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1. Introduction

Crossed modules over groups were introduced by J. H. C. Whitehead [15]. A crossed
module over a group G with kernel a G-module M represents an element in the
cohomology H3(G, M) [8]. The results on group extensions of the type of a crossed
module were also represented by the cohomology of groups [6].

Later, H-J. Baues [2] introduced crossed modules over k-algebras. Crossed mod-
ules over k-algebras which are k-split with the same kernel M and cokernel B were
classified by Hochschild cohomology H3

Hoch(B, M) [3].
In [4] the field k is replaced by a commutative ring K, and crossed modules over

K-algebras were called crossed bimodules. In particular, if K = Z one obtains crossed
bimodules over rings.

Crossed modules over groups can be defined over rings in a different way under
the name of E-systems. The notion of an E-system is weaker than that of a crossed
bimodule over rings.

Crossed modules over groups are often studied in the form of G-groupoids [5],
or strict 2-groups [1]. From this point, we represent E-systems in the form of strict
Ann-categories (also called strict 2-rings). Hence, one can use the results on Ann-
category theory to study crossed bimodules over rings.

The plan of this paper is, briefly, as follows. Section 2 is dedicated to review
definitions and some basic facts concerning Ann-categories. In Section 3, we intro-
duce the concept of an E-system and prove that there is an isomorphism between the
category of regular E-systems and that of crossed bimodules over rings. The relation
among these concepts and crossed C-modules in the sense of T. Porter[10] is also
discussed. The next section is devoted to showing a categorical equivalence of the
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category of E-systems and a subcategory of the category of strict Ann-categories,
which is an extending of the result of R. Brown and C. Spencer [5].

The group extensions of the type of a crossed module were dealt with by R.
Brown and O. Mucuk [6]. The similar results for ∂-extensions by an algebra R were
done by H-J. Baues and T. Pirashvili [4] in a particular case. In Section 5 we solve
this problem for ring extensions of the type of an E-system by Shukla cohomology
groups. Our classification result contains the result in [4] when R is a ring.

2. Ann-categories

We state a minimum of necessary concepts and facts of Ann-categories and Ann-
functors (see [11]).

A Gr-category (or a categorical group) is a monoidal category in which all objects
are invertible and the background category is a groupoid. A Picard category (or a
symmetric categorical group) is a Gr-category equipped with a symmetry constraint
which is compatible with associativity constraint.

Definition 1. An Ann-category consists of

(i) a category A together with two bifunctors ⊕,⊗ : A×A → A;

(ii) a fixed object 0 ∈ Ob(A) together with natural isomorphisms a+, c,g,d such
that (A,⊕,a+, c, (0,g,d)) is a Picard category;

(iii) a fixed object 1 ∈ Ob(A) together with natural isomorphisms a, l, r such that
(A,⊗,a, (1, l, r)) is a monoidal category;

(iv) natural isomorphisms L, R given by

LA,X,Y : A⊗ (X ⊕ Y ) −→ (A⊗X)⊕ (A⊗ Y ),
RX,Y,A : (X ⊕ Y )⊗A −→ (X ⊗A)⊕ (Y ⊗A)

such that the following conditions hold:

(Ann - 1) for A ∈ Ob(A), the pairs (LA, L̆A), (RA, R̆A) defined by

LA = A⊗− RA = −⊗A

L̆A
X,Y = LA,X,Y R̆A

X,Y = RX,Y,A

are ⊕-functors which are compatible with a+ and c;
(Ann - 2) for all A,B, X, Y ∈ Ob(A), the following diagrams commute

(AB)(X ⊕ Y ) A(B(X ⊕ Y )) A(BX ⊕ BY )

(AB)X ⊕ (AB)Y A(BX)⊕ A(BY )

?
L̆AB

¾aA,B,X⊕Y -idA⊗L̆B

?
L̆A

¾ aA,B,X⊕aA,B,Y
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(X ⊕ Y )(BA) ((X ⊕ Y )B)A (XB ⊕ Y B)A

X(BA)⊕ Y (BA) (XB)A⊕ (Y B)A

?
R̆BA

-aX⊕Y,B,A -R̆B⊗idA

?
R̆A

-aX,B,A⊕aY,B,A

(A(X ⊕ Y )B A((X ⊕ Y )B) A(XB ⊕ Y B)

(AX ⊕ AY )B (AX)B ⊕ (AY )B A(XB)⊕ A(Y B)

?
L̆A⊗idB

¾aA,X⊕Y,B -idA⊗R̆B

?
L̆A

-R̆B ¾a⊕a

(A⊕ B)X ⊕ (A⊕ B)Y (A⊕ B)(X ⊕ Y ) A(X ⊕ Y )⊕ B(X ⊕ Y )

(AX ⊕ BX)⊕ (AY ⊕ BY ) (AX ⊕ AY )⊕ (BX ⊕ BY )

?

R̆X⊕R̆Y

¾L̆A⊕B -R̆X⊕Y

?

L̆A⊕L̆B

-v

where v = vU,V,Z,T : (U⊕V )⊕(Z⊕T ) −→ (U⊕Z)⊕(V ⊕T ) is a unique morphism
constructed from ⊕,a+, c, id of the symmetric monoidal category (A,⊕);
(Ann - 3) for the unit 1 ∈ Ob(A) of the operation ⊗, the following diagrams commute

1(X ⊕ Y ) 1X ⊕ 1Y (X ⊕ Y )1 X1⊕ Y 1

X ⊕ Y X ⊕ Y.

-L̆1

Q
Q

QslX⊕Y

´
´

´́+ lX⊕lY

-R̆1

Q
Q

QsrX⊕Y

´
´

´́+ rX⊕rY

An Ann-category A is regular if its symmetry constraint satisfies the condition
cX,X = id, and strict if all of its constraints are identities.

Example 1. Let A = (A,⊕) be a Picard category whose unity and associativity
constraints are identities. Denote by End(A) a category whose objects are symmetric
monoidal functors from A to A and whose morphisms are ⊕-morphisms. Then,
End(A) is a Picard category together with the operation ⊕ on monoidal functors
and on morphisms. In this ⊕-category, the unity and associativity constraints are
identities, the commutativity constraint is given by

(c∗F,G)X = cFX,GX , X ∈ Ob(A), F,G ∈ End(A).

