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Abstract. In this paper, with different approaches we study rational approximation for
the algebraic formal power series in F2((X

−1)) solving the irreducible equation

α3 = R,

where R is a polynomial of F2[X]. Moreover, for some polynomials R, we give explicitly
the continued fraction expansion of the root of this equation.
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1. Introduction

1.1. Continued fraction algorithm in the field Fq((X
−1))

Let p be a given prime number and Fq the finite field of characteristic p having
q elements (q = ps, s ≥ 1). We consider the ring of polynomials Fq[X] and the
field of rational function Fq(X), in an indeterminate X with coefficients in Fq. Let
Fq((X−1)) be the field of formal power series

Fq((X−1)) = {α =
∑

i≥n0

αiX
−i, αi ∈ Fq, n0 ∈ Z}.

If α =
∑

i≥n0
αiX

−i is an element of Fq((X−1)) with αn0 6= 0, we introduce the
absolute value of α by |α| = q−n0 which is not archimedian and −n0 = deg α. This
field Fq((X−1)) can be identified with the completion of Fq(X) for this absolute
value. As in the classical case of the real numbers we have a continued fraction
theory with polynomials in X playing the role of integers. For each α ∈ Fq((X−1))
we write [α] for the polynomial part of α and {α} = α − [α] for the fractional part
of α. For any α ∈ Fq((X−1)), let a0 = [α], we have :

α = a0 +
1

a1 +
1

a2 +
1
. . .
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and we denote
α = [a0, . . . , an, . . .],

where (ak)k≥1 are polynomials of degree≥ 1. The later expression is called continued
fraction expansion of α and the sequence (ak)k≥0 is called the sequence of partial

quotients of α. Furthermore, the rational
Pn

Qn
= [a0, . . . , an] converges toα. For

n ≥ 0 the sequence (
Pn

Qn
)n≥0 is defined by:

Pn+1 = an+1Pn + Pn−1,

Qn+1 = an+1Qn + Qn−1,

where Q0 = 1, Q1 = a1, P0 = a0 and P1 = a0a1 + 1.
We have the following important equality :

|α− Pn

Qn
| = |an+1|−1|Qn|−2 for n ≥ 0.

We say that a formal power series has bounded partial quotients if the polynomial
(ak)k≥0 are bounded in degrees.

Baum and Sweet have given in [1] the following lemmas:

Lemma 1. Let P, Q ∈ F2[X] and α ∈ F2((X−1)). If |Qα − P | = 2−(d+deg Q),
gcd(P,Q) = 1, d > 0, then for some n, Q = Qn, P = Pn and deg an+1 = d.

Lemma 2. If α is an algebraic formal power series with unbounded (or bounded)
partial quotients, and if, in the continued fraction for α, we replace X by any poly-
nomial p(X) of positive degree in X, then we obtain another algebraic continued
fraction with unbounded (or bounded) partial quotients.

Khintchine [4] conjectured that if x is an algebraic number with degree ≥ 3 then
x has a continued fraction expansion with unbounded sequence of partial quotients.
More is known in the case of algebraic formal power series over a finite field.

In 1976, Baum and Sweet [1] showed that the unique solution in F2((X−1)) of
the cubic equation

Xα3 + α + X = 0 (1)

has a continued fraction expansion with partial quotients of bounded degree. Their
proof does not yield a description of those partial quotients. Later Mills and Robbins
[8] succeeded in giving a complete description of the sequence of partial quotients
of the solution of the equation (1). They also provided some examples in higher
characteristic. Robbins [11] has also given a family of cubic formal power series with
bounded partial quotients. Nevertheless it appears that there is still very little known
about the nature of continued fractions of algebraic power series. In particular, even
though there seem to be many examples with bounded partial quotients, for any
particular example, it may be difficult or impossible to provide a proof. Baum
and Sweet [1] also gave some simple examples with unbounded partial quotients.
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Algebraic formal power series with unbounded partial quotients can also be quite
complicated even when the partial quotient sequence is recognizable. Such formal
power series were studied by Mills and Robbins [8] and Lasjaunias in [6], [5]. In
[9], Mkaouar described an algorithm to compute the partial quotients of continued
fraction expansion for certain algebraic formal power series. He gave the following
result

Theorem 1. Let P (Y ) = AnY n + An−1Y
n−1 + . . . + A0 with Ai ∈ Fq[X] and

|An−1| > |Ai|, for all i 6= n− 1. Then P has a unique root α ∈ Fq((X−1)) satisfying
|α| > 1. Moreover, [α] = −[An−1

An
] and the formal power series β = 1

(α−[α]) has the
same property as α.

