On n-absorbing submodules

Ahmad Yousefian Darani ${ }^{1, *}$ and Fatemeh Soheilnia ${ }^{1}$
${ }^{1}$ Department of Mathematics and Applications, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran

Received August 3, 2011; accepted March 9, 2012

Abstract

All rings are commutative with identity, and all modules are unital. The purpose of this article is to investigate n-absorbing submodules. For this reason we introduce the concept of n-absorbing submodules generalizing n-absorbing ideals of rings. Let M be an R-module. A proper submodule N of M is called an n-absorbing submodule if whenever $a_{1} \cdots a_{n} m \in N$ for $a_{1}, \ldots, a_{n} \in R$ and $m \in M$, then either $a_{1} \cdots a_{n} \in\left(N:_{R} M\right)$ or there are $n-1$ of a_{i} 's whose product with m is in N. We study the basic properties of n-absorbing submodules and then we study n-absorbing submodules of some classes of modules (e.g. Dedekind modules, Prüfer modules, etc.) over commutative rings.

AMS subject classifications: 13A15, 13F05
Key words: multiplication module, invertible submodule, Dedekind module, valuation module, Prüfer module, n-absorbing submodule, strongly n-absorbing submodule

1. Introduction

In this paper, all rings are commutative with non-zero identity and all modules are unital. Let R be a ring, M an R-module and N a submodule of M. We will denote by $\left(N:_{R} M\right)$ the residual of N by M, that is, the set of all $r \in R$ such that $r M \subseteq N$. The annihilator of M which is denoted by $\operatorname{ann}_{R}(M)$ is $\left(0:_{R} M\right)$. An R-module M is called a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R. Note that, since $I \subseteq\left(N:_{R} M\right)$ then $N=I M \subseteq\left(N:_{R} M\right) M \subseteq N$. So that $N=\left(N:_{R} M\right) M$ [21]. Finitely generated faithful multiplication modules are cancellation modules [20, Corollary to Theorem 9], where an R-module M is defined to be a cancellation module if $I M=J M$ for ideals I and J of R implies $I=J$. It is well-known that if R is a commutative ring and M a non-zero multiplication R-module then every proper submodule of M is contained in a maximal submodule of M and K is a maximal submodule of M if and only if there exists a maximal ideal p of R such that $K=p M$ [21, Theorem 2.5]. For a submodule N of M, if $N=I M$ for some ideal I of R, then we say that I is a presentation ideal of N. Note that it is possible that for a submodule N, no such presentation ideal exists. For example, assume that M is a vector space over an arbitrary field F with $\operatorname{dim}_{F} M \geq 2$ and let N be a proper subspace of M such that $N \neq 0$. Then M has finite length (so M is Noetherian, Artinian and injective), but M is not multiplication and N

[^0]does not have any presentation. Clearly, every submodule of M has a presentation ideal if and only if M is a multiplication module. Let N and K be submodules of a multiplication R-module M with $N=I_{1} M$ and $K=I_{2} M$ for some ideals I_{1} and I_{2} of R. The product of N and K denoted by $N K$ is defined by $N K=I_{1} I_{2} M$. Then by [4, Theorem 3.4], the product of N and K is independent of presentations of N and K. Moreover, for $a, b \in M$, by $a b$, we mean the product of $R a$ and $R b$. Clearly, $N K$ is a submodule of M and $N K \subseteq N \cap K$ (see [4]).

A submodule N of M is called idempotent if $N=\left(N:_{R} M\right) N$, [2]. It is shown [2, Theorem 3] that if M is multiplication and $\left(N:_{R} M\right)$ is an idempotent ideal of R then N is idempotent in M. The converse is true if we assume further that M is finitely generated and faithful. A submodule N of the R-module M is called a nilpotent submodule if $\left(N:_{R} M\right)^{n} N=0$ for some positive integer n, and $m \in M$ is said to be nilpotent if $R m$ is a nilpotent submodule of M, [2]. Assume that $N i l(M)$ is the set of all nilpotent elements of M; then $N i l(M)$ is a submodule of M provided that M is faithful module, and if in addition M is multiplication, then $\operatorname{Nil}(M)=\operatorname{Nil}(R) M=\bigcap P$, where the intersection runs over all prime submodules of $M,[2$, Theorem 6]. We recall that a submodule N of M is prime (resp., primary) if whenever $r m \in N$ for some $r \in R$ and $m \in M$, then either $m \in N$ or $r M \subseteq N$ (resp., $r^{n} M \subseteq N$ for some positive integer n). If N is a prime (resp. primary) submodule of M, then $p:=\left(N:_{R} M\right)$ (resp. $\left.p:=\sqrt{\left(N:_{R} M\right)}\right)$ is a prime ideal of R. In this case we say that N is a p-prime (resp. p-primary) submodule of M.

