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Abstract. A fundamental weakness of the Data Envelopment Analysis (DEA) is its weak
discrimination in cases when a small number of decision making units are compared. There-
fore, in such cases the basic DEA model (optimistic and pessimistic) is used in combination
with other methods or additional constraints are added to the model. In this paper, the
cross-efficiency method was combined with a self-ranking procedure which uses the Po-
tential Method (PM). The results are similar to those of Wang and others [15] based on
the Geometric Mean (GM). Another interesting result is that a preorder “domination by
inputs” and ordinal ranking derived from it produce results very close to those obtained by
GM and PM.
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Key words: multi–criteria decision making, DEA, cross–efficiency, potential method, self–
ranking

1. Introduction. DEA

Data Envelopment Analysis (DEA) is a well known tool for evaluating the perfor-
mance of manufacturing and service activities. It is widely used for evaluations of
banks, hospitals and production plans with multiple inputs and outputs. The main
idea is to calculate the efficiency score of such Decision Making Unit (DMU) as:

eff =
weighted sum of outputs
weighted sum of inputs

.

In situations when the weights are determined or known, the most efficient DMU is
easily determined. Otherwise, the problem is much more sophisticated. The model
proposed by Cooper at all. [8] calculates the weights and the relative efficiency score
of a test dmuo, o ∈ {1, . . . , n} by solving the maximization problem given bellow,
assuming that there are n DMUs, m inputs and s outputs:

max
u≥0,v≥0

θo :=
∑s

r=1 uryro∑m
i=1 vixio

, (1)
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s.t. θj :=
∑s

r=1 uryrj∑m
i=1 vixij

≤ 1, ∀j ∈ {1, . . . , n},

ur, vi ≥ 0, ∀r ∈ {1, . . . , s}, i ∈ {1, . . . , m},

where

yro = an amount of r-th output for o-th dmuo

xio = an amount of i-th input for o-th dmuo.

The fractional maximization (1) may be converted to an LP problem:

max θo =
s∑

r=1

uryro, (2)

s.t.
m∑

i=1

vixio = 1 ,

s∑
r=1

uryrj −
m∑

i=1

vixij ≤ 0, ∀j

ur, vi ≥ 0 ∀r, i,

which is iterated n times to identify the relative efficiency of dmuo its input and
output weights that maximize its efficiency score. DMU is efficient (optimistic ef-
ficient) if it obtains the score equal to 1, otherwise it is inefficient. In further text
we denote a vector of optimal output weights for dmuo by uo and the vector of the
optimal input weights for dmuo by vo.

Pessimistic efficiency may be obtained by the following pessimistic DEA model:

min
u≥0,v≥0

ψo :=
∑s

r=1 uryro∑m
i=1 vixio

, (3)

s.t. ψj :=
∑s

r=1 uryrj∑m
i=1 vixij

≥ 1, ∀j ∈ {1, . . . , n},

ur, vi ≥ 0, ∀r ∈ {1, . . . , s}, i ∈ {1, . . . , m}.

The equivalent pessimistic LP model is:

min ψo =
s∑

r=1

uryro, (4)

s.t.
m∑

i=1

vixio = 1 ,

s∑
r=1

uryrj −
m∑

i=1

vixij ≥ 0 ∀j

ur, vi ≥ 0 ∀r, i,
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Beside its discriminatory power DEA allows the identification of targets for im-
provements (benchmarking). Both have certain limitations. Benchmarks od ineffi-
cient DMU may be different in the operating structure or even nonexistent in reality.
Doyle and Green [9] tried to overcome this problem using performance-based cluster-
ing methods to identify more appropriate benchmarks. This problem is not discussed
here.

At a glance, traditional DEA models offer efficiency score as a value function for
ranking inefficient DMUs. This may be wrong because some inefficient DMU may
be better overall performers than certain efficient ones. This is mainly because of
the unrestricted flexibility of the weights (Wong and Beasley [16]).