The operation ⊗ on End(A) is naturally defined being the composition of functors.
Then, End(A) together with two operations ⊕,⊗ is an Ann-category in which the
left distributivity constraint is given by

(L∗F,G,H)X = F̆GX,HX , X ∈ Ob(A),

and other constraints are identities (for details, see [12]).
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Example 2. Let R be a ring with an unit and M be an R-bimodule. The pair
I = (R, M) is a category whose objects are elements of R and whose morphisms are
automorphisms (r, a) : r → r, r ∈ R, a ∈ M . The composition of morphisms is given
by the addition in M . Two operations ⊕ and ⊗ on I are defined by

x⊕ y = x + y, (x, a) + (y, b) = (x + y, a + b),
x⊗ y = xy, (x, a)⊗ (y, b) = (xy, xb + ay).

The constraints of I are identities, except for left distributivity and commutativity
constraints which are given by

Lx,y,z = (•, λ(x, y, z)) : x(y + z) → xy + xz,

cx,y = (•, η(x, y)) : x + y → y + x,

where λ : R3 → M,η : R2 → M are functions satisfying the appropriate coherence
conditions.

Here are standard consequences of the axioms of an Ann-category.

Lemma 1. For every Ann-category A there exist uniquely isomorphisms

L̂A : A⊗ 0 → 0, R̂A : 0⊗A → 0,

where A ∈ Ob(A), such that ⊕-functors (LA, L̆, L̂A) and (RA, R̆, R̂A) are compatible
with unit constraints (0,g,d).

It is easy to see that if (A,⊕) and (A′,⊕) are Gr-categories, then every ⊕-functor
(F, F̆ ) : A → A′, which is compatible with associativity constraints, is a monoidal
functor. Thus, we state the following definition.

Definition 2. Let A and A′ be Ann-categories. An Ann-functor (F, F̆ , F̃ , F∗) : A →
A′ consists of a functor F : A → A′, natural isomorphisms

F̆X,Y : F (X ⊕ Y ) → F (X)⊕ F (Y ), F̃X,Y : F (X ⊗ Y ) → F (X)⊗ F (Y ),

and an isomorphism F∗ : F (1) → 1′ such that (F, F̆ ) is a symmetric monoidal
functor for the operation ⊕, (F, F̃ , F∗) is a monoidal functor for the operation ⊗,
and the following diagrams commute

F (X(Y ⊕ Z)) FX.F (Y ⊕ Z) FX(FY ⊕ FZ)

F (XY ⊕XZ) F (XY )⊕ F (XZ) FX.FY ⊕ FX.FZ

?

F (L)

-F̃ -id⊗F̃

?

L′

-F̆ -F̃⊕F̃
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F ((X ⊕ Y )Z) F (X ⊕ Y ).FZ (FX ⊕ FY )FZ

F (XZ ⊕ Y Z) F (XZ)⊕ F (Y Z) FX.FZ ⊕ FY.FZ.

?

F (R)

-F̃ -F̆⊗id

?
R′

-F̆ -F̃⊕F̃

These diagrams are called the compatibility of the functor F with the distributivity
constraints.

An Ann-morphism (or a homotopy)

θ : (F, F̆ , F̃ , F∗) → (F ′, F̆ ′, F̃ ′, F ′∗)

between Ann-functors is an ⊕-morphism, as well as an ⊗-morphism.
If there exist an Ann-functor (F ′, F̆ ′, F̃ ′, F ′∗) : A′ → A and Ann-morphisms

F ′F ∼→ idA, FF ′ ∼→ idA′ , we say that (F, F̆ , F̃ , F∗) is an Ann-equivalence, and A,
A′ are Ann-equivalent.

For an Ann-category A, the set R = π0A of isomorphism classes of the objects
in A is a ring with two operations +,× induced by the functors ⊕,⊗ on A, and the
set M = π1A = Aut(0) is a group with the composition denoted by +. Moreover,
M is a R-bimodule with the actions

sa = λX(a), as = ρX(a),

for X ∈ s, s ∈ π0A, a ∈ π1A, and λX , ρX satisfy

λX(a) ◦ L̂X = L̂X ◦ (id⊗ a) : X.0 → 0,

ρX(a) ◦ R̂X = R̂X ◦ (a⊗ id) : 0.X → 0.

We recall briefly some main facts of the construction of the reduced Ann-category
SA of A via the structure transport (for details, see [11]). The objects of SA are
the elements of the ring π0A. A morphism is an automorphism (s, a) : s → s, s ∈
π0A, a ∈ π1A. The composition of morphisms is given by

(s, a) ◦ (s, b) = (s, a + b).

For each s ∈ π0A, choose an object Xs ∈ Ob(A) such that X0 = 0, X1 = 1, and
choose an isomorphism iX : X → Xs such that iXs = idXs . We obtain two functors





G : A → SA
G(X) = [X] = s

G(X
f→ Y ) = (s, γ−1

Xs
(iY fi−1

X )),





H : SA → A
H(s) = Xs

H(s, u) = γXs(u),

for X, Y ∈ s, f : X → Y , and γX

γX(a) = gX ◦ (a⊕ id) ◦ g−1
X . (1)
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Two operations on SA are given by

s⊕ t = G(H(s)⊕H(t)) = s + t,

s⊗ t = G(H(s)⊗H(t)) = st,

(s, a)⊕ (t, b) = G(H(s, a)⊕H(t, b)) = (s + t, a + b),
(s, a)⊗ (t, b) = G(H(s, a)⊗H(t, b)) = (st, sb + at),

for s, t ∈ π0A, a, b ∈ π1A. Clearly, they do not depend on the choice of the repre-
sentative (Xs, iX).

The constraints in SA are defined by sticks. A stick of A is a representative
(Xs, iX) such that

i0⊕Xt
= gXt

, iXs⊕0 = dXs
,

i1⊗Xt
= lXt

, iXs⊗1 = rXs
, i0⊗Xt

= R̂Xt , iXs⊗0 = L̂Xs .

The unit constraints in SA are (0, id, id) and (1, id, id). The family of the
rest ones, h = (ξ, η, α, λ, ρ), is defined by the compatibility of the constraints
a+, c,a, L, R of A with the functor H and isomorphisms

H̆ = i−1
Xs⊕Xt

, H̃ = i−1
Xs⊗Xt

. (2)

Then (H, H̆, H̃) : SA → A is an Ann-equivalence. Besides, the functor G : A → SA
together with isomorphisms

ĞX,Y = G(iX ⊕ iY ), G̃X,Y = G(iX ⊗ iY ) (3)

is also an Ann-equivalence. We refer to SA as an Ann-category of type (R,M), and
(H, H̆, H̃), (G, Ğ, G̃) are canonical Ann-equivalences. The family of constraints
h = (ξ, η, α, λ, ρ) of SA is called a structure of the Ann-category of type (R,M).