Let S be the set of all non-zero divisors of R and R_{S} be the total quotient ring of R. For a non-zero ideal I of R, Let

$$
I^{-1}=\left\{x \in R_{S}: x I \subseteq R\right\}
$$

I is called an invertible ideal of R if $I I^{-1}=R$. Let M be an R-module and

$$
T=\{t \in S: t m=0 \text { for } \mathrm{m} \in M \text { implies } \mathrm{m}=0\}
$$

T is a multiplicatively closed subset of S, and if M is torsion free then $T=S$. In particular, if M is a faithful multiplication R-module then $T=S$ [21, Lemma 4.1]. Let N be a non-zero submodule of the R-module M, and

$$
N^{-1}=\left\{x \in R_{T}: x N \subseteq M\right\}
$$

N^{-1} is an R-submodule of $R_{T}, R \subseteq N^{-1}$ and $N^{-1} N \subseteq M . N$ is said to be an invertible submodule if $N^{-1} N=M$, [18].

In [18], Naoum and Al-Alwan generalized the concept of Dedekind domains to that of modules. An R-module M is a Dedekind module or D-module, if every nonzero submodule M is invertible and M is said to be a D_{1}-module if every non-zero cyclic submodule of M is invertible. It is clear that every D-module is a D_{1}-module. Let M be a faithful multiplication R-module. If M is a Dedekind module then R is a Dedekind domain, [18, Theorem 3.5]. Let M be a faithful multiplication R-module over the Dedekind domain R. Then M is a finitely generated Dedekind R-module, [18, Theorem 3.4]. Let R be an integral domain and M an R-module. M is called a valuation module if for all nonzero elements m and n of M, either $R m \subseteq R n$ or $R n \subseteq R m$. Equivalently, for any submodules N and K of M, either $N \subseteq K$
or $K \subseteq N$. A valuation module M such that every non-zero prime submodule P of M is not idempotent, that is, $P \neq\left(P:_{R} M\right) P$, is a discrete valuation module, [3]. An R-module M is called a Prüfer module, if every non-zero finitely generated submodule of M is invertible. An R-module M is said to be a Bézout module, if every finitely generated submodule is a principal submodule of M. Several properties of these classes of modules can be found in $[1,3]$ and $[18]$.

In [7], Badawi introduced a new generalization of prime ideals in a commutative ring R. He defined a nonzero proper ideal I of R to be a 2 -absorbing ideal if whenever $a, b, c \in R$ and $a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. This definition can obviously be made for any ideal of R. This concept has a generalization, called weakly 2 -absorbing ideals, which has been studied in [8]. A proper ideal I of R to be a weakly 2 -absorbing ideal of R if whenever $a, b, c \in R$ and $0 \neq a b c \in I$, then $a b \in I$ or $a c \in I$ or $b c \in I$. Later, Anderson and Badawi [5], introduced the concept of n-absorbing ideals of R for a positive integer n. A proper ideal I of R is called an n-absorbing (resp., strongly n-absorbing) ideal if whenever $a_{1} \cdots a_{n+1} \in I$ for $a_{1}, \ldots, a_{n+1} \in R\left(\operatorname{resp}, I_{1}, \ldots I_{n+1} \subseteq I\right.$ for ideals I_{1}, \ldots, I_{n+1} of $\left.R\right)$, then there are n of the a_{i} 's (resp., n of the I_{i} 's) whose product is in I. It was shown that these two concepts agree when $n=2$ in [7]. In [5, Corollary 6.9] it is shown that they agree for Prüfer domains, and it is conjectured that these two concepts agree for all positive integers n.

The concept of 2 -absorbing (resp., weakly 2 -absorbing) submodules was introduced and investigated in [22]. Let M be an R-module and N a proper submodule of M. N is said to be a 2 -absorbing submodule (resp. weakly 2 -absorbing submodule) of M if whenever $a, b \in R$ and $m \in M$ with $a b m \in N$ (resp. $0 \neq a b m \in N$), then $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. In this paper, we generalize the concepts of n-absorbing and strongly n-absorbing ideals of the ring R to that of submodules of an R-module M. Most of results are related to the reference [5] which have been proved for n-absorbing submodules. Let n be a positive integer. A proper submodule N of M is called an n-absorbing (resp., strongly n-absorbing) submodule if whenever $a_{1} \cdots a_{n} m \in N$ for $a_{1}, \ldots, a_{n} \in R$ and $m \in M$ (resp, $I_{1}, \cdots I_{n} L \subseteq N$ for ideals I_{1}, \ldots, I_{n} of R and submodule L of $\left.M\right)$, then either $a_{1} \cdots a_{n} \in\left(N:_{R} M\right)$ (resp. $I_{1} \cdots I_{n} \subseteq\left(N:_{R} M\right)$) or there are $n-1$ of a_{i} 's (resp. I_{i} 's) whose product with m (resp. with L) is in N.