1.1. Cross-efficiency

The aim of this article is to improve the discriminatory power of DEA using the
cross-efficiency approach introduced by Sexton et al. [14]. The idea of this approach
is to evaluate the performance of one DMU with respect to the optimal input and
optimal output weights of another DMU. The cross-efficiency matrix (CEM) may
be built to capture all cross-performances and used to calculate ’overall’ preferences
among DMUs. Despite the non-uniqueness of optimal weights, CEM is well defined.
The matrix element cij of CEM in i-ith row and j-th column of CEM represents the
efficiency of dmuj when evaluated with the optimal weights of dmui, i.e.

cij = effj(ui, vi) (5)

We expect that ’good’ DMU has several high values in its column.
Some authors (Boussofiane et. al. [3]) computed the means of each column of

the cross-efficiency matrix C to differentiate between good and poor performers.
Jing and Zhao [10] use those weights to calculate the weighted mean of the rows of
CEM to obtain new (improved) relative weights. Iterating their argument, we may
proceed to obtain ’robust’ weights of the aggregation operator

ΦC(u) :=
uC

‖uC‖1 ,

where ‖·‖1 represents 1-norm. It is obvious from Perron’s theorem that the iterative
procedure

un+1 = ΦC(un), n ∈ N,

converges to the unique positive left eigenvector of C which is independent of u0 ∈ Σ.
This eigenvector represents the required weights. We shall use this idea to calculate
the ’robust’ weights as a fixed point of a self-aggregation operator.

1.2. Self-ranking

Our approach resembles the Multicriteria Decision Making Analysis (MCDA). CEM
may be considered as a decision table with columns which correspond to the set of
states, and rows which corresponds to the set of actions. Evidently, both sets are
equal (the set od all DMUs) and CEM offers all information about the feedback
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connectivity between DMUs. The point is that the probabilities of the states are
not known, and whatever multicriteria aggregation procedure Φ we use, we should
be aware that real weights should be robust in the following sense

Φ(w) = w and w > 0, (6)

where Φ : Σ → Σ is a self-aggregation procedure defined on the standard simplex
Σ := {ξ ∈ Rn | ∑n

j=1 ξj = 1, ξj ≥ 0 ∀j}. In other words, the robust priority vector is
a fixed point of the self-aggregation operator. The non-negativity of the fixed point
means that all states should be ’counted’.

In principle, priorities may be calculated for all DMUs or only for efficient DMUs.
In the first case we talk about global ranking, otherwise we talk about reduced ranking
(of the efficient DMUs only). Both of them use CEM. Instead of a decision table we
consider a network with feedback. The nodes of the network are DMUs, and each
node influences the other nodes with information given in CEM. We may restrict
the zone of influence of each node to all nodes, except the node in consideration
(figure 1). The reason for that is the high self-estimation of each node in CEM

DMU1

DMU1 DMU2 DMU3
...

DMUn

DMU2

DMU1 DMU2 DMU3
...

DMUn

DMU3

DMU1 DMU2 DMU3
...

DMUn

...
DMUn

DMU1 DMU2 DMU3
...

DMUn

Figure 1: The influence zone of each node in the network with feedback

that we want to avoid. The same effect is achieved if we delete the main diagonal
in CEM. Classical aggregation procedures, like the weighted arithmetic (geometric)
mean or the eigenvalue method (Saaty [13]) may not be applied now without further
improvements because of the missing data. A potential method (PM), developed by
the first author, is a natural extension of AHP for such networks. PM is intuitively
clear and more flexible than the eigenvalue method.

DMU1 DMU2 DMU3 ... DMUn

Optimistic CEM Pessimistic CEM

DMU1 DMU2 DMU3
...

DMUnDMU1 DMU2 DMU3
...

DMUn

Figure 2: The zones of influence in the self-dual optimistic-pessimistic hierarchy

Moreover, we may combine optimistic CEM and pessimistic CEM introduced by
Parkan & Wang [12] and Paradi et all. [11]. In that case the zone of influence of
each node is given by the self-dual hierarchy in figure 2. The relative weights of
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optimistic and pessimistic CEM in that hierarchy may be given arbitrary, but we
used equal weights.

1.3. Direct ranking

Yet another ranking procedure may be applied, the direct PM ranking, which use
a modified input-output modification of PM and overrides CEM. The details may
be found in Čaklović [5]. Roughly speaking, input data may be considered as a
logarithm of some other values. This allows us to interpret the difference of the
input and output flow at each node (DMU) as a ratio of the weighted geometric
mean of inputs and the weighted geometric mean of outputs for that node. The
weights should be done a priori. The advantage of this method is that negative
values are allowed as input, as well as positive values.

In order to decide whether data should be preferred for consideration as nominal
values or as the logarithm of the nominal values, it is necessary to estimate the
productivity change for each approach separately. To avoid the discussion about
measuring the productivity change we refer the reader to Angelidis & Lyroudi [2].
In practice, there is no significant difference in direct ranking if we use nominal
values or their logarithm.