Mac Lane [7] and Shukla [14] cohomomology groups at low dimensions are used to
classify Ann-categories and regular Ann-categories, respectively. A structure h of the
Ann-category SA is an element in the group of Mac Lane 3-cocycles Z3

MacL(R, M).
In the case when A is regular, h ∈ Z3

Shu(R, M).

Proposition 1 ([11, Proposition 11 ]). Let A and A′ be Ann-categories.

(i) Every Ann-functor (F, F̆ , F̃ ) : A → A′ induces an Ann-functor SF : SA → SA′
of type (p, q), where

p = F0 : π0A → π0A′, [X] 7→ [FX],
q = F1 : π1A → π1A′, u 7→ γ−1

F0(Fu),

for γ is a map given by the relation (1).

(ii) F is an equivalence if and only if F0, F1 are isomorphisms.
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(iii) The Ann-functor SF satisfies

SF = G′ ◦ F ◦H,

where H,G′ are canonical Ann-equivalences.

Let S = (R, M, h),S ′ = (R′,M ′, h′) be Ann-categories. Since F̆x,y = (•, τ(x, y)),
F̃x,y = (•, ν(x, y)), then gF = (τ, ν) is a pair of maps associated with (F̆ , F̃ ), we
thus can regard an Ann-functor F : S → S ′ as a triple (p, q, gF ). It follows from the
compatibility of F with the constraints that

q∗h− p∗h′ = ∂(gF ),

where q∗, p∗ are canonical homomorphisms,

Z3
MacL(R,M)

q∗−→ Z3
MacL(R, M ′)

p∗←− Z3
MacL(R′,M ′).

Further, two Ann-functors (F, gF ), (F ′, gF ′) are homotopic if and only if F = F ′,
that is, they are the same type of (p, q), and there exists a function t : R → M ′ such
that gF ′ = gF + ∂t.

We denote by
HomAnn

(p,q)[S,S ′]
the set of homotopy classes of Ann-functors of type (p, q) from S to S ′.

Let F : S → S ′ be an Ann-functor of type (p, q), then the function

k = q∗h− p∗h′ ∈ Z3
MacL(R,M ′) (4)

is called an obstruction of F .

Theorem 1 ([13, Theorem 4.4, 4.5]). A functor F : S → S ′ of type (p, q) is an
Ann-functor if and only if its obstruction k vanishes in H3

MacL(R, M ′). Then, there
exists a bijection

HomAnn
(p,q)[S,S ′] ↔ H2

MacL(R, M ′)(= H2
Shu(R,M ′)).

3. Crossed bimodules over rings and regular E-systems

The results on crossed bimodules can be found in [2, 3, 4, 9]. We shall show a
characteristic of crossed bimodules when the base ring K is the ring of integers Z.
Based on this characteristic, we can establish the relation between crossed bimodules
over rings and Ann-category theory in the next section.

Definition 3 (see [9]). A crossed bimodule is a triple (B, D, d), where D is an
associative K-algebra, B is a D-bimodule and d : B → D is a homomorphism of
D-bimodules such that

d(b)b′ = bd(b′), b, b′ ∈ B. (5)

A morphism (k1, k0) : (B,D, d) → (B′, D′, d′) of crossed bimodules is a pair
k1 : B → B′, k0 : D → D′, where k1 is a group homomorphism, k0 is a K-algebra
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homomorphism such that
k0d = d′k1 (6)

and
k1(xb) = k0(x)k1(b), k1(bx) = k1(b)k0(x), (7)

for all x ∈ D, b ∈ B.
The condition (7) shows that k1 is a homomorphism of D-bimodules, where B′

is a D-bimodule with the action xb′ = k0(x)b′, b′x = b′k0(x).
Below, the base ring K is the ring of integers Z, and a crossed bimodule (B, D, d)

is called a crossed bimodule over rings. Thus, D is a ring with unit.
In order to introduce the concept of an E-system, we now recall some termi-

nologies due to Mac Lane [7]. The set of all bimultiplications of a ring A is a ring
denoted by MA. For each element c of A, a bimultiplication µc is defined by

µca = ca, aµc = ac, a ∈ A

we call µc an inner bimultiplication. Then CA = {c ∈ A|µc = 0} is called the
bicenter of A.

The bimultiplications σ and τ are permutable if for every a ∈ A,

σ(aτ) = (σa)τ, τ(aσ) = (τa)σ. (8)

We now introduce the main concept of the present paper which can be seen as a
version of the concept of a crossed module over rings.

Definition 4. An E-system is a quadruple (B, D, d, θ), where d : B → D, θ : D →
MB are the ring homomorphisms such that the following diagram commutes

B D

MB

@
@Rµ

-d

¡
¡ª θ

(9)

and the following relations hold for all x ∈ D, b ∈ B,

d(θxb) = x.d(b), d(bθx) = d(b).x. (10)

An E-system (B, D, d, θ) is regular if θ is a 1-homomorphism (a homomorphism
carries the identity to the identity), and the elements of θ(D) are permutable.

A morphism (f1, f0) : (B,D, d, θ) → (B′, D′, d′, θ′) of E-systems consists of ring
homomorphisms f1 : B → B′, f0 : D → D′ such that

f0d = d′f1 (11)

and f1 is an operator homomorphism, that is,

f1(θxb) = θ′f0(x)f1(b), f1(bθx) = f1(b)θ′f0(x). (12)
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In this paper, an E-system (B, D, d, θ) is sometimes denoted by B
d→ D, or

B → D.

Example 3. If B is a two-sided ideal in D, then (B,D, d, θ) is a regular E-system,
where d is an inclusion, θ : D → MB is given by the bimultiplication type, that is,

θxb = xb, bθx = bx, x ∈ D, b ∈ B.

Example 4. Let D be a ring, B be a D-bimodule, 0 : B → D is the zero homo-
morphism of D-bimodules. B can be considered as a ring with zero multiplication
defined by b.b′ = 0(b)b′ = b0(b′) = 0, for all b, b′ ∈ B. Then, (B,D,0, θ) is a regular
E-system, where θ is given by the action of D-bimodules.

Example 5. Let B be a ring, MB be the ring of bimultiplications of B, and
µ : B → MB be the homomorphism which carries an element b in B to an in-
ner bimultiplication of B. Then (B, MB , µ, id) is an E-system. In general, this
E-system is not regular.

Standard consequences of the axioms of an E-system are as below.

Proposition 2. Let (B,D, d, θ) be an E-system.

(i) Kerd ⊂ CB.