In this note, we study the concept of n-absorbing submodule, for a positive integer n. In fact, among the other things we prove that if R is a commutative ring and N is a 2 -absorbing submodule of a faithful multiplication R-module M, then $M-\operatorname{rad} N$ is a 2-absorbing submodule of M (see Theorem 1). We show (Theorem 2) that if N_{j} is an n_{j}-absorbing submodule of M for every $1 \leq j \leq k$, then $N_{1} \cap \cdots \cap N_{k}$ is an n-absorbing submodule of M for $n=n_{1}+\cdots+n_{k}$. In particular, if N_{1}, \ldots, N_{n} are prime submodules of M, then $N_{1} \cap \cdots \cap N_{n}$ is an n-absorbing submodule of M. In Theorem 3, we prove that if N is a p-primary submodule of M such that $p^{n} M \subseteq N$, then N is an n-absorbing submodule of M. In particular, if M is a multiplication module and $p^{n} M$ is a p-primary submodule of M, then $p^{n} M$ is an n-absorbing submodule of M. Theorem 7 implies that if R is a Noetherian ring and M a finitely generated R-module, then every non-zero proper submodule of M is an n-absorbing submodule of M for some positive integer n. In Section 3, we
study 2-absorbing submodules of multiplication modules. Indeed, if we could give a positive answer to the Conjecture 1, then many of the results in Section 3 could be impled for n-absorbing submodules for every positive integer n.

2. Basic results

In this section, we study some basic properties of n-absorbing submodules of the R-module M. Let n be a positive integer. We recall that a proper submodule N of M is called an n-absorbing submodule if whenever $a_{1} \cdots a_{n} m \in N$ for $a_{1}, \ldots, a_{n} \in R$ and $m \in M$, then either $a_{1} \cdots a_{n} \in\left(N:_{R} M\right)$ or there are $n-1$ of a_{i} 's whose product with m is in N. A natural question is that if N is an n-absorbing submodule of M, whether the ideal $\left(N:_{R} M\right)$ is an n-absorbing ideal of R ? For the cases where $n=2$ or M is cyclic, we have the following results (compare Proposition 1 with [22, Proposition 2.9]).

Proposition 1. Let R be a commutative ring and let M be an R-module. Assume that N is a 2-absorbing submodule of M. Then
(1) For every element $a, b \in R$ and every submodule K of M, $a b K \subseteq N$ implies that $a b \in\left(N:_{R} M\right)$ or $a K \subseteq N$ or $b K \subseteq N$.
(2) $\left(N:_{R} M\right)$ is a 2-absorbing ideal of R.

Proof. (1) Assume that $a b \notin\left(N:_{R} M\right), a K \nsubseteq N$ and $b K \nsubseteq N$. Then $a x \notin N$ and $b y \notin N$ for some $x, y \in K$. As $a b x, a b y \in N$ we have $a y \in N$ and $b x \in N$. Now it follows from $a b(x+y) \in N$ that either $a(x+y) \in N$ or $b(x+y) \in N$. Consequently, either $b y \in N$ or $a x \in N$ which are contradictions.
(2) Suppose that $a b c \in\left(N:_{R} M\right)$. Then setting $K=c M$ we have $a b K \subseteq N$. As N is 2-absorbing, it follows from (1) that $a b \in\left(N:_{R} M\right)$ or $a K \subseteq N$ or $b K \subseteq N$. Hence $a b \in\left(N:_{R} M\right)$ or $a c \in\left(N:_{R} M\right)$ or $b c \in\left(N:_{R} M\right)$.

Proposition 2. Let R be a commutative ring and M a cyclic multiplication R module. Then N is an n-absorbing submodule of M if and only if $\left(N:_{R} M\right)$ is an n-absorbing ideal of R.

Proof. Let M be a cyclic R-module generated by $m \in M$. Let N be an n-absorbing submodule of M. Assume that $a_{1}, \ldots, a_{n+1} \in R$ with $a_{1} \cdots a_{n+1} \in\left(N:_{R} M\right)$. For every $1 \leq i \leq n$, let $\widehat{a_{i}}$ be the element of R which is obtained by eliminating a_{i} from $a_{1} \cdots a_{n}$. Assume that $\widehat{a_{i}} a_{n+1} \notin\left(N:_{R} M\right)$ for every $1 \leq i \leq n$. Then $\widehat{a_{i}} a_{n+1} m \notin N$. So it follows from $\left(a_{1} \cdots a_{n}\right)\left(a_{n+1} m\right) \in N$ and the fact that N is n-absorbing that $a_{1} \cdots a_{n} \in\left(N:_{R} M\right)$, that is, $\left(N:_{R} M\right)$ is n-absorbing.

Conversely, assume that $\left(N:_{R} M\right)$ an n-absorbing ideal of R. Let $a_{1}, \ldots, a_{n} \in R$ and $x \in M$ be such that $a_{1} \cdots a_{n} x \in N$. There exists $a_{n+1} \in R$ such that $x=a_{n+1} m$. Thus $a_{1} \cdots a_{n} a_{n+1} m \in N$. So $a_{1} \cdots a_{n} a_{n+1} \in\left(N:_{R} m\right)=\left(N:_{R} M\right)$. But $\left(N:_{R} M\right)$ is an n-absorbing ideal of R, so there are n of the a_{i} 's whose product is in $\left(N:_{R} M\right)$. This implies that either $a_{1} \cdots a_{n} \in\left(N:_{R} M\right)$ or there are $n-1$ of a_{i} 's whose product with x is in N, that is, N is n-absorbing.

