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1. Introduction

Crossed modules over groups were introduced by J. H. C. Whitehead [15]. A crossed
module over a group G with kernel a G-module M represents an element in the
cohomology H3(G, M) [8]. The results on group extensions of the type of a crossed
module were also represented by the cohomology of groups [6].

Later, H-J. Baues [2] introduced crossed modules over k-algebras. Crossed mod-
ules over k-algebras which are k-split with the same kernel M and cokernel B were
classified by Hochschild cohomology H¥,.,(B, M) [3].

In [4] the field k is replaced by a commutative ring K, and crossed modules over
K-algebras were called crossed bimodules. In particular, if K = Z one obtains crossed
bimodules over rings.

Crossed modules over groups can be defined over rings in a different way under
the name of E-systems. The notion of an E-system is weaker than that of a crossed
bimodule over rings.

Crossed modules over groups are often studied in the form of G-groupoids [5],
or strict 2-groups [1]. From this point, we represent E-systems in the form of strict
Ann-categories (also called strict 2-rings). Hence, one can use the results on Ann-
category theory to study crossed bimodules over rings.

The plan of this paper is, briefly, as follows. Section 2 is dedicated to review
definitions and some basic facts concerning Ann-categories. In Section 3, we intro-
duce the concept of an E-system and prove that there is an isomorphism between the
category of regular E-systems and that of crossed bimodules over rings. The relation
among these concepts and crossed C-modules in the sense of T. Porter[10] is also
discussed. The next section is devoted to showing a categorical equivalence of the
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category of E-systems and a subcategory of the category of strict Ann-categories,
which is an extending of the result of R. Brown and C. Spencer [5].

The group extensions of the type of a crossed module were dealt with by R.
Brown and O. Mucuk [6]. The similar results for d-extensions by an algebra R were
done by H-J. Baues and T. Pirashvili [4] in a particular case. In Section 5 we solve
this problem for ring extensions of the type of an E-system by Shukla cohomology
groups. Our classification result contains the result in [4] when R is a ring.

2. Ann-categories

We state a minimum of necessary concepts and facts of Ann-categories and Ann-
functors (see [11]).

A Gr-category (or a categorical group) is a monoidal category in which all objects
are invertible and the background category is a groupoid. A Picard category (or a
symmetric categorical group) is a Gr-category equipped with a symmetry constraint
which is compatible with associativity constraint.

Definition 1. An Ann-category consists of
(i) a category A together with two bifunctors ®,® : A X A — A;

(#) a fized object 0 € Ob(A) together with natural isomorphisms ay,c,g,d such
that (A, ®,a,c,(0,g,d)) is a Picard category;

(#it) a fized object 1 € Ob(A) together with natural isomorphisms a,l,r such that
(A, ®,a,(1,L,r)) is a monoidal category;

(iv) natural isomorphisms £,R given by

Laxy AR (XaY) — (AX)d (ARY),
Rxya: (XPY)A— (XA4)e (YA

such that the following conditions hold:
(Ann - 1) for A € Ob(A), the pairs (LA, L), (R*, RA) defined by

A =A®- RY =-®A
L‘;‘(,y =Laxy Rﬁ‘(,y = NRx,yv,A
are B-functors which are compatible with ay and c;
(Ann - 2) for all A, B, X,Y € Ob(A), the following diagrams commute

2A,B,X® idy LB

(AB)(X ®Y) <”7YA(B(X ®Y)) — A(BX @ BY)

iAB iA

aA B,x%aA BY
(AB)X & (AB)Y A(BX) ® A(BY)
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axqQY,B,A RB@idy
(X@Y)(BA) — 5% (XeY)B)A — 3 (XBaYB)A

RBAJ léA
ax B,APay B A

X(BA) @ Y (BA) » (XB)A& (YB)A

aA XaY,B idy @RB
(AX®Y)B 27 A(X®Y)B) —2"" » A(XB&®YB)

f,A@idB{ {EA
2B

(AX ® AY)B — 2+ (AX)B® (AY)B <22 A(XB)@® A(YB)

(ABB)IX & (A8 B)Y 428 (AeB)(XaY) oy AXaY)s B(XaY)

RX@RY LAgLB

(AX @ BX) @ (AY @ BY) (AX @ AY) @ (BX @ BY)

wherev=vyvzr: (UsV)®(ZaT) — (UeZ)®(VeT) is a unique morphism
constructed from @, a,,c,id of the symmetric monoidal category (A, ®);
(Ann - 3) for the unit 1 € Ob(A) of the operation ®, the following diagrams commute

il él
(X DY) 1X®1Y (Xe®Y)l X1eYl

lxeay\‘ Aly ‘”XA A"Y

XeYvy XoY.

An Ann-category A is reqular if its symmetry constraint satisfies the condition
cx,x =1d, and strict if all of its constraints are identities.

Example 1. Let A = (A, ®) be a Picard category whose unity and associativity
constraints are identities. Denote by End(A) a category whose objects are symmetric
monoidal functors from A to A and whose morphisms are @-morphisms. Then,
End(A) is a Picard category together with the operation & on monoidal functors
and on morphisms. In this &-category, the unity and associativity constraints are
identities, the commutativity constraint is given by

(cka)x =crx.ax, X € Ob(A), F,G € End(A).

The operation @ on End(A) is naturally defined being the composition of functors.
Then, End(A) together with two operations ®,® is an Ann-category in which the
left distributivity constraint is given by

(E*F,G,H)X = FGX,HX, X € Ob(A),

and other constraints are identities (for details, see [12]).
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Example 2. Let R be a ring with an unit and M be an R-bimodule. The pair
T = (R, M) is a category whose objects are elements of R and whose morphisms are
automorphisms (r,a) : r — 1, r € R,a € M. The composition of morphisms is given
by the addition in M. Two operations ® and ® on I are defined by

rdy=x+y, (x,a)Jr(y,b):(:chy,aer),
TRy =2y, (v,a)® (y,b) = (vy,zb + ay).