(ii) Imd is an ideal in D.

(iii) The homomorphism θ induces a homomorphism ϕ : D → MKerd given by

ϕx = θx|Kerd.

(iv) Kerd is a Cokerd-bimodule with the actions

sa = ϕx(a), as = (a)ϕx, a ∈ Kerd, x ∈ s ∈ Cokerd.

To state the relation between regular E-systems and crossed bimodules over rings,
one recalls the following definition.

Definition 5. A functor Φ : C → C′ is an isomorphism of categories if it is bijective
on objects and on morphism sets.

Theorem 2. The categories of regular E-systems and of crossed bimodules over
rings are isomorphic.

Proof. Let sB = (B, D, d, θ) be a regular E-system. The abelian additive group B
is a D-bimodule with the actions

xb = θxb, bx = bθx, (13)

for x ∈ D, b ∈ B. It is then easy to check that the axioms of a crossed bimodule
hold. For example, the relation (5) follows from the relation (9),

d(b)b′ = θd(b)(b′)
(9)
= µb(b′) = bb′ = bµb′

(9)
= bθd(b′) = bd(b′),
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since µb, µb′ are inner bimultiplications of the ring B. Besides, the regularity of the
E-system (B,D, d, θ) is necessary and sufficient for the two-sided module B to be a
D-bimodule.

Conversely, if cB = (B, D, d) is a crossed bimodule then B has a ring structure
with the multiplication

b ∗ b′ := d(b)b′ = bd(b′), b, b′ ∈ B. (14)

Clearly, d : B → D is a ring homomorphism since for all b, b′ ∈ B,

d(b ∗ b′) = d(d(b)b′) = d(b)d(b′).

The map θ : D → MB is defined by the D-bimodule actions (13). Then, θ is a
homomorphism with image in MB , the elements of θ(D) are permutable since B
is a D-bimodule. The homomorphism θ satisfies the condition (10) since d is a
homomorphism of bimodules. Thus, the correspondence sB 7→ cB is bijective on
objects.

Now, if (f1, f0) : (B,D, d, θ) → (B′, D′, d′, θ′) is a morphism of E-systems, it is
then clear that (f1, f0) satisfies the relation (6).

Further, for all x ∈ D, b ∈ B, one has

f1(xb)
(13)
= f1(θxb)

(12)
= θ′f0(x)f1(b)

(13)
= f0(x)f1(b) = xf1(b).

Similarly, one obtains f1(bx) = f1(b)x. This means that the pair (f1, f0) is a mor-
phism of crossed bimodules.

Conversely, let (k1, k0) : (B,D, d) → (B′, D′, d′) be a morphism of crossed bi-
modules. We show that k1 is a ring homomorphism. According to the determination
of the multiplication on the ring B, we have

k1(b ∗ b′)
(14)
= k1(d(b)b′)

(7)
= k0(d(b))k1(b′)

(6)
= d′(k1(b))k1(b′)

(14)
= k1(b) ∗ k1(b′),

for all b, b′ ∈ B. Besides, the pair (k1, k0) also satisfies (12).

By the above proposition, the notion of an E-system can be seen as a weaker
version of the notion of a crossed bimodule over rings.

We now discuss the relationship among the above concepts and the concept of
a crossed module of D-structures in the category C of Ω-groups (see [10]). For
convenience, such a crossed module is called a crossed C-module. T. Porter proved
that there is an equivalence between the category of crossed C-modules and that of
internal categories in C. A crossed C-module can be described as follows.

Proposition 3 ([10, Proposition 2]). Given a D-structure on B, d : B → D is a
crossed C-module if and only if the following conditions are satisfied for all b, b1, b2 ∈
B, x ∈ D, ∗ ∈ Ω′2 ⊂ Ω

(i) d((−x) · b) = −x + d(b) + x;

(ii) (−d(b1)) · b2 = −b1 + b2 + b1;
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(iii) d(b1) ∗ b2 = b1 ∗ b2 = b1 ∗ d(b2);

(iv)

{
d(xb) = x ∗ d(b)
d(bx) = d(b) ∗ x.

Here ∗ is a binary operation which is not the group operation +, the actions x ·b, x∗b
are given by

x · b = s(x) + b− s(x),
x ∗ b = s(x) ∗ b,

where s is the morphism in the split exact sequence

0 → B
i→ E

p

À
s

D → 0.

To establish the link between these crossed C-modules and crossed modules over
rings, we take C to be a category whose objects are rings. The morphisms of C are
ring homomorphisms which are not necessarily 1-homomorphisms.

Proposition 4. Every crossed C-module is a crossed bimodule over rings.

Proof. Let d : B → D be a crossed C-module. Then d is a ring homomorphism,
and D acts on B by

xb = s(x)b, bx = bs(x), x ∈ D, b ∈ B. (15)

The map θ : D → MB is given by

θx(b) = xb, (b)θx = bx.

Since s is a ring homomorphism, so is θ. The relation (9) follows from the condition
(iii). Indeed, for b, b′ ∈ B

(θd)(b)(b′) = θdb(b′) = (db)b′ = bb′ = µb(b′).

It follows from (iv) that d(θx(b)) = d(xb) = xd(b)b. This means the relation (10)
holds, and therefore (B,D, d, θ) is an E-system.

One can see that a crossed C-module d : B → D satisfies most of the conditions
of a crossed bimodule over rings. We first see that B is a D-bimodule with the action
(15) By (iv), the ring homomorphism d : B → D is a D-bimodule. The relation
(5) follows directly from the condition (iii). Note that the ring D is not necessarily
unitary and if it has a unit, the ring B is not assumed to be a unitary D-bimodule.
These investigations show that the concept of a crossed C-module can be seen as a
weaken version of the concept of a crossed bimodule over rings.

Remark 1. Since C can be any of categories of Ω-groups, use of crossed C-modules
has resulted in various contexts. However, in each particular case there is a certain
restriction. For example, by Proposition 3 [10] Kerd is singular; while for crossed
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modules over groups, (or crossed modules over rings) Kerd is a subgroup in the
center (or the bicenter) of B.

Since rings with unit are not Ω-groups, one cannot seek a relation among the
category of crossed C-modules, cohomology of algebras and cohomology of rings.

4. Strict Ann-categories and E-systems

Crossed modules over groups are often studied in the form of strict 2-groups (see
[1, 5, 6]). In this section, we prove that E-systems and strict Ann-categories are
equivalent.