Conjecture 1. Let R be a commutative ring and let M be an R-module. If N is an n-absorbing submodule of M, then $\left(N:_{R} M\right)$ is an n-absorbing ideal of R.

Let N be a proper submodule of a nonzero R-module M. Then the M-radical of N, denoted by $M-\operatorname{rad} N$, is defined to be the intersection of all prime submodules of M containing N. It is shown in [21, Theorem 2.12] that if N is a proper submodule of a multiplication R-module M, then $M-\operatorname{rad} N=\sqrt{\left(N:_{R} M\right)} M$.

Theorem 1. Let R be a commutative ring and M a faithful multiplication R-module. If N is a 2-absorbing submodule of M, then $M-\operatorname{rad} N$ is a 2-absorbing submodule of M.

Proof. Since N is a 2-absorbing submodule of M then the ideal $\left(N:_{R} M\right)$ is a 2 -absorbing ideal of R by Proposition 1. Then by [7, Theorem 2.4] we have the two following cases.

Case (1). $\sqrt{\left(N:_{R} M\right)}=p$ is a prime ideal of R. Since M is a multiplication module, then $M-\operatorname{rad} N=\sqrt{\left(N:_{R} M\right)} M=p M$, where $p M$ is a prime submodule of M by [21, Corollary 2.11]. Hence in this case $M-\operatorname{rad} N$ is a 2 -absorbing submodule of M.

Case (2). $\sqrt{\left(N:_{R} M\right)}=p_{1} \cap p_{2}$, where p_{1}, p_{2} are distinct prime ideals of R that are minimal over $\left(N:_{R} M\right)$. In this case, we have $M-\operatorname{rad} N=\sqrt{\left(N:_{R} M\right)} M=\left(p_{1}+\right.$ ann $M) M \cap\left(p_{2}+\operatorname{ann} M\right) M=p_{1} M \cap p_{2} M$, where $p_{1} M, p_{2} M$ are prime submodules of M by [21, Corollary $2.11,1.7]$. Consequently, $M-\operatorname{rad} N$ is a 2 -absorbing submodule of M by [22, Theorem 2.3].

Theorem 2. Let R be a ring and M an R-module. If N_{j} is an n_{j}-absorbing submodule of M for every $1 \leq j \leq k$, then $N_{1} \cap \cdots \cap N_{k}$ is an n-absorbing submodule of M for $n=n_{1}+\cdots+n_{k}$. In particular, if N_{1}, \ldots, N_{n} are prime submodules of M, then $N_{1} \cap \cdots \cap N_{n}$ is an n-absorbing submodule of M.

Proof. Let $a_{1}, \ldots a_{n} \in R$ and $m \in M$ with $a_{1} \cdots a_{n} m \in N_{1} \cap \cdots \cap N_{k}:=N$ such that there are not $n-1$ of the a_{i} 's whose product with m lies in N. As $a_{1} \cdots a_{n} m \in N_{1} \cap \cdots \cap N_{k}$, so $a_{1} \cdots a_{m} m \in N_{j}$ for every $1 \leq j \leq k$. Therefore $a_{1} \cdots a_{n} \in\left(N_{j}:_{R} M\right)$ for every $1 \leq j \leq k$ since N_{j} is assumed to be an n_{j}-absorbing submodule of M and $n_{j} \leq n$. Therefore $a_{1} \cdots a_{n} \in \bigcap_{j=1}^{k}\left(N_{j}:_{R} M\right)=\left(N:_{R} M\right)$, that is, N is n-absorbing. The " In particular" statement is clear.

Let N be a proper submodule of an R-module M. It is clear that if N is an n-absorbing submodule, then it is an m-absorbing submodule of M for every integer $m \geq n$. If N is an n-absorbing submodule of M for some positive integer n, then define $\omega_{M}(N)=\min \{n \mid \mathrm{N}$ is an n-absorbing submodule of M$\}$; otherwise, set $\omega_{M}(N)=\infty$ (we will just write $\omega(N)$ when the context is clear). Moreover, we define $\omega(M)=0$. Therefore, for any submodule N of M, we have $\omega_{M}(N) \in \mathbb{N} \cup\{0, \infty\}$, with $\omega(N)=1$ if and only if N is a prime submodule of M and $\omega(N)=0$ if and only if $M=N$. Then $\omega(N)$ measures, in some sense, how far N is from being a prime submodule of M. On can ask how $\omega_{M}(N)$ and $\omega_{R}\left(\left(N:_{R} M\right)\right)$ compare.

Corollary 1. Let M be an R-module.
(1) If N_{1}, \ldots, N_{k} are submodules of M, then $\omega\left(N_{1} \cap \cdots \cap N_{k}\right) \leq \omega\left(N_{1}\right)+\cdots+\omega\left(N_{k}\right)$.
(2) $\omega\left(N_{1} \cap \cdots \cap N_{n}\right) \leq n$, where N_{1}, \ldots, N_{n} are prime submodules of M.