The constraints of T are identities, except for left distributivity and commutativity
constraints which are given by
»Cx,y,z = (.7 )\((E, Y, Z)) : ‘T(y + Z) — Y + Xz,
Cey = (.7n(xay)) rty—y+a,

where X : R® — M,n : R?> — M are functions satisfying the appropriate coherence
conditions.

Here are standard consequences of the axioms of an Ann-category.

Lemma 1. For every Ann-category A there exist uniquely isomorphisms
LAY A®0—0, RY:0®A—0,

where A € Ob(A), such that ®-functors (L4, L, ﬁA) and (R4, R, RA) are compatible
with unit constraints (0,g,d).

It is easy to see that if (A, ®) and (A’, ®) are Gr-categories, then every ©-functor
(F,F): A— A, which is compatible with associativity constraints, is a monoidal
functor. Thus, we state the following definition.

Definition 2. Let A and A’ be Ann-categories. An Ann-functor (F, FF, F.): A—
A’ consists of a functor F : A — A, natural isomorphisms

Fxy:F(X®Y)— F(X)®F(Y), Fxy :F(X®Y) - F(X)® F(Y),

and an isomorphism F, : F(1) — 1 such that (F,F) is a symmetric monoidal

functor for the operation @, (F,F,Fy) is a monoidal functor for the operation ®,
and the following diagrams commute

FIX(Y®2) —F FX.F(Y ®2) —28 | PX(FY @ FZ)

F(e) of

2 FQF
F(XY § XZ) — L » F(XY)® F(XZ) —» FX.FY ® FX.FZ
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F(X®Y)Z) — L+ F(XaY)FZ —2% + (FX ® FY)FZ

F(R) by

2 FoF
F(XZ®YZ) — -+ F(XZ)® F(YZ) ——» FX.FZ® FY.FZ.

These diagrams are called the compatibility of the functor F with the distributivity
constraints.

An Ann-morphism (or a homotopy)
0:(F,F,F,F)— (F,FF,F)

between Ann-functors is an @-morphism, as well as an ®-morphism.

If there exist an Ann-functor (F’,F’,ﬁ’,Fl) : A — A and Ann-morphisms
F'F 5 idy, FF' = idys, we say that (F,F,}NW,F*) is an Ann-equivalence, and A,
A’ are Ann-equivalent.

For an Ann-category A, the set R = my.A of isomorphism classes of the objects
in A is a ring with two operations +, X induced by the functors &, ® on A, and the
set M = m.A = Aut(0) is a group with the composition denoted by +. Moreover,
M is a R-bimodule with the actions

sa = Ax(a), as=px(a),
for X € s,s € mpA,a € m A, and \x, px satisfy

Ax(a)o LX = L¥ o (id®a) : X.0 — 0,

px(a)o R = R¥ o (a®id): 0.X — 0.
We recall briefly some main facts of the construction of the reduced Ann-category
S of A via the structure transport (for details, see [11]). The objects of S are

the elements of the ring mp.A. A morphism is an automorphism (s,a) : s — s, s €
moA, a € 11 A. The composition of morphisms is given by

(s,a)o(s,b) = (s,a+b).

For each s € mp.A, choose an object X; € Ob(A) such that Xg =0, X; = 1, and
choose an isomorphism ix : X — X, such that ix, = idx,. We obtain two functors

G:A— Sy H:S;y— A
GX)=[X]=s H(s) = X,
G(X L Y) = (5,75 iy fix1), H(s,u) = 7x, (u),

for X, Y €s, f: X =Y, and yx

vx(a) =gxo(a®id)ogy' (1)
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Two operations on S4 are given by

s®t=GH(s)DH({) =s+1,
s@t=G(H(s)® H(t)) = st,
(s,a) ® (t,b) = G(H(s,a) ® H(t,b)) = (s+t,a+b),
(s,a) ® (t,b) = G(H(s,a) ® H(t,b)) = (st, sb+ at),

for s,t € mpA, a,b € m.A. Clearly, they do not depend on the choice of the repre-
sentative (X, ix).

The constraints in S, are defined by sticks. A stick of A is a representative
(Xs,ix) such that

oex, = 8x,»  ix.@0 = dx,,

~

. . . X . TX,
hex, = lx,, ix,®1 =TIx,,loex, = R, ix,go=L"".

The unit constraints in S are (0,id,id) and (1,id,id). The family of the
rest ones, h = (§,m,a, A, p), is defined by the compatibility of the constraints
a;,c,a, £, R of A with the functor H and isomorphisms

v

1 i~ 1
H=ix,ex,H =1x,gx, (2)

Then (H, H, ﬁ) : Sy — Ais an Ann-equivalence. Besides, the functor G : A — Sy
together with isomorphisms

éX,Y =Glix ®iy), éx,y =Glix ®iy) (3)

is also an Ann-equivalence. We refer to S4 as an Ann-category of type (R, M), and
(H,H,H), (G,G,Q) are canonical Ann-equivalences. The family of constraints
h=(&mn,a,\ p) of Sy is called a structure of the Ann-category of type (R, M).

Mac Lane [7] and Shukla [14] cohomomology groups at low dimensions are used to
classify Ann-categories and regular Ann-categories, respectively. A structure h of the
Ann-category S 4 is an element in the group of Mac Lane 3-cocycles Zf’mw (R, M).
In the case when A is regular, h € Z3, (R, M).

Proposition 1 ([11, Proposition 11 ]). Let A and A’ be Ann-categories.