2. The model. Potential method and self-duality.

2.1. Single-criterion case

In the Potential Method, a decision maker’s preferences are captured in a directed
weighted graph (V,A), where the set of nodes V is the set of alternatives, and the
elements of the arcs set A are pairs of compared nodes. An arc α = (a, b) is directed
towards the more preferred node (here a). The (non-negative) weight of an arc α
represents the strength of the preference on some scale, we named it the preference
flow (in notation Fα). This means that F is a non-negative function on the set of
arcs. Formally, a decision process is a procedure (function) which associates (to F)
a function X on the set of nodes V . In the literature, X has different names: a value
function, utility, ranking . . . we named it potential because of a certain similarity of
the model with the electric circuit.

In further text we identify the vector space of nodes by Rn, where n is the number
of nodes and the vector space generated by arcs by Rm, where m is the number of
arcs. The incidence matrix A is m× n matrix defined as:

aα,v =





−1, if α leaves node v

1, if α enters node v

0, otherwise.

We shall write aij where i is the index of i-th arc and j is the index of j-th node.

Definition 1. A preference flow is consistent if the algebraic sum of the flow com-
ponents along each cycle equals zero.
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Consistency may be named ’weighted transitivity’. If the flow is a constant
function, then the consistency is equivalent to the transitivity of a binary relation
generated by the flow. The following statements are equivalent (left to the reader):

1. F is consistent.

2. F is a linear combination of columns of the incidence matrix.

3. There exists X ∈ Rn such that AX = F .

4. The scalar product yτF = 0 for each cycle y, i.e. F is orthogonal to the cycle
space.

We examine the consistency of a given flow F by solving the equation

AX = F . (7)

Readers familiar with the Analytic Hierarchy Process (AHP) may know that a
positive reciprocal preference matrix H is consistent if

hijhjk = hik, i, j, k = 1, . . ., n. (8)

Considering a logarithm of this relation one can recognize condition (7).
An inconsistent flow F we approximate by the consistent one and find the po-

tential of the consistent approximation of F . This leads to the normal equation

AτAX = AτF . (9)

Definition 2. A solution of the equation (7) or (9), if the previous one does not
exists, is called a potential of F .

For a consistent flow it is easy to find a potential X using the spanning tree of
the preference graph. Evidently, X is not unique because the constant column is an
element of the kernel N(A). The uniqueness‡ may be obtained adding a constraint

n∑

i=1

Xi = 0.

The weights wX , associated with the potential X are given by

wX =
aXξ

‖aXξ‖1 , a > 0. (10)

An argument for such a formula has its origin in the relation of a consistent positive
reciprocal matrix A and its logarithm F which is the potential difference. To obtain
the weights from the potential X, we simply return to the "exponential" domain.

‡For connected graphs only. Otherwise, the potential may be calculated for each connected com-
ponent separately.
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2.2. Aggregation of preference flows

Suppose there are several preference graphs (V,Ai) and the corresponding preference
flows F (i) over the same set of vertices. Use wi to denote the weight of i-th graph.

The overall preference flow (consensus) is a kind of a convex combination of
individual flows F (i). Before the formal summation we should define the “overall
arc(s)”. After that, the “overall preference intensity” of the arcs may be calculated.
The formal definition is the following: For a given pair α = (u, v) of alternatives we
calculate

Fα :=
k∑

i=1±α∈Ai

wiF (i)
α , (11)

where the item wiF (i)
α is taken into account if and only if α ∈ Ai or −α ∈ Ai. If

this sum is non-negative, then we include α in the set A of arcs of the consensus
graph, and we put F(α) := Fα. If it is negative, we define −α = (v, u) as an arc in
A and F(−α) := −Fα. Obviously, F ≥ 0. If Fα is not defined then u and v are not
adjacent in the consensus graph.

2.3. Self-assessment

An elementary example of self-assessment is a group of decision makers ranking
themselves. Each member of the group may include himself in his preference graph
or not, depending upon the rules, and he may use its own criteria in ranking of
others.