For every E-system (B, D, d, θ) we can construct a strict Ann-category A =
AB→D, called the Ann-category associated to the E-system (B,D, d, θ), as follows.
One sets

Ob(A) = D,

and for two objects x, y of A,

Hom(x, y) = {b ∈ B/y = d(b) + x}.

The composition of morphisms is given by

(x b→ y
c→ z) = (x b+c→ z).

Two operations ⊕,⊗ on objects are given by the operations +,× on the ring D. For
the morphisms, we set

(x b→ y)⊕ (x′ b′→ y′) = (x + x′ b+b′−→ y + y′),

(x b→ y)⊗ (x′ b′→ y′) = (xx′
bb′+bθx′+θxb′−−−−−−−−−→ yy′).

Based on the definition of an E-system, it is easy to verify that A is an Ann-category
with the strict constraints.

Conversely, for every strict Ann-category (A,⊕,⊗) one can define an E-system
CA = (B, D, d, θ). Indeed, let

D = Ob(A), B = {0 b−→ x| x ∈ D}.

Then, D is a ring with two operations

x + y = x⊕ y, xy = x⊗ y,

and B is a ring with two operations

b + c = b⊕ c, bc = b⊗ c.
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The homomorphisms d : B → D and θ : D → MB are defined by

d(0 b−→ x) = x,

θy(0 b−→ x) = (0
idy⊗b−−−−→ yx),

(0 b−→ x)θy = (0
b⊗idy−−−−→ yx).

The quadruple (B,D, d, θ) defined as above is an E-system.
In the following lemmas, let AB→D and AB′→D′ be Ann-categories associated

to E-systems (B, D, d, θ) and (B′, D′, d′, θ′), respectively.

Lemma 2. Let (f1, f0) : (B,D, d, θ) → (B′, D′, d′, θ′) be a morphism of E-systems.

(i) There is a functor F : AB→D → AB′→D′ defined by

F (x) = f0(x), F (b) = f1(b), x ∈ Ob(AB→D), b ∈ Mor(AB→D).

(ii) The functor F together with isomorphisms

F̆x,y : F (x + y) → Fx + Fy, F̃x,y : F (xy) → FxFy

are Ann-functor if F̆x,y and F̃x,y are constants in Kerd′ and for all x, y ∈ D
the following conditions hold:

θ′Fx(F̃ ) = (F̃ )θ′Fy = F̃ , (16)

θ′Fx(F̆ ) = (F̆ )θ′Fy = F̆ + F̃ . (17)

Then, we say that F is an Ann-functor of form (f1, f0).

Proof. i) Every element b ∈ B can be considered as a morphism (0 b→ db) in AB→D.
Then,

(F0
F (b)→ F (db))

is a morphism in AB′→D′ . By the construction of the Ann-category associated to an
E-system, F is a functor.
ii) We define the natural isomorphisms

F̆x,y : F (x + y) → F (x) + F (y), F̃x,y : F (xy) → F (x)F (y)

such that F = (F, F̆ , F̃ ) becomes an Ann-functor. First we see that

F (x) + F (x′) = F (x + x′),

so d′(F̆x,x′) = 0. Analogously, d′(F̃x,x′) = 0, thus

F̆x,x′ , F̃x,x′ ∈ Kerd′ ⊂ CB′ . (18)
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Now, for two morphisms (x b→ y) and (x′ b′→ y′) in AB→D, we have:

• F (b⊕ b′) = F (x + x′ b+b′−−−→ y + y′)

=
(
f0(x + x′)

f1(b+b′)−−−−−→ f0(y + y′)
)
,

F (b)⊕ F (b′) =
(
f0(x)

f1(b)−−−→ f0(y)
)⊕ (

f0(x′)
f1(b

′)−−−→ f0(y′)
)

=
(
f0(x) + f0(x′)

f1(b)+f1(b
′)−−−−−−−−→ f0(y) + f0(y′)

)
.

Since f1 is a ring homomorphism, one obtains

F (b⊕ b′) = F (b)⊕ F (b′). (19)

By (18) and (19), the commutative diagram

F (x + x′) F (x) + F (x′)

F (y + y′) F (y) + F (y′)

-F̆x,x′

?

F (b⊕b′)

?

F (b)⊕F (b′)

-
F̆y,y′

(20)

follows from F̆x,x′ = F̆y,y′ .

• F (b⊗ b′) = F (xx′
bb′+bθx′+θxb′−−−−−−−−−→ yy′) =

(
f0(xx′)

f1(bb′+bθx′+θxb′)−−−−−−−−−−−−→ f0(yy′)
)
,

F (b)⊗ F (b′) =
(
f0(x)

f1(b)−→ f0(y)
)⊗ (

f0(x′)
f1(b

′)−→ f0(y′)
)

=
(
f0(x)f0(x′)

f1(b)f1(b
′)+f1(b)θ

′
f0(x′)+θ′f0(x)f1(b

′)
−−−−−−−−−−−−−−−−−−−−−−−−→ f0(y)f0(y′)

)
.

By (12), f1(θxb′) = θ′f0(x)f1(b′) and f1(bθx′) = f1(b)θ′f0(x′), hence

F (b⊗ b′) = F (b)⊗ F (b′). (21)

By (18) and (21), the commutative diagram

F (xx′) F (x)F (x′)

F (yy′) F (y)F (y′)

-F̃x,x′

?
F (b⊗b′)

?
F (b)⊗F (b′)

-
F̃y,y′

(22)

follows from F̃x,x′ = F̃y,y′ . The equalities (16) and (17) come from the compatibility
of (F, F̃ ) with the associativity constraint and the distributivity ones, respectively.
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An Ann-functor F is single if F (0) = 0′, F (1) = 1′ and F̆ , F̃ are constants. Then
we state the converse of Lemma 2.

Lemma 3. Let (F, F̆ , F̃ ) : AB→D → AB′→D′ be a single Ann-functor. Then, there
is a morphism of E-systems (f1, f0) : (B → D) → (B′ → D′), where

f1(b) = F (b), f0(x) = F (x),

for b ∈ B, x ∈ D.

Proof. Since F (0) = 0′, F (1) = 1′ and F̆ , F̃ are constants, it is easy to see that
F̆ , F̃ are in Kerd′. By the determination of a morphism in AB′→D′ ,

F (x + y) = F (x) + F (y), F (xy) = F (x)F (y),

so f0 is a ring homomorphism.
Since F̆ is a constant in Kerd′, the commutative diagram (20) implies

F (b⊕ b′) = F (b)⊕ F (b′).

This means that f1(b + b′) = f1(b) + f1(b′).
Since F̃ is a constant in Kerd′, the commutative diagram (22) implies

F (b⊗ b′) = F (b)⊗ F (b′).