(i) Every Ann-functor (F,F,F): A — A induces an Ann-functor Sp : S4 — Sa
of type (p,q), where

p = Fy:mpA — moA', [X]— [FX],
g=F mA—-mA, u— ’y}é(Fu),

for v is a map given by the relation (1).

(i) F is an equivalence if and only if Fy, F are isomorphisms.
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(#i7) The Ann-functor Sg satisfies
SF = Gl e} F o Iq7

where H, G’ are canonical Ann-equivalences.

Let S = (R, M,h),S" = (R', M’, ') be Ann-categories. Since F , = (o, 7(z,y)),
F,, = (e,v(x,y)), then gr = (7,v) is a pair of maps associated with (F, F), we
thus can regard an Ann-functor F': S — S’ as a triple (p, ¢, gr). It follows from the

compatibility of F' with the constraints that
g:h —p*h' = 0(gr),

where ¢, p* are canonical homomorphisms,
Z]:?/IacL(R’ M) i) Z?/[acL(R’ M/) L ZJL){4acL(R/7 M/)

Further, two Ann-functors (F,gr), (F’,gr/) are homotopic if and only if FF = F’,
that is, they are the same type of (p, q), and there exists a function ¢ : R — M’ such
that gp = g + Ot.

We denote by

Hom{(}"3 (S, S']

the set of homotopy classes of Ann-functors of type (p, q) from S to §'.
Let F': § — &’ be an Ann-functor of type (p, q), then the function

k=q.h—p*h' € Z3,or (R, M) (4)

is called an obstruction of F.

Theorem 1 ([13, Theorem 4.4, 4.5]). A functor F' : & — S§' of type (p,q) is an
Ann-functor if and only if its obstruction k vanishes in Hy;,.; (R, M'). Then, there
exists a bijection

Hom ("3 [, 8] < Hjor (R, M')(= HE, (R, M")).

3. Crossed bimodules over rings and regular E-systems

The results on crossed bimodules can be found in [2, 3, 4, 9]. We shall show a
characteristic of crossed bimodules when the base ring K is the ring of integers Z.
Based on this characteristic, we can establish the relation between crossed bimodules
over rings and Ann-category theory in the next section.

Definition 3 (see [9]). A crossed bimodule is a triple (B, D,d), where D is an
associative K-algebra, B is a D-bimodule and d : B — D is a homomorphism of
D-bimodules such that

d(b)’ = bd(b'), bt € B. (5)

A morphism (ki,ko) : (B,D,d) — (B',D’,d") of crossed bimodules is a pair
ki: B — B’ kg : D — D', where k; is a group homomorphism, kg is a K-algebra
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homomorphism such that
kod = d'ky (6)

and
k‘1 (.Tb) = ko(ﬂ?)k‘l (b), kl(bm) = kl (b)ko(.’lﬁ), (7)
forall x € D,b € B.
The condition (7) shows that k1 is a homomorphism of D-bimodules, where B’
is a D-bimodule with the action b’ = ko(z)V/, bz = V'ko(z).
Below, the base ring K is the ring of integers Z, and a crossed bimodule (B, D, d)
is called a crossed bimodule over rings. Thus, D is a ring with unit.

In order to introduce the concept of an E-system, we now recall some termi-
nologies due to Mac Lane [7]. The set of all bimultiplications of a ring A is a ring
denoted by M 4. For each element ¢ of A, a bimultiplication u. is defined by

Lhe@ = Ca, afhe = ac,a € A

we call p. an inner bimultiplication. Then C4 = {c¢ € Alu. = 0} is called the
bicenter of A.

The bimultiplications o and 7 are permutable if for every a € A,
o(ar) = (ca)t, 7(ac) = (Ta)o. (8)

We now introduce the main concept of the present paper which can be seen as a
version of the concept of a crossed module over rings.

Definition 4. An E-system is a quadruple (B, D,d,0), whered: B — D, 6 : D —
Mp are the ring homomorphisms such that the following diagram commutes

d

B D

”\« ,/9 9)
Mg

and the following relations hold for all x € D,b € B,
d(0,b) = x.d(b), d(bb,)=d(b).x. (10)

An E-system (B, D, d, 0) is regular if 8 is a 1-homomorphism (a homomorphism
carries the identity to the identity), and the elements of §(D) are permutable.

A morphism (f1, fo) : (B,D,d,0) — (B',D’,d,0") of E-systems consists of ring
homomorphisms f; : B — B’, fo : D — D’ such that

fod=d fi (11)

and f1 is an operator homomorphism, that is,

f1(020) = 0%, () f1(b), f1(00z) = f1 (D)0, (a)- (12)
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In this paper, an E-system (B, D,d,0) is sometimes denoted by B 4, D, or
B — D.
Example 3. If B is a two-sided ideal in D, then (B, D,d,0) is a reqular E-system,
where d is an inclusion, 0 : D — Mp is given by the bimultiplication type, that is,

0.b=2ab, b0, =bx, v € D,be B.

Example 4. Let D be a ring, B be a D-bimodule, 0 : B — D is the zero homo-
morphism of D-bimodules. B can be considered as a ring with zero multiplication
defined by b.b/ = 0(b)b' = bO(b') =0, for allb,b’ € B. Then, (B, D,0,0) is a regular
E-system, where 6 is given by the action of D-bimodules.

Example 5. Let B be a ring, Mg be the ring of bimultiplications of B, and
uw: B — Mp be the homomorphism which carries an element b in B to an in-
ner bimultiplication of B. Then (B, Mg, u,id) is an E-system. In general, this
E-system is not reqular.

Standard consequences of the axioms of an E-system are as below.
Proposition 2. Let (B, D,d,0) be an E-system.
(1) Kerd C Cp.
(#4) Imd is an ideal in D.