1.2. The approximation exponent

We study the approximation of the elements of Fq((X−1)) by the elements of Fq(X).
In particular, we consider this approximation for the elements of Fq((X−1)) which
are algebraic over Fq(X). In order to measure the quality of rational approximation,
we introduce the following notation and definition. Let α be an irrational element
of Fq((X−1)).
For all real numbers µ, we define

B(α, µ) = lim inf
|Q|→∞

|Q|µ|Qα− P |

where P and Q run over Fq[X] with Q 6= 0. Now the approximation exponent of α
is defined by

ν(α) = sup{µ ∈ R : B(α, µ) < ∞}.
It is clear that we have
B(α, µ) = ∞ if µ > ν(α), B(α, µ) = 0 if µ < ν(α) and 0 ≤ B(α, ν(α)) ≤ ∞.

We recall that if
Pn

Qn
is a convergent to α, we have

|Qnα− Pn| = |Qn|−
deg Qn+1
deg Qn .

Since the best rational approximation to α are its convergents in the above notation
we have

ν(α) = lim sup(
deg Qk+1

deg Qk
) = 1 + lim sup(

degak+1∑

1≤i≤k

deg ai

).

It is clear that the approximation exponent can be determined when the continued
fraction of the element is explicitly known. Since |Qnα−Pn| ≤ 1

|Qn| , for all irrational
α ∈ Fq((X−1)) we have ν(α) ≥ 1. Furthermore Mahler’s version of Liouville’s
theorem says that if α ∈ Fq((X−1)) is algebraic over Fq(X) of degree n > 1 then
B(α, n − 1) > 0. Consequently, for α ∈ Fq((X−1)) algebraic over Fq(X) of degree
n > 1 we have ν(α) ∈ [1, n− 1].

We now use the following vocabulary: If α ∈ Fq((X−1)), we say that
• α is badly approximable if ν(α) = 1 and B(α, 1) > 0. This is equivalent to saying



616 K.Ayadi, M.Hbaib and F.Mahjoub

that the partial quotients in the continued fraction expansion for α are bounded.
• α is normally approximable if ν(α) = 1 and B(α, 1) = 0.
• α is well approximable if ν(α) > 1.

Many examples can be studied. A famous example in Fp((X−1)), which was given
by Mahler in 1949 [7], satisfies the algebraic equation α = X−1+αp. For this element
α, algebraic of degree p, the approximation exponent is maximal (ν(α) = p − 1).
One is then led to wonder whether this example is exceptional. In 1975, another
example was given by Osgood [10]. Nevertheless, there exist in Fq((X−1)) algebraic
elements α of degree > 2 for which ν(α) = 1. The first example was obtained by
Baum and Sweet [1] : in F2((X−1)), α satisfying (1) is a cubic element for which
ν(α) = 1 (and B(α, 1) > 0). Other examples were given by Mills and Robbins[8],
for other characteristics, and they noticed that most of these elements belong to a
special class of formal power series, the class of hyperquadratic which we will call
H, of the irrational elements in Fq((X−1)) (q = ps, s ≥ 1), satisfying an algebraic
equation of the form

α =
Aαpt

+ B

Cαpt + D
,

where A,B, C,D ∈ Fq[X] and t ≥ 0. It gradually became apparent that the elements
of class H deserve special consideration. Later, the rational approximation of these
elements were studied by Voloch [13] and more deeply by de Mathan [3]. They could
show that there are no normally approximable elements of class H. By the work of
de Mathan [3], we know moreover that for elements of class H, the approximation
exponent ν(α) is a rational number and B(α, ν(α)) 6= 0,∞. Many elements of class
H are well approximable, but the question of determining those which are badly
approximable remains open.

Remark 1. If α and β are in Fp((X−1)) and α = f(βr), where f is a linear
fractional transformation with polynomial coefficients and r is a power of the char-
acteristic p (we may have r = p0 = 1), then we have ν(α) = ν(β) and B(α, ν(α)) =
C ·B(β, ν(β)) where C > 0 is real number. In particular, for all A,B, C, D ∈ Fp[X]
with AD −BC 6= 0 and t ≥ 0, we have

ν(α) = ν(
Aαpt

+ B

Cαpt + D
).