By the definition of ⊗,

f1(bb′) + f1(bθx′) + f1(θxb′) = f1(b)f1(b′) + f1(b)θ′f0(x′) + θ′f0(x)f1(b′). (23)

In this relation, taking b = 0 and then b′ = 0 yield

f1(θxb′) = θ′f0(x)f1(b′), f1(bθx′) = f1(b)θ′f0(x′).

Thus, (12) holds. Then, the equation (23) turns into f1(bb′) = f1(b)f1(b′), that is,
f1 is a ring homomorphism. The rule (11) also holds. Indeed, for all morphisms
(x b→ y) in AB→D, y = d(b) + x. It follows that

f0(y) = f0(d(b) + x) = f0(d(b)) + f0(x).

Besides, (f0(x)
f1(b)→ f0(y)) is a morphism in AB′→D′ , so

f0(y) = d′(f1(b)) + f0(x).

Thus, f0(d(b)) = d′(f1(b)) for all b ∈ B.

Lemma 4. Two Ann-functors (F, F̆ , F̃ ), (G, Ğ, G̃) : AB→D → AB′→D′ of the same
form are homotopic.

Proof. Suppose that F and G are two Ann-functors of form (f1, f0). By Lemma
2, F̆ , Ğ are constants. We prove that α = Ğ− F̆ is a homotopy between F and G.
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It is easy to check the naturality of α and the compatibility of α with the addition.
Besides, α is compatible with the multiplication. In other words, the following
diagram commutes

F (xy) F (x)F (y)

G(xy) G(x)G(y)

-F̃

?
α

?
α⊗α

-
G̃

. (24)

Indeed, by Lemma 2,

G̃− F̃ =(θ′Fx(Ğ)− Ğ)− (θ′Fx(F̆ )− F̆ )
=θ′Fx(α)− α.

Since α ∈ Kerd′ ⊂ CB′ , so

α⊗ α =α.α + (α)θ′Gy + θ′Gx(α)

=(α)θ′Gy + θ′Gx(α).

For y = 0, or x = 0 we have

α⊗ α = (α)θ′Gy = θ′Gx(α).

Thus,
G̃− F̃ = α⊗ α− α,

that is, (24) holds.

Two Ann-functors (F, F̆ , F̃ ) and (G, Ğ, G̃) are strong homotopic if they are ho-
motopic and F = G. By Lemma (4), one obtains the following fact.

Corollary 1. Two Ann-functors F, G : AB→D → AB′→D′ are strong homotopic if
and only if they are of the same form.

We write Annstr for the category of strict Ann-categories and their single Ann-
functors. We can define the strong homotopy category HoAnnstr to be the quotient
category with the same objects, but morphisms are strong homotopy classes of single
Ann-functors. We write HomAnnstr[A,A′] for the homsets of the homotopy category,
that is,

HomAnnstr[A,A′] =
HomAnnstr(A,A′)
strong homotopies

.

Denote by ESyst the category of E-systems, we obtain the following result which is
an extending of Theorem 1 [5]

Theorem 3 (Classification Theorem). There exists an equivalence

Φ : ESyst → HoAnnstr
(B → D) 7→ AB→D

(f1, f0) 7→ [F ],
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where F (x) = f0(x), F (b) = f1(b), for x ∈ ObA, b ∈ MorA.

Proof. By Corollary 1, the correspondence Φ on homsets,

HomESyst(B → D, B′ → D′) → HomAnnstr[AB→D,AB′→D′ ],

is a map. Since a homotopy between Ann-functors is strong, Φ is an injection. By
Lemma 9, every single Ann-functor F : AB→D → AB′→D′ determines a morphism
of E-systems (f1, f0), and clearly Φ(f1, f0) = [F ], thus Φ is surjective on homsets.

Let CA be an E-system associated to a strict Ann-category A. By the construc-
tion of an Ann-category associated to an E-system, Φ(CA) = A (rather than an
isomorphism). Hence, Φ is an equivalence of categories.

5. Ring extensions of the type of an E-system

In this section we consider the ring extensions of the type of an E-system, which are
analogous to the group extensions of the type of a crossed module [6].

Definition 6. Let (B, D, d, θ) be an E-system. A ring extension of B by Q of type
B → D is a diagram of ring homomorphisms

0 // B
j // E

p //

ε

²²

Q // 0,

B
d // D

where the top row is exact, the quadruple (B, E, j, θ′) is an E-system where θ′ is
given by the bimultiplication type, and the pair (id, ε) is a morphism of E-systems.

Two extensions of B by Q of type B
d−→ D are said to be equivalent if there is a

morphism of exact sequences

0 // B
j // E

p //

η

²²

Q // 0, E
ε // D

0 // B
j′ // E′ p′ // Q // 0, E′ ε′ // D

(25)

and ε′η = ε. Obviously, η is an isomorphism.
In the diagram

E : 0 // B
j // E

p //

ε

²²

Q //

ψ

²²

0,

B
d // D

q // Cokerd

(26)

where q is a canonical projection, since the top row is exact and q ◦ ε ◦ j = q ◦ d = 0,
there is a ring homomorphism ψ : Q → Cokerd such that the right-hand side square
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commutes. Moreover, ψ depends only on the equivalence class of the extension E .
Our purpose is to study the set

ExtB→D(Q,B, ψ)

of equivalence classes of extensions of B by Q of type B → D inducing ψ. The
results use the obstruction theory of Ann-functors

Let A = AB→D be the Ann-category associated to an E-system B → D. Clearly,
π0A = Cokerd, π1A = Kerd and therefore the reduced Ann-category SA is of form

SA = (Cokerd, Kerd, k),

where k ∈ H3
Shu(Cokerd, Kerd) since A and SA are regular Ann-categories. The

homomorphism ψ : Q → Cokerd induces an obstruction,

ψ∗k ∈ Z3
Shu(Q, Kerd), (27)

which plays a fundamental role to state Theorem 4. This is the main result of this
section, an extending of [6, Theorem 5.2]. Besides, a particular case of a regular
E-system when Q = Cokerd and ψ = idCokerd is a ∂-extension [4], so our result
contains [4, Theorem 4.4.2].

Theorem 4. Let (B, D, d, θ) be a regular E-system, ψ : Q → Cokerd be a ring
homomorphism. Then, the vanishing of ψ∗k in H3

Shu(Q, Kerd) is necessary and
sufficient for there to exist a ring extension of B by Q of type B → D inducing ψ.
Further, if ψ∗k vanishes then there is a bijection

ExtB→D(Q,B, ψ) ↔ H2
Shu(Q, Kerd).