(iii) The homomorphism 0 induces a homomorphism ¢ : D — Mgerq given by
P = 9w|Kerd-
(iv) Kerd is a Cokerd-bimodule with the actions

sa = pz(a), as=(a)py, a€ Kerd, x € s € Cokerd.

To state the relation between regular E-systems and crossed bimodules over rings,
one recalls the following definition.

Definition 5. A functor ® : C — C' is an isomorphism of categories if it is bijective
on objects and on morphism sets.

Theorem 2. The categories of regular E-systems and of crossed bimodules over
rings are isomorphic.

Proof. Let B = (B, D,d,0) be a regular E-system. The abelian additive group B
is a D-bimodule with the actions

xb=0,b, bx = bl,, (13)

for z € D,;b € B. It is then easy to check that the axioms of a crossed bimodule
hold. For example, the relation (5) follows from the relation (9),

9 9 ,
d(D)b" = 040 (V') @ ) = b = by 2 b0ary = bd(b'),
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since up, py are inner bimultiplications of the ring B. Besides, the regularity of the
E-system (B, D, d, ) is necessary and sufficient for the two-sided module B to be a
D-bimodule.

Conversely, if .B = (B, D, d) is a crossed bimodule then B has a ring structure
with the multiplication

bxb = d(b)b = bd(V), bb € B. (14)
Clearly, d : B — D is a ring homomorphism since for all b,b' € B,
d(b*b') =d(d®)b') = d(b)d(V').

The map 6 : D — Mp is defined by the D-bimodule actions (13). Then, 6 is a
homomorphism with image in Mg, the elements of §(D) are permutable since B
is a D-bimodule. The homomorphism 6 satisfies the condition (10) since d is a
homomorphism of bimodules. Thus, the correspondence ;B — B is bijective on
objects.

Now, if (f1, fo) : (B,D,d,0) — (B’,D',d’,¢) is a morphism of E-systems, it is
then clear that (fi, fo) satisfies the relation (6).

Further, for all x € D,b € B, one has

(13 (12) (13)

fiab) E £160.6) B 0 0 fi0) E fola) fi(6) = 21 (0).

Similarly, one obtains f1(bx) = f1(b)z. This means that the pair (f1, fo) is a mor-
phism of crossed bimodules.

Conversely, let (k1,ko) : (B,D,d) — (B’,D’,d") be a morphism of crossed bi-
modules. We show that k; is a ring homomorphism. According to the determination
of the multiplication on the ring B, we have

(€] )

k(b 0) = e (dO)) D ko(d() ks (0) 2 ' (e (B (¥) =

]fl (b) % kl(b/),
for all b,b' € B. Besides, the pair (k1, ko) also satisfies (12). O

By the above proposition, the notion of an E-system can be seen as a weaker
version of the notion of a crossed bimodule over rings.

We now discuss the relationship among the above concepts and the concept of
a crossed module of D-structures in the category C of Q-groups (see [10]). For
convenience, such a crossed module is called a crossed C-module. T. Porter proved
that there is an equivalence between the category of crossed C-modules and that of
internal categories in C. A crossed C-module can be described as follows.

Proposition 3 ([10, Proposition 2]). Given a D-structure on B, d: B — D is a
crossed C-module if and only if the following conditions are satisfied for all b, by, by €
B,z e D,x€ QL CQ

(4) d((—z)-b) = —z +d(b) + ;
(1) (—=d(b1))-by = —b1 +ba +by;
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(#i7) d(by) * by = by * by = by * d(bs);
(iv) d(xzb) = x = d(b)
d(bzx) = d(b) x x.

Here * is a binary operation which is not the group operation +, the actions x-b, b
are given by

x-b=s(x)+b—s(x),

x*b=s(x)x*b,

where s is the morphism in the split exact sequence

; p
0—-B5E=D-—0.
S
To establish the link between these crossed C-modules and crossed modules over
rings, we take C to be a category whose objects are rings. The morphisms of C are
ring homomorphisms which are not necessarily 1-homomorphisms.

Proposition 4. Fvery crossed C-module is a crossed bimodule over rings.

Proof. Let d : B — D be a crossed C-module. Then d is a ring homomorphism,
and D acts on B by

xzb = s(x)b, bx = bs(z), x € D,b € B. (15)
The map 6 : D — Mp is given by
0. (b) = xb, (b)8, = bz.

Since s is a ring homomorphism, so is . The relation (9) follows from the condition
(iii). Indeed, for b,b" € B

(0d) () (V) = Oap (V) = (db)b" = bb' = puy (V).

It follows from (iv) that d(6,(b)) = d(xb) = xd(b)b. This means the relation (10)
holds, and therefore (B, D, d,6) is an E-system. O

One can see that a crossed C-module d : B — D satisfies most of the conditions
of a crossed bimodule over rings. We first see that B is a D-bimodule with the action
(15) By (iv), the ring homomorphism d : B — D is a D-bimodule. The relation
(5) follows directly from the condition (iii). Note that the ring D is not necessarily
unitary and if it has a unit, the ring B is not assumed to be a unitary D-bimodule.
These investigations show that the concept of a crossed C-module can be seen as a
weaken version of the concept of a crossed bimodule over rings.

Remark 1. Since C can be any of categories of Q2-groups, use of crossed C-modules
has resulted in various contexts. However, in each particular case there is a certain
restriction. For example, by Proposition 8 [10] Kerd is singular; while for crossed
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modules over groups, (or crossed modules over rings) Kerd is a subgroup in the
center (or the bicenter) of B.

Since rings with unit are not Q-groups, one cannot seek a relation among the
category of crossed C-modules, cohomology of algebras and cohomology of rings.

4. Strict Ann-categories and E-systems

Crossed modules over groups are often studied in the form of strict 2-groups (see
[1, 5, 6]). In this section, we prove that E-systems and strict Ann-categories are
equivalent.