To simplify, we denote a group of decision makers by G = {1, 2, . . . , n} and the
preference flow of the decision maker i by F (i). Moreover, the standard simplex in
Rn is denoted by Σ = {ξ | ∑

i ξi = 1, ξ ≥ 0}. If ξ ∈ Σ is an a priori given group
ranking and FG is the consensus flow, then

∑

i∈G

ξiF (i) = FG. (12)

Because of the linearity, the same relation should take place for potentials, i.e.
∑

g∈G

ξiX
(i) = XG. (13)

If X denotes the matrix with columns X(i), i = 1, . . . , n then, the left-hand side of
the above equation may be written as a product Xξ between matrix X and column
ξ. A function

ΦX : ξ 7→ aXξ

‖aXξ‖1 (14)

defined on the standard simplex Σ to itself is well-defined and the group ranking
derived from the consensus flow should be the fixed point of ΦX , i.e

ξ = ΦX(ξ). (15)
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The existence of the fixed point is a consequence of the Brouwer’s fixed point theo-
rem, but the uniqueness needs some restrictions on ΦX .

Theorem 1. Suppose that
2 ln a‖X‖∞ < 1. (16)

Then, ΦX is a contraction and for each ξ ∈ Σ the sequence (ΦX)n(ξ) converges to
the unique fixed point ξ0 ∈ Σ of ΦX .

The proof may be found in [4]. The condition (16) may be satisfied by changing
parameter a. Moreover, for complete graphs, it may be shown that the norm ‖X‖∞
is smaller as n rises. In that case, normal equation (9) may be solved explicitly

Xi =
1
n

n∑

i=1

(AτF)i.

The right-hand side of the equation above is the flow difference for i-th node, i.e. the
difference between the input and output flow for i-th node, divided by the number
of nodes in the graph.

An example of self-assessment in context different than bank ranking, may be
found in Čaklović [6].

2.4. Aggregation of data in CEF self-assessment

As an application of Theorem 1, we calculate the importance (score) of each DMU
from the cross-efficiency table (5). Define a family of preference flows F (i), i =
1, . . . , n by

F (i)(j, k) = cij − cik. (17)

There are two options: (1) The first is to use logarithmic data, i.e. to substitute
cij ← log cij ,∀i, j which implies

FG(j, k) =
∑

i

ξi log
cij

cik

= log
∏

i

(
cij

cik

)ξi

,

where ξ ∈ Σ denotes an unknown weight vector. In other words, the component
of the consensus flow is the logarithm of the quotient of geometric means of the
corresponding columns. By substituting FG into equations (12) and using (13),
(14) we obtain equation (15) which may be solved iteratively.

(2) The second option is to use original values cij in formula (17). In the following
numerical example we used original values.
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3. A numerical example

The data in Table 4 was obtained from the China Industrial Economy Statistical
Yearbook (2001) [1]. The Original value of Fixed Assets, Current Assets and the
Gross Industrial Output value are shown in 100 million RMB (Chinese monetary
unit) and calculated at current prices. The Number of Staff and Workers at year
end is expressed in units of 10 thousand persons.

Wang and others [15] used the data to measure the efficiency of DMUs from
two different points of view: optimistic and pessimistic, and calculated the overall
efficiency as the geometric mean. This method may fail if some of the DMUs are
simultaneously at the optimistic and pessimistic frontier.

Table 2 shows DEA optimistic and DEA pessimistic scores§, the rank position
of each DMU in geometric mean scores (gm column) and the rank position in self-
ranking obtained from the cross-efficiency table (optimistic, pessimistic and aggre-
gated). cef ranking (in this example) is independent of whether we restrict the zone
of influence for each DMU, see the Figure 1.

The aggregation of cef optimistic and cef pessimistic values is done according
to hierarchy 2. This hierarchy is a self-dual hierarchy and the geometric mean is
calculated in each step of the procedure described in theorem 1. This is equivalent
to the procedure of self-ranking with the geometric mean of two cef matrices. The
result of such aggregation is given in the last column of Table 2.

3.1. Symmetric distance matrix
The symmetric distance of two rank lists is defined as a cardinal number of the sym-
metric difference (XOR) of two relations induced by those lists. A strong domination
counts 2 in the distance, and the tie counts 1.

Dist. DEAopt DEApes GM CEFopt CEFpes CEFagg

DEAopt 0 127 61 63 131 43
DEApess 127 0 66 86 124 96

GM 61 66 0 36 110 30
CEFopt 63 86 36 0 82 26
CEFpes 131 124 110 82 0 108
CEFagg 43 96 30 26 108 0

Table 1: Symmetric distance matrix for various rankings. The distance does not depend on whether
we restrict or the zone of influence for each DMU, see the Figure 1.