The proof of this Remark can be found in Schmidt’s article [12].
We consider now the case of an equation

αn = R (2)

in the field Fq((X−1)), where n divides pt − 1, and R ∈ Fp(X) such that R /∈
(Fp(X))n. It is clear that any root of (2) belongs to the class H because it is
equivalent to the equation

R
(pt−1)

n α = αpt

.

For instance, there are no examples of an algebraic formal power series solution for
this equation (where α is not quadratic) that is known to be badly approximable.
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It was proved by Osgood [10]that if gcd(n, p) = 1 then the nth root of 1 + 1
X in

Fp((X−1)) has an approximation exponent equal to n− 1.
At the end of his paper, de Mathan [3] asked whether for an element α satisfying

the equation (2) one may have ν(α) = 1 (where α is not quadratic). He gave the
approximation exponent of some examples of these elements for the case n = 3 and
p = 2. He proved the following result

Proposition 1. Let α, β, γ be elements of F2((X−1)) such that

α3 =
(X3 + X + 1)

X3
, β3 =

(X4 + X2 + X + 1)
X4

, γ3 =
(X4 + X + 1)

X4
.

One has ν(α) =
3
2
, B(α,

3
2
) = 1, ν(β) =

4
3
, B(β,

4
3
) = 1, ν(γ) =

5
4
, B(γ,

5
4
) =

1
8
.

Lasjaunias [6] gave, depending on R, the approximation exponent of elements
satisfying the equation (2). In particular, for the case n = 3 and p = 2, he gave the
following Theorem

Theorem 2. Let P, Q ∈ F2[X] be coprime and of same degree. Assume that P
Q 6∈

(F2(X))3. Let λ = deg(P−Q)
deg Q . Then the equation y3 = P

Q has a unique root α ∈
F2((X−1)) with |α − 1| < 1. If λ < (2−√2)

3 , then ν(α) = 2 − 3λ. Moreover, we
have ν(α) = 2 if and only if there exist P0, Q0 ∈ F2[X] and C ∈ F2[X] such that
P
Q = ( P0

Q0
)3(1 + 1

C ).

We now come to present our work. We will show that the irrational root of the
equation

α3 = R,

where R ∈ F2[X] and deg R ∈ 3N is well approximable for almost all R (note that
the approximation exponent of this root belongs to [1, 2]). This result is based on a
specific decomposition of the polynomial R. This decomposition will allow us to de-
terminate the approximation exponent of the solution of this equation, furthermore,
it will help us in some cases to find an explicit continued fraction of this solution.
As an application, we finish by studying the continued fraction expansion and the
approximation exponent of the cubic root of polynomials of degree ≤ 6.

2. Results

Lemma 3. Let R ∈ F2[X] be such that the degree of R is a multiple of 3. Then
there is a unique α ∈ F2((X−1)) such that α3 = R.

Proof. Uniqueness is obvious. Let R = Xm + am−1X
m−1 + · · ·+ a0 where m ∈ 3N

and Q = Xm. We have |R
Q
| = 1. Let

γn =
n∏

i=0

(
Q

R
)4

i

.



618 K.Ayadi, M.Hbaib and F.Mahjoub

Then

γn+1 + γn = γn(1 + (
Q

R
)4

n+1
).

So

|γn+1 − γn| = |1 + (
Q

R
)4

n+1 | = |1 +
Q

R
|4n+1

.

Hence lim |γn+1 − γn| = 0, then lim γn = γ ∈ F2((X−1)) and

γ =
∞∏

i=0

(
Q

R
)4

i

=
Q

R
γ4.

Therefore γ3 =
R

Q
and so (γX

m
3 )3 = R.

Lemma 4. Let R ∈ F2[X] be such that deg R ≡ 0(mod 3). Then the polynomial R
is uniquely expressible as S3 + T , where S, T ∈ F2[X] such that deg T < 2 deg S.

Proof. We have
R =

∑

0≤i≤3m

riX
i ∈ F2[X]

with r3m = 1. We search
S =

∑

0≤i≤m

siX
i ∈ F2[X]

with sm = 1 such that deg(R + S3) < 2m. Hence the first upper m + 1 coefficients
of S3 and of R must be equal. This is equivalent to solving the following system of
m equations

smsm−i + sm−1sm−i+2 + · · · = r3m−i for 1 ≤ i ≤ m.

This system is easily solved by induction starting from the first equation smsm−1 =
r3m−1. Setting T = R + S3 we have the desired statement.

We can write the equation α3 = R 6= 0 as α = R
α2 . In relation with the equation

defining elements of H, we have here |∆| = |(AD − BC)| = |R|. Consequently, we
have the following Lemma (see [5, Lemma 3]).