Notation. Let R be a commutative ring and $a_{1}, a_{2}, \ldots, a_{n} \in R$. We denote by $\widehat{a_{i}}$ the element $a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{n}$. In this case the definition of an n-absorbing submodule can be reformulated as: the submodule N of the R-module M is called n-absorbing if whenever $a_{1}, \ldots, a_{n} \in R$ and $m \in M$ with $a_{1} \cdots a_{n} m \in N$, then either $a_{1} \cdots a_{n} \in\left(N:_{R} M\right)$ or $\widehat{a_{i}} m \in N$ for some $1 \leq i \leq n$.

Theorem 3. Let M be an R-module and N a p-primary submodule of M such that $p^{n} M \subseteq N$. Then N is an n-absorbing submodule of M. Moreover, $\omega(N) \leq n$. In particular, if M is a multiplication module and $p^{n} M$ is a p-primary submodule of M, then $p^{n} M$ is an n-absorbing submodule of M. Moreover, $\omega\left(p^{n} M\right) \leq n$.

Proof. Assume that $a_{1}, \ldots, a_{n} \in R$ and $m \in M$ with $a_{1} \cdots a_{n} m \in N$ such that $\widehat{a_{i}} m \notin N$ for every $1 \leq i \leq n$. For every $1 \leq i \leq n$, as $a_{i} \widehat{a_{i}} m \in N$ with $\widehat{a_{i}} m \notin N$ and N is a p-primary submodule of M, we have $a_{i} \in p$. Consequently, $a_{1} \cdots a_{n} \in p^{n} \subseteq$ $\left(N:_{R} M\right)$, that is, N is an n-absorbing submodule of M.

Let R be a ring with identity and M an R-module. Then $R(M)=R(+) M$ with multiplication $(a, m)(b, n)=(a b, a n+b m)$ and with additition $(a, m)+(b, n)=$ $(a+b, m+n)$ is a commutative ring with identity and $0(+) M$ is a nilpotent ideal of index 2. The ring $R(+) M$ is said to be the idealization of M or trivial extension of R by M. We view R as a subring of $R(+) M$ via $r \rightarrow(r, 0)$. An ideal H is said to be homogeneous if $H=I(+) N$ for some ideal I of R and some submodule N of M; whence $I M \subseteq N[14]$.

Theorem 4. Let I be an ideal of R and N a submodule of M. Let $I(+) N$ be an n-absorbing ideal of $R(M)$ such that $I(+) N$ is a homogeneous ideal of $R(M)$. Then I is an n-absorbing ideal of R and N is an n-absorbing submodule of M.

Proof. Assume that $I(+) N$ is an n-absorbing ideal of R. Let $a_{1}, \ldots, a_{n+1} \in R$ such that $a_{1} \cdots a_{n+1} \in I$, then $\left(a_{1}, 0\right)\left(a_{2}, 0\right) \cdots\left(a_{n+1}, 0\right) \in I(+) N$. Since $I(+) N$ is an n-absorbing ideal, then $\widehat{\left(a_{i}, 0\right)} \in I(+) N$ for some $1 \leq i \leq n$. So $\widehat{a_{i}} \in I$ for some $1 \leq i \leq n$, that is, I is an n-absorbing ideal of R. Now, let $a_{1}, \ldots, a_{n} \in R$ and $m \in M$ be such that $a_{1} \cdots a_{n} m \in M$. Since $I(+) N$ is a homogenous ideal of $R(M)$, we have $\left(a_{1}, 0\right)\left(a_{2}, 0\right) \cdots\left(a_{n}, 0\right)(0, m) \in I(+) N$. Since $I(+) N$ is an n-absorbing ideal of $R(+) M$, either $\left(a_{1}, 0\right) \cdots\left(a_{n}, 0\right) \in I(+) N$ or there exist $n-1$ of $\left(a_{i}, 0\right)^{\prime} s$ whose product with $(0, m)$ is in $I(+) N$. Then $a_{1} \cdots a_{n} \in I \subseteq\left(N:_{R} M\right)$ or there are $n-1$ of a_{i} 's whose product with m is in N. Hence N is an n-absorbing submodule of M.

Recall that a proper ideal I of an integral domain R is said to be divided if $I \subset R c$ for every $c \in R \backslash I,[11]$ and [6]. Generalizing this idea to modules we say that a proper submodule N of an R-module M is divided if $N \subset R m$ for all $m \in M \backslash N,[3]$.

Lemma 1. Let R be a commutative ring and let M be a finitely generated faithful multiplication R-module. If P is a divided prime submodule of M, then $\left(P:_{R} M\right)$ is a divided prime ideal of R.

