{k+3} \leq(k+1) n
$$

and we obtain the contradiction

$$
\frac{(k+1)(k+2)}{k+3} \leq k
$$

Therefore, $d \leq k$, and Theorem 7 yields to the desired result $d=d_{S}^{k}(D)=k$.
Theorem 9 also demonstrates that the bound in Theorem 7 is sharp.
Theorem 10. If D is a digraph of order n with $\delta^{-}(D) \geq k-1$, then

$$
d_{S}^{k}(D)+\gamma_{k S}(D) \leq k n+1
$$

Proof. According to Theorem 3, we deduce that

$$
\begin{equation*}
d_{S}^{k}(D)+\gamma_{k S}(D) \leq d_{S}^{k}(D)+\frac{k n}{d_{S}^{k}(D)} \tag{7}
\end{equation*}
$$

By Proposition 1 and Theorem 1, we have $1 \leq d_{S}^{k}(D) \leq n$. Using the fact that the function $g(x)=x+k n / x$ is decreasing for $1 \leq x \leq \sqrt{k n}$ and increasing for $\sqrt{k n} \leq x \leq n$, inequality (7) leads to

$$
d_{S}^{k}(D)+\gamma_{k S}(D) \leq \max \left\{1+k n, n+\frac{k n}{n}\right\}=k n+1
$$

Corollary 4 (Sheikholeslami, Volkmann [7]). If D is a digraph of order n, then $d_{S}(D)+\gamma_{S}(D) \leq n+1$.

If $k \geq 2$ and $\delta^{-}(D) \geq k+1$, then we can improve Theorem 10 considerably.
Theorem 11. If D is a digraph of order n with $\delta^{-}(D) \geq k+1$, then

$$
d_{S}^{k}(D)+\gamma_{k S}(D) \leq k+n
$$

Proof. By Theorems 1 and 7 , we have $k \leq d_{S}^{k}(D) \leq n$. Using inequality (7) and the fact that the function $g(x)=x+k n / x$ is decreasing for $k \leq x \leq \sqrt{k n}$ and increasing for $\sqrt{k n} \leq x \leq n$, we obtain

$$
d_{S}^{k}(D)+\gamma_{k S}(D) \leq \max \left\{k+\frac{k n}{k}, n+\frac{k n}{n}\right\}=k+n
$$

3. Signed (k, k)-domatic number of graphs

The signed k-dominating function of a graph G is defined in [12] as a function $f: V(G) \longrightarrow\{-1,1\}$ such that $\sum_{x \in N_{G}[v]} f(x) \geq k$ for all $v \in V(G)$. The sum $\sum_{x \in V(G)} f(x)$ is the weight $w(f)$ of f. The minimum of weights $w(f)$, taken over all signed k-dominating functions f on G is called the signed k-domination number of G, denoted by $\gamma_{k S}(G)$. The special case $k=1$ was defined and investigated in [2].

A set $\left\{f_{1}, f_{2}, \ldots, f_{d}\right\}$ of distinct signed k-dominating functions on G with the property that $\sum_{i=1}^{d} f_{i}(v) \leq k$ for each $v \in V(G)$, is called a signed (k, k)-dominating family on G. The maximum number of functions in a signed (k, k)-dominating family on G is the signed (k, k)-domatic number of G, denoted by $d_{S}^{k}(G)$. This parameter was introduced by Sheikholeslami and Volkmann in [6]. In the case $k=1$, we write $d_{S}(G)$ instead of $d_{S}^{1}(G)$.

The associated digraph $D(G)$ of a graph G is the digraph obtained from G when each edge e of G is replaced by two oppositely oriented arcs with the same ends as e. Since $N_{D(G)}^{-}[v]=N_{G}[v]$ for each vertex $v \in V(G)=V(D(G))$, the following useful Proposition is valid.

Proposition 2. If $D(G)$ is the associated digraph of a graph G, then $\gamma_{k S}(D(G))$ $=\gamma_{k S}(G)$ and $d_{S}^{k}(D(G))=d_{S}^{k}(G)$.

There are a lot of interesting applications of Proposition 2, as for example the following results. Using Corollary 3, we obtain the first one.

Corollary 5 (Volkmann, Zelinka [11] 2005). The signed domatic number $d_{S}(G)$ of a graph G is an odd integer.

Since $\delta^{-}(D(G))=\delta(G)$, the next result follows from Proposition 2 and Theorem 1.

Corollary 6 (Sheikholeslami, Volkmann [6] 2010). If G is a graph with minimum degree $\delta(G) \geq k-1$, then

$$
d_{S}^{k}(G) \leq \delta(G)+1
$$

The case $k=1$ in Corollary 6 can be found in [11].
Corollary 7 (Volkmann [8] 2009). Let G be a graph, and let v be a vertex of odd degree $d_{G}(v)=2 t+1$ with an integer $t \geq 0$. Then $d_{S}(G) \leq t+1$ when t is even and $d_{S}(G) \leq t$ when t is odd.

Proof. Since $d_{D(G)}^{-}(v)=d_{G}(v)=2 t+1$, it follows from Proposition 2 and Theorem 4 that

$$
d_{S}(G)=d_{S}(D(G)) \leq \frac{d_{D(G)}^{-}(v)+1}{2}=\frac{d_{G}(v)+1}{2}=t+1 .
$$

Applying Corollary 5, we obtain the desired result.
In view of Proposition 2 and Theorem 10, we immediately obtain the next result.

Corollary 8 (Volkmann [9] 2011). If G is a graph of order n, then

$$
\gamma_{S}(G)+d_{S}(G) \leq n+1
$$

Theorem 9 and Proposition 2 lead to our last corollary.
Corollary 9. If G is a $(k+2)$-regular graph, then $d_{S}^{k}(G)=k$.

Acknowledgement

Research supported by the Research Office of Azarbaijan Shahid Madani University.

References

[1] M. Atapour, R. Hajypory, S. M. Sheikholeslami, L. Volkmann, The signed k domination number of directed graphs, Cent. Eur. J. Math. 8(2010), 1048-1057.
[2] J. E. Dunbar, S. T. Hedetniemi, M. A. Henning, P. J. Slater, Signed domination in graphs; Graph theory, combinatorics, and applications, John Wiley \& Sons Inc., New York, 1995.
[3] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker Inc., New York, 1998.
[4] T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Domination in Graphs, Advanced Topics, Marcel Dekker Inc., New York, 1998.
[5] H. Karami, S. M. Sheikholeslami, A. Khodkar, Lower bounds on the signed domination numbers of directed graphs, Discrete Math. 309(2009), 2567-2570.
[6] S. M. Sheikholeslami, L. Volkmann, Signed (k, k)-domatic number of a graph, Ann. Math. Inform. 37(2010), 139-149.
[7] S. M. Sheikholeslami, L. Volkmann, Signed domatic number of directed graphs, submitted.
[8] L. Volkmann, Some remarks on the signed domatic number of graphs with small minimum degree, Appl. Math. Letters 22(2009), 1166-1169.
[9] L. Volkmann, Bounds on the signed domatic number, Appl. Math. Letters 24(2011), 196-198.
[10] L. Volkmann, Signed domination and signed domatic numbers of digraphs, Discuss. Math. Graph Theory 31(2011), 415-427.
[11] L. Volkmann, B. Zelinka, Signed domatic number of a graph, Discrete Appl. Math. 150(2005), 261-267.
[12] C. WANG, The signed k-domination numbers in graphs, Ars Combin., to appear.
[13] B. Zelinka, Signed domination numbers of directed graphs, Czechoslovak Math. J. 55(2005), 479-482.