Lemma 5. Let α be an irrational power series in F2((X−1)) satisfying

α3 = R, (3)

where R ∈ F2[X] and deg R ∈ 3N. Let us suppose that there exist a partial quotient
a of α such that |a| > |R|. Then the sequence of partial quotients of the continued
fraction expansion for α is unbounded.

To compute the continued fraction expansion of a formal power series satisfying
(3), with R = S3 + T and deg T < 2 deg S, we can use the algorithm given in
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Theorem (1). In fact, if we substitute α = S + 1
β in (3) where β ∈ F2((X−1)) with

|β| > 1, we obtain that β is a solution of the algebraic equation

Tβ3 + S2β2 + Sβ + 1 = 0 (4)

with deg T < 2 deg S. So if we determine the explicit continued fraction of β, we
deduce that of α. We will present the steps of the algorithm, derived from Theorem
(1), which allows us to determine the partial quotients of β in the following Lemma

Lemma 6. By [a0, . . . , an, . . .] we denoted the continued fraction expansion of the
irrational solution β of the equation (4)and βm = [am, am+1, . . .]. If we take A0 = T ,
B0 = S2, C0 = S and D0 = 1 then deg B0 > deg A0, C0, D0.
As βm = am + 1

βm+1
, then, by iteration on m, βm satisfies an equation of the form

Amβ3
m + Bmβ2

m + Cmβm + Dm = 0

with

Am+1 = Ama3
m + Bma2

m + Cmam + Dm,

Bm+1 = Ama2
m + Cm,

Cm+1 = Amam + Bm,

Dm+1 = Am,

and we have a0 = [
S2

T
] and am+1 = [

Bm+1

Am+1
] for all m ≥ 0.

Note that if Am divides Bm, then Cm+1 = 0, Bm+2 = Am+1a
2
m+1 and Am+2 = Am

for all m ≥ 0.

Remark 2. We write below the few lines of program (using Maple) to obtain the
first fifty partial quotients of the continued fraction expansion of the solution of the
equation (3).

p:=2:n:=50:e=T

a:=array(1..n):b:=array(1..n):c:array(1..n)d:array(1..n)

:a[1]=e:b[1]=S 2:c[1]=S:d[1]=1:q[1]=quo(b[1],a[1],X)mod 2:

for i from 2 to n do

a[i]:=simplify(a[i-1]*q[i-1] 3+b[i-1]*q[i-1] 2+ c[i-1]*q[i-1]+d[i-1])

mod p:

b[i]:=simplify(a[i-1]*q[i-1] 2+c[i-1]) mod p:

c[i]:=simplify(a[i-1]*q[i-1]+b[i-1]) mod p:

d[i]:=simplify(a[i-1]) mod p:

q[i]:=quo(b[i],a[i],X) mod p:od:print(q);

Using the previous algorithm, we give now theoretically the explicit continued
fraction expansion of cubic root of some polynomials R ∈ F2[X] and their corre-
sponding values of approximation exponent.
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Theorem 3. If T divides S, i.e. there exists K ∈ F2[X] such that S = KT , then
the continued fraction expansion of the irrational solution of the equation

α3 = S3 + T

in the field F2((X−1)) is α = [KT,K2T, KT, γ], where γ = [a0, . . . , an, . . .] ∈
F2((X−1)) such that an = K2n+1

Tun+1(K3T 2 + 1)un with

un =
2n+1 + (−1)n

3
,

for all n ≥ 0. Moreover, we have ν(α) = 2.

Proof. In this case, we have β =
1

α + S
is a solution of the following equation:

Tβ3 + K2T 2β2 + KTβ + 1 = 0.

We write α = KT + 1
β and β = [b0, b1, · · · ]. Using the formulas from the Lemma

6 we get b0 = K2T and b1 = KT . From there on we denote bn = an−2. We have
α = [KT, b0, b1, γ] where γ = [a0, a1, a2, · · · ]. Then by induction we obtain

an = K2n

Tun+1(K3T 2 + 1)un , where un =
2n+1 + (−1)n

3
, for n ≥ 0.

Consequently, there are two rationals λ and µ such that deg(an) = 2nλ + (−1)nµ
for n ≥ 0 where λ = 4 deg(K) + 8

3 deg(T ) and µ = deg(K) + 1
3 deg(T ). Therefore,

deg(an+1)∑
0≤i≤n deg(ai)

tends to 1 as n tends to infinity. So ν(γ) = 2 and by Remark (1) ν(α) = ν(γ).