The symmetric distance between gm and cefagg scores is 30 which means that
those two rankings are quite close, regarding that we are dealing with a great num-
ber of DMUs. Table 1 shows pairwise distances between various rankings: dea
optimistic, dea pessimistic, gm, cef (optimistic), cef (pessimistic) and cef (ag-
gregated).

§Using CCR model.
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Values Rank position
DEA DEA GM CEF CEF CEF

No DMU Opt Pess Opt Pess Agg
1 Beijing 0.84 1.99 12 8 3 8
2 Tianjing 0.89 2.27 7 7 5 7
3 Hebei 0.84 2.26 8 10 13 9
4 Liaoning 0.7 2.1 14 14 11 14
5 Shanghai 1. 2.21 6 4 1 5
6 Jiangsu 0.98 2.96 2 3 6 2
7 Zhejiang 1. 3.05 1 1 4 1
8 Fujian 0.94 2.91 5 6 8 6
9 Shandong 1. 2.83 3 5 9 4
10 Guangdong 1. 2.82 4 2 2 3
11 Guangxi 0.72 1.95 15 18 17 16
12 Hainan 0.74 2.02 13 12 10 13
13 Shanxi 0.49 1.18 30 30 30 30
14 Neimenggu 0.61 1.56 25 26 27 24
15 Jilin 0.66 2.03 18 17 16 18
16 Heilongjiang 0.77 2.24 11 13 15 12
17 Anhui 0.67 1.82 20 20 20 20
18 Jiangxi 0.63 1.52 24 24 28 21
19 Henan 0.77 1.8 16 16 19 15
20 Hubei 0.78 2.36 9 11 12 11
21 Hunan 0.72 1.74 19 19 21 19
22 Chongqing 0.56 1.73 23 21 23 22
23 Sichuang 0.56 1.75 22 23 24 26
24 Guizhou 0.47 1.46 29 29 29 29
25 Yunnan 0.67 2.04 17 15 14 17
26 Tibet 0.32 1. 31 31 31 31
27 Shaanxi 0.54 1.68 27 27 25 27
28 Gansu 0.58 1.64 26 25 26 25
29 Qinghai 0.52 1.37 28 28 18 28
30 Ningxia 0.57 1.75 21 22 22 23
31 Sinkiang 0.82 2.23 10 9 7 10

Table 2: Optimistic and pessimistic DEA scores and the geometric mean
(GM) compared to Cross-Efficiency (optimistic and pessimistic view)

The distance may be understood also as the Kendall tau rank correlation coeffi-
cient (or some other type of correlation) — the distance matrix is ’proportional’ to



DMU-efficiency by modified cross-efficiency approach 569

the given one.

3.2. Ordinal ranking

An interesting question is what may be said about DMUs ranking taking regarding
only domination by inputs? First, we rescale the data in Table 4 in such a way that
the output value for each DMU becomes 1. Then, for two DMUs a and b we say
that a dominates b, in notation a < b, if x(a) ≥ x(b) by components, where x(a)
and x(b) are input vectors of a and b. Domination < on the set of all DMUs is a
partial order (transitive, reflexive and antisymmetric relation).

This order (in our example) is represented as a directed graph in which an ordered
pair (b, a) is an arc iff a < b (figure 3). To simplify, transitive arcs, i.e. the arcs
that have a parallel directed path are not shown. The nodes Zhejiang, Shanghai
and Shandong are not dominated by some other nodes. They are simultaneously
efficient in DEA optimistic approach.

One possible ranking of the nodes in such a graph may be done calculating the
difference Φ between ingoing and outgoing arcs for each node. A function Φ : V → R
we call the flow difference. In table 3 we calculated a symmetric distance from the or-
dering OrdΦ generetad by Φ and other orderings: deaopt,deapes,gm,cefopt,cefpes

and cefagg. The closest one is cefopt followed by cefagg and gm.

Dist. OrdΦ

DEAopt 91

DEApes 98

GM 56

CEFopt 50

CEFpes 108

CEFagg 54

Table 3: Symmetric distance from ordinal ranking generated by Φ to other types of rankings

Ordinal ranking of this type seems to be informative and not far from other
rankings because the relation of weak domination has 296 elements (pairs), quite
enough information to perform some ranking list. We are not discussing other ordinal
aggregation procedures, Cook & others [7] gave a review of them and suggested some
interesting algorithms.