Proof. [3, Proposition 6].
Theorem 5. Let R be a commutative ring, M a finitely generated faithful multiplication R-module, and $P=p M$ a divided prime submodule of M, where $p=\left(P:_{R} M\right)$ is a prime ideal of R. If M-rad $N=P$ and N is an n-absorbing submodule of M for some positive integer n, then N is p-primary.
Proof. Note first that by [21, Theorem 2.12], $M-\operatorname{rad} N=\sqrt{\left(N:_{R} M\right)} M$. On the other hand, $M-\operatorname{rad} N=P=p M$ by [21, Corollary 2.11]. Moreover, every finitely generated faithful multiplication module is cancellation. So that $p=\left(P:_{R} M\right)=$ $\sqrt{\left(N:_{R} M\right)}$. Assume that $a m \in N$ but $a \notin p$. Then from $a m \in P, a \notin\left(P:_{R} M\right)$ and P prime we get $m \in P$. By Lemma $1, p$ is a divided prime ideal of R. So $p \subset R a^{n-1}$ since $a \notin p$. Therefore $P=p M \subset M a^{n-1}$, and hence $m=a^{n-1} z$ for some $z \in M$. Now it follows from $a^{n} z=a m \in N$ and $a^{n} \notin\left(N:_{R} M\right)$ that $m=a^{n-1} z \in N$ since N is assumed to be n-absorbing. This shows that N is a p-primary submodule of M.

Theorem 6. Let R be a ring and let M be a finitely generated faithful multiplication R-module. Let $N i l(M) \subset P$ be divided prime submodules of M. Then P^{n} is a $\left(P:_{R} M\right)$-primary submodule of M, and thus P^{n} is an n-absorbing submodule of M with $\omega\left(P^{n}\right) \leq n$, for every positive integer n.

Proof. Since M is a faithful multiplication module, we have $\operatorname{Nil}(M)=\operatorname{Nil}(R) M$ by [2, Theorem 6]. On the other hand, M is a cancellation module by [21, Theorem 3.1]. Therefore $\operatorname{Nil}(R) \subset\left(P:_{R} M\right)$ are divided prime ideals of R by Lemma 1. It follows now from [5, Theorem 3.3] that $\left(P:_{R} M\right)^{n}$ is a $\left(P:_{R} M\right)$-primary ideal of R. Hence $P^{n}=\left(P:_{R} M\right)^{n} M$ is a $\left(P:_{R} M\right)$-primary submodule of M by [12, Corollary 2]. Therefore P^{n} is n-absorbing by Theorem 3 .

Corollary 2. Let R be an integral domain and let M be a faithful multiplication prime R-module. Assume that P is a nonzero divided prime submodule of M. Then P^{n} is an n-absorbing submodule of M for every positive integer n.

Proof. Since R is an integral domain and M is a prime module, then $\operatorname{Nil}(M)=0$ is a divided prime submodule of M by [2, Theorem 6].

Theorem 7. Let R be a Noetherian ring and let M be a finitely generated R-module. Then every non-zero proper submodule of M is an n-absorbing submodule of M for some positive integer n.

Proof. Let N be a p-primary submodule of M. So $\left(N:_{R} M\right)$ is a p-primary ideal of R. Since R is a Noetherian ring, there exists a positive integer m for which $p^{m} \subseteq\left(N:_{R} M\right)$. Thus N is an m-absorbing submodule of M by Theorem 3. Now assume that K is a proper submodule of M. Since M is a Noetherian module, K is representable. Assume that $K=N_{1} \cap \cdots \cap N_{k}$ is a primary decomposition of K,
where N_{i} is a p_{i}-primary submodule of M for any $1 \leq i \leq n$. By the first part, each $N_{i}(1 \leq i \leq n)$ is an m_{i}-absorbing submodule of M for some positive integer m_{i}. Now K is an n-absorbing submodule in which $n=m_{1}+\cdots+m_{k}$. Therefore the result follows.

Let R be a commutative ring. The concept of strongly n-absorbing ideals of R was introduced and studied in [5]. A proper ideal I of R is said to be a strongly n-absorbing ideal of R if whenever $I_{1} \cdots I_{n+1} \subseteq I$ for ideals I_{1}, \ldots, I_{n+1} of R, then the product of some n of the I_{i} 's is in I. It is clear that a strongly n-absorbing ideal of R is also an n-absorbing ideal of R, and in [7, Theorem 2.13], it was shown that these two concepts agree when $n=2$. In [5, Corollary 6.9] it is shown that they agree for Prüfer domains, and it is conjectured that these two concepts agree for all positive integers n. Now let M be an R-module. It is easy to show that a proper submodule N of M is prime if and only if whenever $I L \subseteq N$ for an ideal I of R and a submodule L of M, then either $L \subseteq N$ or $I \subseteq\left(N:_{R} M\right)$. Let n be a positive integer. We say that a proper submodule N of an R-module M is a strongly n-absorbing submodule, if whenever $I_{1} I_{2} \cdots I_{n} L \subseteq N$ for ideals $I_{1}, I_{2}, \ldots, I_{n}$ of R and submodule K of M, then either $I_{1} I_{2} \cdots I_{n} \subseteq\left(N:_{R} M\right)$ or there are $n-1$ of the I_{j} 's whose product with L is contained in N. Thus a strongly 1-absorbing submodule is just a prime submodule, and the intersection of n prime submodules of M is a strongly n-absorbing submodule of M. It is also clear that every strongly n-absorbing submodule of M is an n-absorbing submodule of M.