Theorem 4. If T divides S2 and not S, i.e. there exists K ∈ F2[X] such that
S2 = KT , then the continued fraction expansion for the irrational solution of the
equation

α3 = S3 + T

in the field F2((X−1)) is α = [S, K, S, γ], where γ = [a0, . . . , an, . . .] ∈ F2((X−1))
such that an = K2n+1

T vn(KS + 1)vn+1 and

vn =
2n + (−1)n+1

3
,

for all n ≥ 0. Moreover, we have ν(α) = 2.

Proof. With the same method used in the last proof we compute the partial quo-
tients of α. Further, there exist two constants λ′ and µ′ such that deg(an) =
2nλ′ + (−1)nµ′ for n ≥ 0. The constants λ′ and µ′ can also be explicited: λ′ =
2deg(K) + 2

3 deg(T ) and µ′ = 1
2 deg(K)− 1

6 deg(T ). Therefore,

deg(an+1)∑
0≤i≤n deg(ai)

tends to 1 as n tends to infinity. So ν(γ) = 2 and by Remark (1) ν(α) = ν(γ).
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We provide now some remarks as an immediate consequence of Remark 1.

Remark 3.

(i) If gcd(S, T ) = K3, then there exist S′ ∈ F2[X] and T ′ ∈ F2[X] such that
S = K3S′, T = K3T ′ and gcd(S′, T ′) = 1. So, we can study the equation
β3 = K6S′3 + T ′ and deduce the behavior of the partial quotients of α from β
such that α = Kβ.

(ii) Suppose that there exists K ∈ F2[X] such that S = KS′, T = K3T ′ where
S′ and T ′ ∈ F2[X] then α3 = K3S′3 + K3T ′ = K3(S′3 + T ′). So we study
the properties of the formal power series γ3 = S′3 + T ′ and since α = γ

K , we
deduce the properties of continued fraction for α.

(iii) If α3 = K2n

, n ≥ 0 and K ∈ F2[X], then we survey the equation γ3 = K. α
and γ have the same rational approximation properties since α = γ2n

.

Now we give results concerning the approximation exponent of the cubic root
of a polynomial. First, following the result given by Lasjaunias in Theorem (2),
and using a method introduced by de Mathan in [3] to calculate the approximation
exponent ν(α) when ν(α) is large enough, we add the following lemma

Lemma 7. Let P, Q ∈ F2[X] be a coprime and of same degree. Assume that P
Q 6∈

(F2(X))3. Let

λ =
deg(P −Q)

deg Q
.

Then the equation y3 = P
Q has a unique root α ∈ F2((X−1)) with |α − 1| < 1.

Moreover, if λ < 1
3 , then ν(α) ≥ 2− 3λ.

Proof. We follow the proof of Theorem (2) fairly closely. We prove the existence
and the uniqueness of the irrational solution α with the same reasoning as the proof
of Lemma 3.

Let us consider P0, Q0 ∈ Fp[X] such that gcd(P0, Q0) = 1 and
∣∣∣∣
P0

Q0
− 1

∣∣∣∣ < 1.

We define a sequence of F2(X) by:

Pi+1

Qi+1
=

(
P

Q

)(
Qi

Pi

)2

for i ≥ 0 and gcd(Pi, Qi) = 1. (S1)

Then (S1) is equivalent to

Pi

Qi
=




(
P0

Q0

)2i (
Q

P

) 2i−(−1)i

3




(−1)i

for i ≥ 0 and gcd(Pi, Qi) = 1. (S2)
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Since |α| = | Pi

Qi
| = 1 for all i ≥ 0 and

α− Pi+1

Qi+1
=

P

Q

1
α2

− P

Q
(
Qi

Pi
)2

then for all i ≥ 0 ∣∣∣∣α−
Pi+1

Qi+1

∣∣∣∣ =
∣∣∣∣
1
α
− Qi

Pi

∣∣∣∣
2

=
∣∣∣∣α−

Pi

Qi

∣∣∣∣
2

.

Thus for all i ≥ 0 ∣∣∣∣α−
Pi

Qi

∣∣∣∣ =
∣∣∣∣α−

P0

Q0

∣∣∣∣
2i

.

We consider the sequence starting from
P0

Q0
= 1 with P0 = Q0 = 1. Then

∣∣∣∣α−
Pi

Qi

∣∣∣∣ = |α− 1|2i

.