The first assertion is based on the following lemmas.

Lemma 5. For every Ann-functor (F, F̆ , F̃ ) : DisQ → A there exists an extension
EF of B by Q of type B → D inducing ψ : Q → Cokerd.

Such extension EF is called an associated extension to Ann-functor F .

Proof. By Proposition 1, (F, F̆ , F̃ ) induces an Ann-functor K : DisQ → SA of type
(ψ, 0). Let (H, H̆, H̃) : SA → A be a canonical Ann-functor defined by the stick
(xs, ix). By (2), we have

H(s) = xs, H(s, b) = b, H̆s,r = −ixs+xr , H̃s,r = −ixs·xr .

Also by Proposition 1, (F, F̆ , F̃ ) is homotopic to the composition

DisQ K−→ SA
H−→ A.

So one can choose (F, F̆ , F̃ ) being this composition. By the determination of H̆K
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and H̃K,

F̆u,v = f(u, v) = f ′(u, v)− ixs+xr , (28)

F̃u,v = g(u, v) = g′(u, v)− ixs·xr ∈ B, (29)

where u, v ∈ Q, s = ψ(u), r = ψ(v), f ′(u, v) = K̆u,v, g′(u, v) = K̃u,v. By the compat-
ibility of (F, F̆ , F̃ ) with the strict constraints of DisQ and A, the functions f and g
are the “normal” ones satisfying

f(u, v + t) + f(v, t)− f(u, v)− f(u + v, t) = 0, (30)
f(u, v) = f(v, u), (31)
θFug(v, t)− g(uv, t) + g(u, vt)− g(u, v)θFt = 0, (32)
g(u, v + t)− g(u, v)− g(u, t) + θFuf(v, t)− f(uv, ut) = 0, (33)
g(u + v, t)− g(u, t)− g(v, t) + f(u, v)θFt − f(ut, vt) = 0. (34)

The function ϕ : Q → MB defined by

ϕ(u) = θFu = θxs
(s = ψ(u))

satisfies the relations

ϕ(u) + ϕ(v) = µf(u,v) + ϕ(u + v), (35)
ϕ(u)ϕ(v) = µg(u,v) + ϕ(uv). (36)

We only prove the relation (35), the proof of (36) follows from (29) in the same way.
Since f ′(u, v) = K̆u,v ∈ Kerd, then by Proposition 2, f ′(u, v) ∈ CB . By (28), one
has µf(u,v) = µ(−ixs+xr ). Thus,

ϕ(u) + ϕ(v) = θxs + θxr = θxs+xr

= θ[d(−ixs+xr ) + xs+r] = θ[d(−ixs+xr )] + θxs+r

= µ(−ixs+xr ) + ϕ(u + v)
(28)
= µf(u,v) + ϕ(u + v).

Since the family of functions (ϕ, f, g) satisfies the relations (30) - (36), we have a
crossed product E0 = [B, ϕ, f, g, Q], that means E0 = B × Q, and two operations
are

(b, u) + (b′, u′) = (b + b′ + f(u, u′), u + u′),
(b, u).(b′, u′) = (b.b′ + bϕ(u′) + ϕ(u)b′ + g(u, u′), uu′).

The set E0 satisfies the axioms of a ring, in which note that the associativity for the
multiplication in E0 holds if and only if the E-system B → D is regular. Indeed,
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one can calculate the triple products as follows:

[(b, u)(b′, u′)](b′′, u′′) = ((bb′)b′′ + bϕ(u′)ϕ(u′′) + [ϕ(u)b′]ϕ(u′′)
+g(u, u′)ϕ(u′′) + ϕ(uu′)b′′ + g(uu′, u′′), (uu′)u′′),

(b, u)[(b′, u′)(b′′, u′′)] = (b(b′b′′) + bϕ(u′u′′) + ϕ(u)[b′ϕ(u′′)]
+ϕ(u)ϕ(u′)b′′ + ϕ(u)g(u, u′) + g(u, u′u′′), u(u′u′′)),

By (32), (36), associative law for the multiplication in B,Q, and commutative law
for the addition in B, especially by the relation (8), [ϕ(u)b′]ϕ(u′′) = ϕ(u)[b′ϕ(u′′)],
we get the associative law for product in E0. Then, there is an exact sequence of
ring homomorphisms

EF : 0 → B
j0→ E0

p0→ Q → 0,

where j0(b) = (b, 0); p0(b, u) = u, b ∈ B, u ∈ Q. Since j0(B) is a two-sided ideal in

E0, B
j0−→ E0 is an E-system, where θ0 : E0 → MB is given by the bimultiplication

type.
We define a ring homomorphism ε : E0 → D by

ε(b, u) = db + xψ(u), (b, u) ∈ E0,

where xψ(u) is a representative of u in D. We show that the pair (idB , ε) satisfies
the rules (11), (12). Clearly, ε ◦ j0 = d. Besides, for all (b, u) ∈ E0, c ∈ B,

θ0(b, u)(c) = j−1
0 [(b, u)(c, 0)] = bc + ϕ(u)c,

θε(b,u)(c) = θdb+xψ(u)c = bc + ϕ(u)c.

Thus, θ0(b, u)(c) = θε(b,u)(c). Analogously, cθ0(b, u) = cθε(b,u). So (idB , ε) is a
morphism of E-systems, that is, one has an extension (26), where E is replaced by
E0.

For all u ∈ Q we have qε(0, u) = q(xψ(u)) = ψ(u), then the extension EF induces
ψ : Q → Coker d.

The proof of Theorem 4

Proof. Let us recall that A is the Ann-category associated to the regular E-system
B

d→ D. Then, its reduced Ann-category is SA = (Cokerd, Kerd, k), where k ∈
Z3

Shu(Cokerd, Kerd). The pair

(ψ, 0) : (Q, 0, 0) → (Cokerd, Kerd, k)

has−ψ∗k as an obstruction. By the assumption, ψ∗k = 0, hence by Proposition 1 the
pair (ψ, 0) determines an Ann-functor (Ψ, Ψ̆, Ψ̃) : DisQ → SA. Then the composition
of (Ψ, Ψ̆, Ψ̃) and (H, H̆, H̃) : SA → A is an Ann-functor (F, F̆ , F̃ ) : DisQ → A, and
by Lemma 5 we obtain an associated extension EF .