If N is a strongly n-absorbing submodule of M for some positive integer n, then we define $\omega_{M}^{*}(N)=\min \{n \mid \mathrm{N}$ is a strongly n-absorbing submodule $\}$; otherwise set $\omega_{M}^{*}(N)=\infty$ and $\omega_{M}^{*}(M)=0$. Then $\omega_{M}^{*}(N)=1$ if and only if N is a prime submodule of M, and $\omega_{M}(N) \leq \omega_{M}^{*}(N)$. Then $\omega_{M}^{*}(N) \in \mathbb{N} \cup\{0, \infty\}$. Also, we define $\Omega^{*}(M)=\left\{\omega_{M}^{*}(N) \mid \mathrm{N}\right.$ is a proper submodule $\}$; so $\{1\} \subseteq \Omega^{*}(M) \subseteq \mathbb{N} \cup\{\infty\}$. Always $\omega^{*}\left(N_{1} \cap \cdots \cap N_{m}\right) \leq \omega^{*}\left(N_{1}\right)+\cdots+\omega^{*}\left(N_{m}\right)$.

3. 2-absorbing submodules in multiplication modules

In this section we study 2 -absorbing submodules of some specific modules M (e.g. Dedekind module, Prüfer module, etc.), where M is a multiplication module.

Lemma 2. Let R be an integral domain and M a Bézout finitely generated faithful multiplication R-module. If N is a 2 -absorbing submodule and P a prime submodule of M such that $M-\operatorname{rad} N=P$, then $P^{2} \subseteq N$. In particular, this holds if M is a valuation module.

Proof. Since R is an integral domain and M is a Bézout faithful multiplication R-module, then R is a Bézout ring by [1, Proposition 2.2]. On the other hand, by Proposition $1,\left(N:_{R} M\right)$ is a 2-absorbing ideal of R since N is assumed to be a 2-absorbing submodule of M. As M-rad $N=P$, there exists a prime ideal p or R with $P=p M$. As M is a finitely generated faithful multiplication module, we have $\sqrt{\left(N:_{R} M\right)}=p$ by [21, Theorem 2.12, Theorem 3.1]. Consequently, $p^{2} \subseteq\left(N:_{R} M\right)$ by [5, Lemma 5.1]. Now we have $P^{2}=p^{2} M \subseteq\left(N:_{R} M\right) M=N$. The "In particular" statement is clear.

The next result shows that 2-absorbing submodules of a valuation module M are of the form P^{m}, where P is a prime submodule of M and $m=1$ or 2 .

Theorem 8. Let R be a an integral domain, and M a finitely generated faithful multiplication R-module. In addition, if M is a valuation module, then the following statements are equivalent for a submodule N of M :
(1) N is a 2-absorbing submodule of M.
(2) N is a p-primary submodule of M for some prime ideal p of R with $p^{2} M \subseteq N$.
(3) $N=P$ or P^{2} for some prime submodule $P(=M-\operatorname{rad} N)$ of M.

Proof. $(1) \Rightarrow(2)$ Assume that N is a 2-absorbing submodule of M. Then $\left(N:_{R} M\right)$ is an n-absorbing ideal of R by Proposition 1. Moreover, M is a valuation module, so R is a valuation domain by [1, Proposition 2.2]. It follows that $\sqrt{\left(N:_{R} M\right)}=p$ is a prime ideal of R, and $\left(N:_{R} M\right)$ is a p-primary ideal of R with $p^{2} \subseteq\left(N:_{R} M\right)$ by $[5$, Lemma 5.5]. Thus N is a p-primary submodule of M with $p^{2} M \subseteq\left(N:_{R} M\right) M=N$.
(2) \Rightarrow (3) Assume that N is a p-primary submodule of M wit $p^{2} M \subseteq N$. In this case $\left(N:_{R} M\right)$ is a p-primary ideal of R. Moreover, it follows from $p^{2} M \subseteq\left(N:_{R}\right.$ $M) M$ that $p^{2} \subseteq\left(N:_{R} M\right)$ by [21, Theorem 3.1]. Now, by [13, Theorem 17.3], $\left(N:_{R}\right.$ $M)=p$ or p^{2} with $p=\sqrt{\left(N:_{R} M\right)}$. In this case $N=\left(N:_{R} M\right) M=p M$ or $(p M)^{2}$, where $P:=p M$ is a prime submodule of M with $P=p M=\sqrt{\left(N:_{R} M\right)} M$ by [21, Theorem 2.12].
(3) \Rightarrow (1) Assume that $N=P$ or P^{2} for some prime submodule $P(=M-\operatorname{rad} N)$ of M. If $N=0$, then it is 2 -absorbing as M is assumed to be faithful. Moreover, there will be nothing to prove if $N=P$. So we may assume that $0 \neq N \neq P^{2}$. Since M is a valuation module, $\operatorname{Nil}(M) \subset P$ are divided prime submodules of M. In this case, $N=P^{2}$ is a 2 -absorbing submodule of M by Theorem 6 .