Since (α − 1)(α2 + α + 1) = α3 − 1 and |α| = 1, then |α2 + α + 1| = 1 and so
|α− 1| = |α3 − 1|. Then for i ≥ 0 we have

∣∣∣∣α−
Pi

Qi

∣∣∣∣ = |α3 − 1|2i

=
∣∣∣∣
P

Q
− 1

∣∣∣∣
2i

,

so
∣∣∣∣α−

Pi

Qi

∣∣∣∣ = |Q|−2i(1− deg(P+Q)
deg Q ). (5)

Set

µ = 1− deg(P + Q)
deg Q

= 1− λ.

From (S2) we have

|Qi| = |Q| 2
i−(−1)i

3 .

Then
|Qi|−3µ = |Q|−µ2i+µ(−1)i

.

From the equality (5) we have
∣∣∣∣α−

Pi

Qi

∣∣∣∣ = |Q|−µ2i

,

then

|α− Pi

Qi
| = |Qi|−3µ|Q|µ(−1)i+1

. (6)

Equality (6) yields that ν(α) ≥ 3µ− 1 = 2− 3λ.
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Theorem 5. Let S, T ∈ F2[X] with deg T < 2 deg S. Let α be the irrational solution
of the equation y3 = S3 + T .

(i) If T divides S2, then ν(α) = 2.

(ii) If T does not divide S and deg T < deg S, then ν(α) ≥ 2− deg T

deg S
.

(iii) If gcd(S, T ) = 1 and 0 ≤ deg T < (2−√2) deg S, then ν(α) = 2− deg T

deg S
.

Proof. (i): Let β =
α

S
. Then

β3 = 1 +
T

S3
= 1 +

1
H

.

So by Theorem 2 ν(β) = 2. Hence ν(
α

S
) = 2 and by Remark 1 we deduce that

ν(α) = 2.

(ii): Let β =
α

S
. Then

β3 =
R

R + T
.

Suppose that gcd(R, T ) = K ∈ F2[X], then there exist U ,V ∈ F2[X] such that
gcd(U, V ) = 1 such that R = KU and T = KV . So

R

R + T
=

U

U + V
.

We have
0 ≤ deg V

deg U
<

deg T

deg R
<

1
3
.

Then from Lemma 7
ν(β) ≥ 2− 3

deg V

deg U
> 2− deg T

deg S
.

Suppose that K = 1. Then

ν(β) ≥ 2− 3
deg T

deg R
≥ 2− deg T

deg S
.

We conclude that
ν(β) ≥ 2− deg T

deg S
.

So by Remark 1 we deduce that

ν(α) ≥ 2− deg T

deg S
.

(iii): We prove this case by using Theorem 2 and with the same reasoning as
ii).
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We see that ν(α) > 1 in the two cases i) and ii), then we deduce from this
Theorem that if T divides S or T does not divide S and deg T < deg S then α has
a continued fraction expansion with unbounded partial quotients.

As an application of previous results, we will study the continued fraction ex-
pansion and the approximation exponent of the cubic root of polynomials of degree
≤ 6. This study yields the following result.

Corollary 1. The continued fraction expansion of the cubic root of a polynomial of
degree ≤ 6 is unbounded.

Proof. The following table presents the study of the irrational root of the equation
α3 = R ∈ F2[X] where R is a polynomial of degree 3.

Equations
Method of determination of partial quotients

or approximation exponent of α
ν(α)

α3 = X3 + 1
α = [X, X2, X, b0, · · · , bn, · · · ],

bn = X2n+1
(X3 + 1)

2n+1+(−1)n

3 Theorem 3

ν(α) = 2

α3 = X3 + X2 + X

= (X + 1)3 + 1
substituting X by X + 1 Lemma 2 ν(α) = 2

α3 = X3 + X

α = [X, X, X, b0, · · · , bn, · · · ],

bn = X
2n+1+(−1)n+1

3 (X2 + 1)
2n+1+(−1)n

3 Theorem 3

ν(α) = 2

α3 = X3 + X2

= (X + 1)3 + X + 1
substituting X by X + 1 ν(α) = 2

α3 = X3 + X + 1
α3

X3
=

X3 + X + 1

X3
Corollary 1, Remark 1 ν(α) = 3

2

α3 = X3 + X2 + 1 substituting X by X + 1 ν(α) = 3
2

Remark 4. For some equations, we will compute the approximation exponent of
their solutions in the same way as the Proposition 1.

We also remark that

α3 =
X2 + X + 1

X2
=

X3 + X2 + X

X3
.

Then (Xα)3 = X3 + X2 + X = (X + 1)3 + 1, ν(Xα) = 2 and then ν(α) = 2.