For every E-system (B,D,d,f0) we can construct a strict Ann-category A =
Ap_,p, called the Ann-category associated to the E-system (B, D,d, ), as follows.
One sets

Ob(A) = D,
and for two objects x,y of A,
Hom(z,y) = {b € B/y =d(b) + =}.

The composition of morphisms is given by

Two operations @, ® on objects are given by the operations +, x on the ring D. For
the morphisms, we set

@lye@Sy)=@+a o yry),

b b bb'+b6,,/ +6, b’
(z=y) @@ =y)=(va" ————yy).

Based on the definition of an E-system, it is easy to verify that A is an Ann-category
with the strict constraints.

Conversely, for every strict Ann-category (A, ®,®) one can define an E-system
Cy = (B,D,d,0). Indeed, let

D =0b(A), B={0%z|z e D}.
Then, D is a ring with two operations
THYy=rdY, rY=rQY,
and B is a ring with two operations

b+c=bdec, bc=b®c.
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The homomorphisms d : B — D and 6 : D — Mp are defined by

d(0 LN x) = x,

b idy @b
6,0 % 2) = (0 %, ya),
(0L )8, = (02 ya).

The quadruple (B, D, d,#) defined as above is an E-system.
In the following lemmas, let Ag_,p and Ag/_.p: be Ann-categories associated
to E-systems (B, D,d,0) and (B’,D’,d’,§"), respectively.

Lemma 2. Let (f1, fo): (B,D,d, 8) — (B',D’,d',0") be a morphism of E-systems.
(i) There is a functor F: Ag_.p — Ap/—pr defined by

F(z) = fo(x), F(b) = f1(b), € Ob(Ap_p),b € Mor(Ap_.p).

(i1) The functor F together with isomorphisms

9

Foy:F(x+y) — Fox+ Fy, ﬁzyF(xy) — FzFy

are Ann-functor if F‘zy and ﬁxy are constants in Kerd' and for all x,y € D
the following conditions hold:

Opa(F) = (F)0p, = T, (16)

0y (F) = (F)0p, = F + F. (17)
Then, we say that F' is an Ann-functor of form (f1, fo).

Proof. i) Every element b € B can be considered as a morphism (0 LA db) in Ap_.p.

Then,
(Fo "% F(ap))

is a morphism in Ap/_, ps. By the construction of the Ann-category associated to an
E-system, F' is a functor.
ii) We define the natural isomorphisms

9

Fyy: F(z+y) — F(z) + F(y), Fuy: Fzy) — F(a)F(y)

such that F' = (F, F.F ) becomes an Ann-functor. First we see that
F(x)+ F(2') = F(x + ),

50 d'(Fy..r) = 0. Analogously, d’(ﬁx@/) =0, thus

v

Eyar, Fya € Kerd' € Cpr. (18)
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Now, for two morphisms (z 2, y) and (' L y') in Ap_.p, we have:

7 ber

Fbob)=Flx+2 25 y+y)
= (folz +2') —— St = foly+¥)),
FO) & F¥) = (fo(e) 22 fo(w)) @ (fola') L2 fo(y))
= (fo(z) + fo(z") LOTAED, fow) + fo(y)).
Since fi is a ring homomorphism, one obtains
Fbab)=F0b) o F@®). (19)
By (18) and (19), the commutative diagram
Fu+xuflizm@+F@q
F(b@b') F(b)OF () (20)

Fly+y') - F(y)+ F(y')

follows from ), . = Fv‘y,y/.

; bb 400, +0,b F1(bb'+b6,/+6,b")

e Fb®V) = F(ax yy') = (folzz')

FO) @ F(V) = (fo(2) ™2 fow) @ (fole) ™% fo()
(f (2) f (x/) FLO) FL(0) 106 ()46 () F1 ()
= (fo :

fowy")),

Jow) foW)).

By (12), f1(6:b) = O}O(I f1(0') and f1(b0,/) = fl(b)G}O(I,), hence

FbaV) =Fb) o F{). (21)

By (18) and (21), the commutative diagram

Fy

T, x

F(xz') —— F(x)F(z")

F(b®b’)\

Flyy') —— F(y)F()

vy’

F(b)®F(b') (22)

follows from ﬁz,m/ = ﬁy’y/. The equalities (16) and (17) come from the compatibility

of (F, F ) with the associativity constraint and the distributivity ones, respectively.
O
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An Ann-functor F is single if F(0) = 0/, F(1) = 1 and F, F' are constants. Then
we state the converse of Lemma 2.

Lemma 3. Let (F, F ﬁ) Ap_.p — Ap'_p be a single Ann-functor. Then, there
is @ morphism of E-systems (f1, fo) : (B — D) — (B’ — D'), where

forbe B,z € D.

Proof. Since F(0) = 0/, F(1) = 1’ and F, F are constants, it is easy to see that
FF are in Kerd'. By the determination of a morphism in Apg/_, p,

F(x+y)=F(z) + F(y), F(zy) = F(x)F(y),

80 fo is a ring homomorphism.
Since F' is a constant in Kerd', the commutative diagram (20) implies

Fbav) = F(b) @ F().