Theorem 2. If (S, <) is a partial order on a finite set S, then a flow difference Φ
satisfies: a < b =⇒ Φ(a) ≥ Φ(b).

Moreover, partial < may be extended up to a complete (total) order <′ such that

a <′ b ⇐⇒ Φ(a) ≥ Φ(b).

Proof. Because of the reflexivity of < the following functions U, V : S → N are well
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defined:

V (a) := #{x ∈ S | a < x}
U(a) := #{x ∈ S | x < a}.

Evidently,

Φ(a) = V (a)− U(a),
a < b =⇒ Φ(a) ≥ Φ(b)

and

Φ(a) > Φ(b) =⇒ ¬(b < a)

which implies that < may be extended up to a complete (total) order <′ by

a <′ b ⇐⇒ Φ(a) ≥ Φ(b).

The claim is now straightforward;

a < b =⇒ a <′ b =⇒ Φ(a) ≥ Φ(b).

Shanghai

1

141822 23 28 2930

2

4

10

121517

8

3

Shandong

11 1621 25

Zhejiang

6

31

20

13

Tibet

27

19

24

Figure 3: Partial ordering domination by input represented as a digraph. Transitive arcs are
removed for simplicity. Zhejiang, Shanghai and Shandong respectively are efficient in DEA opti-
mistic approach.
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Inputs Output

DMU Original value
of fixed
assets

Current
assets

Number of staff
and workers at year

end

Gross industrial
output value

Beijing 2402.79 2005.63 113.13 2565.38
Tianjing 2488.60 1787.41 120.19 2606.38
Hebei 3532.84 2000.19 269.75 3426.05
Liaoning 5372.79 3155.9 295.18 4249.46
Shanghai 5373.06 4370.38 204.94 6204.52
Jiangsu 6181.57 5499.34 518.19 10452.87
Zhejiang 3753.68 3377.81 323.22 6603.65
Fujian 2032.18 1401.27 155.55 2616.12
Shandong 6297.37 4076.79 522.37 8311.53
Guangdong 8005.77 6891.49 572.79 12480.93
Guangxi 1296.41 684.22 91.25 1003.24
Hainan 264.43 156.70 12.00 202.87
Shanxi 2170.68 1221.05 183.56 1216.86
Neimenggu 1385.74 603.7 85.34 748.97
Jilin 1833.04 1291.93 134.85 1679.91
Heilongjiang 3233.51 1567.07 195.17 2460.88
Anhui 1880.95 1212.57 162.61 1661.44
Jiangxi 1154.45 730.33 108.85 932.21
Henan 3447.01 2216.51 345.20 3494.96
Hubei 2989.31 1941.97 230.36 3064.43
Hunan 1947.23 1107.19 166.71 1627.94
Chongqing 1151.58 865.97 90.79 962.32
Sichuang 2917.04 1845.51 208.00 2076.96
Guizhou 913.15 676.07 68.34 631.64
Yunnan 1409.92 812.81 77.07 1063.36
Tibet 59.58 25.62 2.92 16.43
Shaanxi 1730.35 1084.49 124.98 1184.58
Gansu 1165.68 713.65 91.25 840.58
Qinghai 505.81 223.06 15.87 196.08
Ningxia 362.21 212.73 22.41 239.11
Sinkiang 1387.56 578.79 46.52 852.01

Table 4: Data for 31 provinces, municipalities and autonomous regions
of China in the year 2000
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4. Conclusion

In this paper we integrated the self-ranking procedure of the Potential Method and
the classical DEA CCR-model for better differentiation of DMUs. A key connection
between those two methods is a cross-efficiency matrix defined by (5). A cross-
efficiency matrix uses the input and output weights of each DMU to calculate the
performances of other units, which is a preparation step before making a consensus
over the group of all DMUs. The consensus is done using an iterative process which
calculates group weights as a fixed point of a self-aggregation procedure.

The same procedure may be done using optimistic and pessimistic cross-efficiency
matrices as criteria to obtain a self-dual hierarchy 2 and calculate the fixed point
of this hierarchy. The results seem to be close to those by Wang and others [15]
obtained as the geometric mean of pessimistic and optimistic DEA-performances.
The geometric mean method may fail if some DMUs are simultaneously at the
optimistic and pessimistic frontier.

The Potential Method allows excluding ’self-perception’ of each DMU and using
only off-diagonal entries in cross-efficiency matrix. The results do not differ much
from the results obtained using full cross-efficiency matrices.
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