We will give now the table which presents the study of the irrational root of the
equation α3 = R ∈ F2[X] where R is a polynomial of degree 6. Before this, we
introduce the following remarks.
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Equations
Method of determination of partial quotients

or approximation exponent of α
ν(α)

α3 = X6 + 1 α = [X2, X4, X2, b0, · · · , bn, · · · ], ν(α) = 2

= (X2)3 + 1 bn = X2n+2
(X6 + 1)

2n+1+(−1)n

3 Theorem 3

α3 = X6 + X4 + X2 substituting X by X + 1 Lemma 2 ν(α) = 2

= (X + 1)6 + 1

α3 = X6 + X α = [X2, X4, X2, b0, · · · , bn, · · · ], ν(α) = 2

= (X2)3 + X bn = X2n+1
X

2n+2+(−1)n+1
3 (X5 + 1)

2n+1+(−1)n

3 Theorem 3

α3 = X6 + X4 + X2 + X substituting X by X + 1 ν(α) = 2

α3 = X6 + X + 1 Theorem 5 ν(α) = 3
2

= (X2)3 + X + 1

α3 = X6 + X4 + X2 + X + 1 substituting X by X + 1 ν(α) = 3
2

α3 = X6 + X2 α = [X2, X4, X2, b0, . . . , bn, . . .], ν(α) = 2

= (X2)3 + X2 bn = (X2)
2n+2+(−1)n+1

3 (X4 + 1)
2n+1+(−1)n

3 Theorem 3

α3 = X6 + X4 substituting X by X + 1 ν(α) = 2

α3 = X6 + X2 + 1 α3 = (X3 + X + 1)2 Remark 1, 3 and Proposition 1 ν(α) = 3
2

α3 = X6 + X4 + 1 substituting X by X + 1 ν(α) = 3
2

α3 = X6 + X2 + X
α3

X6
=

X6 + X2 + X

X6
=

X5 + X + 1

X5
Theorem 2,Remark 1 ν(α) ≥ 7

5

α3 = X6 + X4 + X + 1 substituting X by X + 1 ν(α) ≥ 7
5

α3 = X6 + X2 + X + 1 dega38 = 12 Lemma 5, Remark 2 ν(α) > 1
= (X2)3 + X2 + X + 1

α3 = X6 + X4 + X substituting X by X + 1 ν(α) > 1

α3 = X6 + X3 α = [X2, X, X2, b0, . . . , bn, . . .], ν(α) = 2

= (X2)3 + X3 bn = X2n+1
(X3)

2n+2+(−1)n+1
3 (X3 + 1)

2n+1+(−1)n

3 Theorem 4

α3 = X6 + X4 + X3 + X substituting X by X + 1 ν(α) = 2

α3 = X6 + X3 + 1
α3

X6
=

X6 + X3 + 1

X6
Remark 4, 1 ν(α) = 2

α3 = X6 + X4 + X3 + X + 1 substituting X by X + 1 ν(α) = 2

α3 = X6 + X3 + X dega45 = 8 Lemma 5, Remark 2 ν(α) > 1
= (X2)3 + X3 + X

α3 = X6 + X4 + X3 + 1 substituting X by X + 1 ν(α) > 1

α3 = X6 + X4 + X3 α3

X3
= X

3 + X + 1 Remark 1 ν(α) = 3
2

α3 = X6 + X3 + X + 1 substituting X by X + 1 ν(α) = 3
2

α3 = X6 + X3 + X2 α3

X6
=

X6 + X3 + X2

X6
=

X4 + X + 1

X4
Proposition 1, Remark 1 ν(α) = 5

4

α3 = X6 + X4 + X3 substituting X by X + 1 ν(α) = 5
4

+X2 + X + 1

α3 = X6 + X4 + X3 + X2 + X
α3

X6
=

X6 + X3 + X2 + X

X6
=

X5 + X2 + X + 1

X5
Remark 4, 1 ν(α) ≥ 4

3

α3 = X6 + X3 + X2 + 1 substituting X by X + 1 ν(α) ≥ 4
3

α3 = X6 + X4 + X3 + X2 α3

X6
=

X6 + X4 + X3 + X2

X6
ν(α) = 4

3

= X4+X2+X+1
X4 Proposition 1, Remark 1
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α3 = X6 + X3 + X2 + X substituting X by X + 1 ν(α) = 4
3

α3 = X6 + X3 + X2 + X + 1 dega50 = 18 Lemma 5, Remark 2 ν(α) > 1
= (X2)3 + X3 + X2 + X + 1