This means that fi1(b+b') = f1(b) + f1(b').
Since F is a constant in Kerd’, the commutative diagram (22) implies

Fbeb)=F(@b)®F{).
By the definition of ®,
J1V) + f1(b02r) + f1(0:0) = f1(0) f1 (V) + f1(D)0%, (ur) + Oy () [1 (V) (23)
In this relation, taking b = 0 and then b = 0 yield
f1(0:0") = 05 () [1(V), f1(b02) = [1(D)0%, ()

Thus, (12) holds. Then, the equation (23) turns into f1(bb') = f1(b) f1(b'), that is,
f1 is a ring homomorphism. The rule (11) also holds. Indeed, for all morphisms

(x> y)in Ap_p, y = d(b) + 2. It follows that
fo(y) = fo(d(b) + ) = fo(d(b)) + fo(z).
Besides, (fo(z) " fo(y)) is a morphism in Ag— pr, 50
foly) = d'(f1(0)) + fo().
Thus, fo(d(b)) = d'(f,(b)) for all b € B. O

Lemma 4. Two Ann-functors (F, F,F),(G,G, é) : Ap_p — Ap—p' of the same
form are homotopic.

Proof. Suppose that F' and G are two Ann-functors of form (f1, fo). By Lemma
2, F, G are constants. We prove that « = G — F is a homotopy between F' and G.
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It is easy to check the naturality of a and the compatibility of a with the addition.
Besides, a is compatible with the multiplication. In other words, the following
diagram commutes

F(zy) — F(2)F(y)

Indeed, by Lemma 2,
G = F =(0p,(G) = G) = (0, (F) = F)
=0%,.(a) — a.
Since o € Kerd' C Cp/, so
a®a=a.a+ ()i, + 06, (a)
=(@)0, + 06, ().
For y =0, or x = 0 we have
a0 ® a = (a)0, = Ois,(0).

Thus, o

G-—-F=a®a—a,
that is, (24) holds. O

Two Ann-functors (F, F, F) and (G, G, G) are strong homotopic if they are ho-
motopic and F = G. By Lemma (4), one obtains the following fact.

Corollary 1. Two Ann-functors F,G : Ag_.p — Ap/_p are strong homotopic if
and only if they are of the same form.

We write Annstr for the category of strict Ann-categories and their single Ann-
functors. We can define the strong homotopy category HoAnnstr to be the quotient
category with the same objects, but morphisms are strong homotopy classes of single
Ann-functors. We write Hom a nnstr[A4, A’] for the homsets of the homotopy category,
that is,

HomAnnstr(A7 -A/)

strong homotopies

HomAnnstr [.A, A/] =

Denote by ESyst the category of E-systems, we obtain the following result which is
an extending of Theorem 1 [5]

Theorem 3 (Classification Theorem). There exists an equivalence

®: ESyst — HoAnnstr
(B — D) —  Ap_p
(fi.fo) —  [F],
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where F(x) = fo(x), F(b) = f1(b), for x € ObA,b € MorA.

Proof. By Corollary 1, the correspondence ® on homsets,
HomESyst(B - -D7 B/ - D/) - HomAnnstr[AB—»Da AB’HD’];

is a map. Since a homotopy between Ann-functors is strong, ® is an injection. By
Lemma 9, every single Ann-functor F' : Agp_,p — Ap/—.ps determines a morphism
of E-systems (f1, fo), and clearly ®(f1, fo) = [F], thus ® is surjective on homsets.
Let C 4 be an E-system associated to a strict Ann-category A. By the construc-
tion of an Ann-category associated to an E-system, ®(C4) = A (rather than an
isomorphism). Hence, ® is an equivalence of categories. O

5. Ring extensions of the type of an E-system
In this section we consider the ring extensions of the type of an E-system, which are
analogous to the group extensions of the type of a crossed module [6].

Definition 6. Let (B, D,d, ) be an E-system. A ring extension of B by Q of type
B — D is a diagram of ring homomorphisms

0 B—>fEg—">Q 0,
|
B—2>D

where the top row is exact, the quadruple (B, FE,j,0") is an E-system where 0" is
given by the bimultiplication type, and the pair (id, ) is a morphism of E-systems.

Two extensions of B by @ of type B 9, D are said to be equivalent if there is a
morphism of exact sequences

0 B E Q 0, E——=D (25)
]
i’ ' e
0 B E' Q 0, E'——=D

and ¢’n = €. Obviously, 1 is an isomorphism.
In the diagram

p

E Q 0, (26)
o
\

E: 0 B !
B‘d>D4>Cokerd

where ¢ is a canonical projection, since the top row is exact and goeoj =god =0,
there is a ring homomorphism 1 : Q — Cokerd such that the right-hand side square
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commutes. Moreover, 1 depends only on the equivalence class of the extension &.
Our purpose is to study the set

EXtB—»D(Q? 37 ,(/))

of equivalence classes of extensions of B by @ of type B — D inducing 1. The
results use the obstruction theory of Ann-functors

Let A = Ap_.p be the Ann-category associated to an E-system B — D. Clearly,
mpA = Cokerd, 71 A = Kerd and therefore the reduced Ann-category S 4 is of form

Sy = (Cokerd, Kerd, k),

where k € H3,, (Cokerd, Kerd) since A and S are regular Ann-categories. The
homomorphism v : Q — Cokerd induces an obstruction,

Wkk € Zghu(Qu Kerd)? (27)

which plays a fundamental role to state Theorem 4. This is the main result of this
section, an extending of [6, Theorem 5.2]. Besides, a particular case of a regular
E-system when @ = Cokerd and ¢ = idcokerqd 1S a O-extension [4], so our result
contains [4, Theorem 4.4.2].

Theorem 4. Let (B,D,d,0) be a regular E-system, ¥ : Q — Cokerd be a ring
homomorphism. Then, the vanishing of Y*k in H:;’hu(Q,Kerd) 18 necessary and
sufficient for there to exist a ring extension of B by Q of type B — D inducing 1.
Further, if ¥*k vanishes then there is a bijection

Extp_.p(Q,B,v) « HZ,,(Q,Kerd).

The first assertion is based on the following lemmas.

Lemma 5. For every Ann-functor (F, F, ﬁ) : Dis@Q — A there exists an extension
Er of B by Q of type B — D inducing ¢ : Q — Cokerd.