Theorem 9. Let R be a commutative ring and M a faithful multiplication R-module.
(1) If M is a Dedekind module and if N is a 2-absorbing submodule of M, then either N is a maximal submodule of M or $N=N_{1} N_{2}$ for maximal submodules N_{1}, N_{2} of M.
(2) If M is a Prüfer module and N a nonzero 2-absorbing submodule of M, then N is a prime submodule of M or $N=p^{2} M$ is a p-primary submodule of M or $N=P_{1} \cap P_{2}$, where P_{1} and P_{2} are nonzero prime submodules of M.

Proof. (1) Assume that M is a Dedekind module. Then R is a Dedekind domain by [18, Theorem 3.5]. Now assume that N is a 2 -absorbing submodule of M. Then $\left(N:_{R} M\right)$ is a 2 -absorbing ideal of R by Proposition 1. Consequently, by [5 , Theorem 5.1], either $\left(N:_{R} M\right)$ is a maximal ideal of R or $\left(N:_{R} M\right)=\underline{m}_{1} \underline{m}_{2}$ for maximal ideals $\underline{m}_{1}, \underline{m}_{2}$ of R. It follows from [21, Theorem 2.5] that either $N=\left(N:_{R}\right.$ $M) M$ is a maximal submodule of M or $N=N_{1} N_{2}$ for maximal submodules $N_{1}=$ $\underline{m}_{1} M$ and $N_{2}=\underline{m}_{2} M$ of M.
(2) Since M is a Prüfer faithful multiplication module, R is a Prüfer domain by [10, Theorem 3.6]. Hence $\left(N:_{R} M\right)$ is a 2-absorbing ideal of R by Proposition

1. It follows now from [7, Theorem 3.14] that $\left(N:_{R} M\right)$ is a prime ideal of R or $\left(N:_{R} M\right)=p^{2}$ is a p-primary ideal of R or $\left(N:_{R} M\right)=p_{1} \cap p_{2}$, where p_{1} and p_{2} are nonzero prime ideals of R. Hence, by [21, Theorem 2.11] and [12, Corollary 2], $N=\left(N:_{R} M\right) M$ is a prime submodule of M or $N=p^{2} M$ is a p-primary submodule of M or $N=P_{1} \cap P_{2}$, where $P_{1}=p_{1} M$ and $P_{2}=p_{2} M$ are nonzero prime submodules of M.

Acknowledgement

The authors would like to thank the referees for their valuable comments and suggestions on the earlier version of the manuscript which improved it a lot.

References

[1] M. M. Ali, Invertibility of multiplication modules, New Zealand J. Math. 35(2006), 17-29.
[2] M. M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra 36(2008), 4620-4642.
[3] M. M. Ali, Invertibility of multiplication modules III, New Zealand J. Math. 39(2009), 193-213.
[4] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 27(2003), 1715-1724.
[5] D. F. Anderson, A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39(2011), 1646-1672.
[6] A. Badawi, On divided commutative rings, Comm. Algebra 27(1999), 1465-1474.
[7] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75(2007), 417-429.
[8] A. Badawi, A. Yousefian Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math., to appear.
[9] M. Baziar, M. Behboodi, Classical primary submodules and decomposition theory of modules, J. Algebra Appl. 8(2009), 351-362.
[10] Y. Hwan Cho, On multiplication modules (II), Comm. Korean Math. Soc. 13(1998), 727-733.
[11] D. E. Dobbs, Divided rings and going down, Pacific J. Math. 67(1976), 353-363.
[12] S. Ebrahimi Atani, F. Callalp, Ü. Tekir, A short note on the primary submodules of multiplication modules, Inter. J. Algebra, 8(2007), 381-384.
[13] R. Gilmer, Multiplicative ideal theory, Marcel Dekker Inc., New York, 1972.
[14] J. A. Huckaba, Commutative rings with zero-divisors, Marcel Dekker Inc., New York, 1988.
[15] M. D. Larsen, P. J. MacCarthy, Multiplicative theory of ideals, Academic Press, New York, 1971.
[16] C. P. Lu, Spectra of modules, Comm. Algebra 10(1995), 3741-3752.
[17] H. Matsumara, Commutative ring theory, Cambridge University Press, Cambridge, 1986.
[18] A. G. Naoum, F. H. Al-Alwan, Dedekind modules, Comm. Algebra. 24(1996), 397412.
[19] R. Y. Sharp, Steps in commutative algebra, London Mathematical Society, London, 1990.
[20] P. F. Smith, Some remarks on multiplication modules, Arch. Math. 50(1988), 223235.
[21] P. F. Smith, Z. El-Bast, Multiplication modules, Comm. Algebra 16(1988), 755-799.
[22] A. Yousefian Darani, F. Soheilnia, 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9(2011), 577-584.

[^0]: ${ }^{*}$ Corresponding author. Email addresses: yousefian@uma.ac.ir (A.Y.Darani), soheilnia@gmail.com (F. Soheilnia)