Conversely, suppose that there is an extension as in the diagram (26). Let
A′ be the Ann-category associated to the E-system B → E. By Proposition 1,
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there is an Ann-functor F : A′ → A. Since the reduced Ann-category of A′ is
DisQ, so by Proposition 1, F induces an Ann-functor of type (ψ, 0) from DisQ to
(Cokerd, Kerd, k). Now, by Proposition 1, the obstruction of the pair (ψ, 0) must
vanish in H3

Shu(Q, Kerd), that is, ψ∗k = 0.

The final assertion of Theorem 4 follows from the next theorem.

Theorem 5 (Schreier theory for ring extensions of the type of an E-system). There
is a bijection

Ω : HomAnn
(ψ,0)[DisQ,A] → ExtB→D(Q,B, ψ).

Proof. Step 1: The Ann-functors (F, F̆ , F̃ ), (F ′, F̆ ′, F̃ ′) are homotopic if and only
if their corresponding associated extensions EF , EF ′ are equivalent.

Let two Ann-functors F, F ′ : DisQ → A be homotopic by a homotopy α : F → F ′.
Then, by the definition of an Ann-morphism, the following diagrams commute

F (u + v) F (u) + F (v)

F ′(u + v) F ′(u) + F ′(v),

-F̆u,v

?

αu+v

?

αu+αv

-
F̆ ′u,v

F (uv) F (u)F (v)

F ′(uv) F ′(u)F ′(v).

-F̃u,v

?
αuv

?
αu⊗αv

-
F̃ ′u,v

By the definition of the operation ⊗ on A,

αu ⊗ αv = αuαv + αuθFv + θFuαv.

Then, since f(u, v) = F̆u,v, f ′(u, v) = F̆ ′u,v, g(u, v) = F̃u,v, g′(u, v) = F̃ ′u,v, we have

f ′(u, v)− f(u, v) = αu − αu+v + αv, (37)
g′(u, v)− g(u, v) = αuαv + αuθFv + θFuαv − αuv. (38)

Now, we set

α∗ : EF → EF ′

(b, u) 7→ (b− αu, u).

Note that θF ′u = µαu + θFu, and by the relations (37), (38), the correspondence
α∗ is an isomorphism. Besides, the diagram (25) commutes in which E and E′ are
replaced by EF and EF ′ , respectively.

Finally, ε′α∗ = ε. Indeed, since α : F → F ′ is a homotopy, then Fu = xψ(u) =
F ′u. Thus xψ(u) = d(αu) + xψ(u), or d(αu) = 0. Hence,

ε′α∗(b, u) = ε′(b− αu, u) = d(b− αu) + xψ(u)

= d(b)− d(αu) + xψ(u) = d(b) + xψ(u) = ε(b, u).

That means two extensions EF and EF ′ are equivalent.
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Conversely, if EF and EF ′ are equivalent, there exists a ring isomorphism (b, u) 7→
(b− αu, u). Then, we have a homotopy α : F → F ′ by retracing our steps.

Step 2: Ω is a surjection.

Let E be an extension E of B by Q of type (B, D, d, θ) inducing ψ : Q → Coker d
(see the commutative diagram (26)). We prove that E is equivalent to an extension
EF which is associated to an Ann-functor (F, F̆ , F̃ ) : DisQ → A.

Let A′ = AB→E be the Ann-category associated to the E-system (B,E, j, θ′).
By Lemma 2, the pair (idB , ε) in the diagram (26) determines a single Ann-functor
(K, K̆, K̃) : A′ → A.

Since π0A′ = Q, π1A′ = 0, the reduced Ann-category SA′ is nothing else but the
Ann-category DisQ. Choose a stick (eu, ie), e ∈ E, u ∈ Q, of A′ (that is, {eu} is a
representative of Q in E). By (2), the canonical Ann-functor (H ′, H̆ ′, H̃ ′) : DisQ →
A′ is given by

H ′(u) = eu, H̆ ′
u,v = −ieu+ev = g′(u, v), H̃ ′

u,v = −ieu.ev = h′(u, v).

The composition F = K ◦H ′ is an Ann-functor DisQ → A, where

F (u) = ε(eu), F̆u,v = H̆ ′
u,v = g′(u, v), F̃u,v = H̃ ′

u,v = h′(u, v).

According to the proof of Theorem 4, we construct an extension EF of the crossed
product E0 = [B, ϕ, g′, h′, Q] which is associated to (F, F̆ , F̃ ).

We now prove that E and EF are equivalent, that is, there is a commutative
diagram

EF : 0 // B
j0 // E0

p0 //

η

²²

Q // 0 E0
ε0 // D

E : 0 // B
j // E

p // Q // 0 E
ε // D

and εη = ε0.

Indeed, since every element of E can be written uniquely as b + eu, b ∈ B, we
can define a map

η : E0 → E, (b, u) 7→ b + eu.

We next verify that η is a ring isomorphism. The representatives eu have the fol-
lowing properties

ϕ(u)c = θ′eu
c, cϕ(u) = cθ′eu

, c ∈ B, (39)
eu + ev = −ieu+ev + eu+v = g′(u, v) + eu+v, (40)

eu.ev = −ieu.ev + eu.v = h′(u, v) + euv. (41)

(The relation (39) holds since the pair (idB , ε) is a morphism of E-systems. The
relations (40), (41) hold thanks to the definition of a morphism in A′.) Now, we
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have

η[(b, u) + (c, v)] = η(b + c + g′(u, v), u + v) = b + c + g′(u, v) + eu+v

(40)
= b + c + eu + ev = (b + eu) + (c + ev) = η(b, u) + η(c, v).

η[(b, u)(c, v)] = η(bc + bϕ(v) + ϕ(u)c + h′(u, v), uv)
= bc + bϕ(v) + ϕ(u)c + h′(u, v) + euv

(39),(41)
= bc + bθ′ev

+ θ′eu
c + euev

= bc + b.ev + eu.c + eu.ev

= (b + eu).(c + ev) = η(b, u).η(c, v).

Finally, choose the representative eu such that ε(eu) = xψ(u) (since it follows from
(26) that

q(ε(eu)) = ψp(eu) = ψ(u).

Thus,
εη(b, u) = ε(b + eu) = ε(b) + ε(eu) = d(b) + xψ(u) = ε0(b, u),

that is, E and EF are equivalent.

Now, the bijection mentioned in Theorem 4 is obtained as follows. Note that
there is a natural bijection

Hom[DisQ,A] ↔ Hom[DisQ,SA].

Then, since π0(DisQ) = Q and π1(SA) = Kerd, Theorem 5 and Theorem 1 imply

ExtB→D(Q,B, ψ) ↔ H2
Shu(Q, Kerd).
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