Such extension £ is called an associated extension to Ann-functor F.
Proof. By Proposition 1, (F, F, ﬁ) induces an Ann-functor K : Dis@QQ — S 4 of type

(1,0). Let (H,H,H) : S4 — A be a canonical Ann-functor defined by the stick
(s,1z). By (2), we have

H(S) = Ts, H(S7b) = ba I_uls,’r = _iws—i-ww ﬁs,r = _Z.LS‘LT
Also by Proposition 1, (F, F, ﬁ) is homotopic to the composition
DisQ &5 54 L A

So one can choose (F, F, F) being this composition. By the determination of HK
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and HK,

Fu,v = f(ua v) = f/(ua ”U) - ixs+mra (28)

Fuo = gu,v) =g (u,v) — iz, 0, € B, (29)

o ~

where u,v € @, s = ¥(u),r = Y(v), f'(u,v) = Ky, g (u,v) = K, ,. By the compat-
ibility of (F, F.F ) with the strict constraints of Dis@) and A, the functions f and g
are the “normal” ones satisfying

f(u,v—i—t)—l—f(v,t)—f(u,v)—f(u—i—v,t):O, ( )
f(uvv):f(vvu)a ( )
Opug(v,t) — g(uv,t) + g(u,vt) — g(u,v)0ps = 0, (32)
9,0+ 1) — glur0) — g(u,0) + B f(0,0) — fluv,ut) =0, (33)
g(u+wv,t) —g(u,t) — g(v,t) + f(u,v)0p — f(ut,vt) =0. (34)

The function ¢ : Q — Mp defined by

p(u) = Opu = bz, (s =1(u))

satisfies the relations

QD(U) + QD(U) = Hf(u,v) + SD(U + 'U)a (35)
P(u)p(v) = Hg(uw) + p(uv). (36)

We only prove the relation (35), the proof of (36) follows from (29) in the same way.

o

Since f'(u,v) = K, , € Kerd, then by Proposition 2, f'(u,v) € Cp. By (28), one
has ft¢(y,v) = #(—iz,42,). Thus,
o(u) +p(v) = 0z, + 0z, = 0z 1z,
= 0[d(—i,+2,) + Tstr] = O[d(—iz,42,)] + Oa..,
. (28)
= W~z ta,) + (U4 0) =" ppuw) +o(u+0).

Since the family of functions (¢, f,g) satisfies the relations (30) - (36), we have a
crossed product Ey = [B, ¢, f,g, @], that means Fy = B x @, and two operations
are

(b7 u) + (b/a u/) = (b + b+ f(uvu/)au + u’),
(byu).(b',u') = (b.b + bp(u') + @(u)b' + glu,u), uu’).

The set Ej satisfies the axioms of a ring, in which note that the associativity for the
multiplication in Ey holds if and only if the E-system B — D is regular. Indeed,
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one can calculate the triple products as follows:

[(B, w) (¥, u)](B", u") = ((B)D" + bep(u)p(u”) + [sp(u)b]ep(u”)
+g(u, u')o(u”) + p(uu)o" + gu’, u"), (uu)u”),
(b, w)[(', u') (b", u")] = (b(b'D") + bip(u'u") + p(u)[b'p(u")]
+o(u)ew” + pu)g(u, v') + g(u, u'v"), u(u'u"))

By (32), (36), associative law for the multiplication in B, @, and commutative law
for the addition in B, especially by the relation (8), [¢(u)b]o(u”) = (u) [ (u')],
we get the associative law for product in Ey. Then, there is an exact sequence of
ring homomorphisms

Er: 0-BLBE, B Q—o0,
where jo(b) = (b,0); po(b,u) =u, b€ B,u € Q. Since jo(B) is a two-sided ideal in
Ey, B 2% Ey is an E-system, where 6y : Eg — My is given by the bimultiplication

type.
We define a ring homomorphism ¢ : £y — D by

g(b,u) = db+ xy@, (b,u) € Ey,

where x,,) is a representative of v in D. We show that the pair (idp,e) satisfies
the rules (11), (12). Clearly, € o jo = d. Besides, for all (b,u) € Ey,c € B,

00(b,u)(c) = jo *[(b,u)(c,0)] = be + p(u)c,
Oc(b,u)(€) = O,y ¢ = be + p(u)c.

Thus, (b, u)(c) = Ocpu)(c). Analogously, cly(b,u) = cl.4,4). So (idp,¢) is a
morphism of E-systems, that is, one has an extension (26), where E is replaced by
E,

For all u € Q we have qe(0,u) = q(zy,)) = ¥ (u), then the extension £ induces
¥ : @ — Coker d. O

The proof of Theorem 4

Proof. Let us recall that A4 is the Ann-category associated to the regular E-system

B % D. Then, its reduced Ann-category is S4 = (Cokerd, Kerd, k), where k €
Z3,..(Cokerd, Kerd). The pair

(1,0) : (Q,0,0) — (Cokerd, Kerd, k)

has —t*k as an obstruction. By the assumption, 1*k = 0, hence by Proposition 1 the
pair (¢, 0) determines an Ann-functor (¥, U, U) : Dis@Q — S4. Then the composition
of (U, U, V) and (H,H,H): S4 — Ais an Ann-functor (F, F, F) : DisQ — A, and
by Lemma 5 we obtain an associated extension Ep.

Conversely, suppose that there is an extension as in the diagram (26). Let
A’ be the Ann-category associated to the E-system B — FE. By Proposition 1,
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there is an Ann-functor F : A’ — A. Since the reduced Ann-category of A’ is
Dis@, so by Proposition 1, F' induces an Ann-functor of type (¢,0) from Dis@ to
(Cokerd, Kerd, k). Now, by Proposition 1, the obstruction of the pair (¢,0) must
vanish in H3, (Q,Kerd), that is, *k = 0. O

The final assertion of Theorem 4 follows from the next theorem.

Theorem 5 (Schreier theory for ring extensions of the type of an E-system). There
18 a bijection
Q: Homéﬁg) [DisQ, A] — Extp_.p(Q, B,v).

Proof. Step 1: The Ann-functors (F,F,ﬁ), (F',F’,ﬁ') are homotopic if and only
if their corresponding associated extensions Ep,Ep are equivalent.

Let two Ann-functors F, F’ : Dis@ — A be homotopic by a homotopy a : F — F’.
Then, by the definition of an Ann-morphism, the following diagrams commute

F(u+v) F(u) + F(v) Fluv) — F(u)F ()
Qo Qg auv{ Qqy @y
F’(u + ’U) T’ F/(’U,) + F/(’U), F/(U’U) ’I?‘//u,: F/(U:)F/(U)

By the definition of the operation ® on A,

Ay @ Qy = Qg + A0y + Opya,.

9

Then, since f(u,v) = uu’wf’(u,v) =F'yu, 9(u,v) = ﬁu)v,g’(um) = F'  we have

U,V

f,(uv U) - f(u, 'U) = Qy — Oty + Oy, (37)
g (u,v) — glu,v) = auay + bry + 0puty — Q- (38)

Now, we set

o EF — EF/
(byu) — (b — ay,u).

Note that 0y, = fta, + 0y, and by the relations (37), (38), the correspondence
o is an isomorphism. Besides, the diagram (25) commutes in which £ and E’ are
replaced by Er and Ep/, respectively.

Finally, &’a* = e. Indeed, since a : F' — F’ is a homotopy, then Fu = Top(u) =
F'u. Thus xy,) = d(ow) + Ty (), or d(a,) = 0. Hence,

o’ (byu) = &' (b — au,u) = d(b— ay) + Ty
= d(b) — d(w) + Ty(u) = d(b) + y) = (b, ).

That means two extensions £r and g/ are equivalent.
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Conversely, if £ and Eps are equivalent, there exists a ring isomorphism (b, u) —
(b — au,u). Then, we have a homotopy « : F' — F’ by retracing our steps.

Step 2: § is a surjection.

Let € be an extension E of B by @Q of type (B, D, d, ) inducing ¥ : QQ — Cokerd
(see the commutative diagram (26)). We prove that & is equivalent to an extension
Er which is associated to an Ann-functor (F, F, F') : Dis@Q — A.

Let A" = Ap_. g be the Ann-category associated to the E-system (B, E,j,6’).
By Lemma 2, the pair (idp,€) in the diagram (26) determines a single Ann-functor
(K,K,K): A — A.

Since mp A’ = Q, m A’ = 0, the reduced Ann-category S 4 is nothing else but the
Ann-category Dis@. Choose a stick (ey,i.),e € F,u € Q, of A’ (that is, {e,} is a
representative of Q in E). By (2), the canonical Ann-functor (H’, H', H') : DisQ —
A’ is given by

H'(0) = eu, H'uy=—ic,te, =g (u,0), H,, = ~ic,c, =h'(u,0).
The composition F' = K o H' is an Ann-functor DisQ) — A, where
F(u) = ¢e(ey), F‘uw = fif’u,v = ¢ (u,v), ﬁuﬂ, = I?{w =1 (u,v).

According to the proof of Theorem 4, we construct an extension g of the crossed
product Ey = [B, v, ¢, h’, Q] which is associated to (F, F', F).

We now prove that £ and g are equivalent, that is, there is a commutative
diagram

gF . 0 B Jo FEy o Q 0 EOL)D
k
£: 0 B—1s>g—25Q 0 E—=>D

and en = €g.

Indeed, since every element of E' can be written uniquely as b + e,,b € B, we
can define a map
n:Ey— E, (byu) — b+e,.

We next verify that 7 is a ring isomorphism. The representatives e, have the fol-
lowing properties

p(u)e =0, ¢, cp(u) =cb,, , c€ B, (39)
€yt €y = _ieu+ev + Cutv = g,(uv ’U) + eutu, (40)
€u-€y = *Z‘eu.el, +eyn = h’(u,v) + eyp- (41)

(The relation (39) holds since the pair (idg,e) is a morphism of E-systems. The
relations (40), (41) hold thanks to the definition of a morphism in A’.) Now, we



CROSSED BIMODULES OVER RINGS AND SHUKLA COHOMOLOGY 597

have
n[(b,u) + (c,v)] = nb+c+g (uv),u+v)=b+c+ g (u,v) + euio
@ b+c+e,+e,=b+e,)+ (c+ey) =n(bu)+n(ewv).
Ao u)en)] = nlbe+bp(v) + plu)e+ b (uv), u)
= be+bp(w) + @(u)e+ ' (u,v) + ey
(39),(41)

= " bc+ b@év + Qéuc + eyéy
=  betbe, +ey.ctey.ey
=  (b+ey).(c+ey) =n(bu)n(cv).

Finally, choose the representative e, such that e(e,) = 2y, (since it follows from
(26) that

q(g(eu)) = ¢p(eu) = lﬂ(u)
Thus,
en(b,u) = e(b+ey,) = &(b) + e(ew) = d(b) + Ty () = €0(b, u),

that is, £ and £ are equivalent. O

Now, the bijection mentioned in Theorem 4 is obtained as follows. Note that
there is a natural bijection

Hom[Dis@, A] < Hom[DisQ, S.4].
Then, since mp(DisQ)) = @ and 71(S4) = Kerd, Theorem 5 and Theorem 1 imply

EXtB—>D(Q7 B7 ¢) A Hg‘hu(Q’ Kerd)'
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