α3 = X6 + X4 + X3 + X2 + 1 substituting X by X + 1 ν(α) > 1

α3 = X6 + X5 α3

X3
= X

3 + X
2 Remark 1 ν(α) = 2

α3 = X6 + X5 + X2 + X substituting X by X + 1 ν(α) = 2

α3 = X6 + X5 + 1 dega53 = 10 Lemma 5, Remark 2 ν(α) > 1

α3 = X6 + X5 + X2 + X + 1 substituting X by X + 1 ν(α) > 1

α3 = X6 + X5 + X
α3

X6
=

X5 + X4 + 1

X5
=

(X + 1)3

X3

X2 + 1

X2
Theorem 2, Remark 1 ν(α) > 1

α3 = X6 + X5 + X2 + 1 substituting X by X + 1 ν(α) > 1

α3 = X6 + X5 + X2 dega13 = 10 Lemma 5, Remark 2 ν(α) > 1

α3 = X6 + X5 + X + 1 substituting X by X + 1 ν(α) > 1

α3 = X6 + X5 + X3 α3

X3
= X

3 + X
2 + 1 Remark 1 ν(α) = 3

2

α3 = X6 + X5 + X3 + 1 substituting X by X + 1 ν(α) = 3
2

α3 = X6 + X5 + X3 + X2 + 1
α3

(X2 + X)3
=

(X2 + X)3 + X2 + X + 1

(X2 + X)3
Lemma 2 Remark 1 ν(α) = 3

2

α3 = X6 + X5 + X3 + X Theorem 4 ν(α) = 2

α3 = X6 + X5 + X3 + X2 + X + 1 dega28 = 18 Lemma 5, Remark 2 ν(α) > 1

α3 = X6 + X5 + X3 + X2 + X substituting X by X + 1 ν(α) > 1

α3 = X6 + X5 + X4 α3

X3
= X

3 + X
2 + X Remark 1, 4 ν(α) = 2

α3 = X6 + X5 + X4 + X2 + X + 1 substituting X by X + 1 ν(α) = 2

α3 = X6 + X5 + X4 + 1 dega18 = 10 Lemma 5, Remark 2 ν(α) > 1

α3 = X6 + X5 + X4 + X2 + X substituting X by X + 1 ν(α) > 1

α3 = X6 + X5 + X4 + X α = [X2 + X, X, X2 + X, b0, . . . , bn, . . .], ν(α) = 2

= (X2 + X)3 + X3 + X bn = X2n+1
(X3 + X)

2n+2+(−1)n+1
3

×(X3 + X2 + 1)
2n+1+(−1)n

3 Theorem 4

α3 = X6 + X5 + X4 + X2 substituting X by X + 1 ν(α) = 2

α3 = X6 + X5 + X4 + X + 1 dega13 = 10 Theorem 5, Remark 2 ν(α) > 1

α3 = X6 + X5 + X4 + X2 + 1 substituting X by X + 1 ν(α) > 1

α3 = X6 + X5 + X4 + X3 + 1 Theorem 3 ν(α) = 2
= (X2 + X)3 + 1

α3 = X6 + X5 + X4 + X3 substituting X by X + 1 ν(α) = 2

α3 = X6 + X5 + X4 + X3 + X Theorem 3 ν(α) = 2
= (X2 + X)3 + X

α3 = X6 + X5 + X4 + X3 + X + 1 substituting X by X + 1 ν(α) = 2

α3 = X6 + X5 + X4 + X3 + X2 α = [X2 + X, X2 + 1, X2 + X, b0, . . . , bn, . . .], ν(α) = 2

= (X2 + X)3 + X2 bn = (X2 + 1)2
n+1

(X2)
2n+2+(−1)n+1

3

×(X4 + X3 + X2 + X + 1)
2n+1+(−1)n

3 Theorem 4
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α3 = X6 + X5 + X4 + X3 + X2 + 1 substituting X by X + 1 ν(α) = 2

α3 = X6 + X5 + X4 + X3 α3

(X2 + X + 1)3
=

(X2 + X + 1)3 + X2 + X + 1 + 1

(X2 + X + 1)3
ν(α) = 3

2

+X2 + X + 1 Proposition 1 Remark 1

α3 = X6 + X5 + X4 + X3 + X2 + X Theorem 3 ν(α) = 2
= (X2 + X)3 + X2 + X

In conclusion, we note that throughout this work we give results for the ap-
proximation exponent to the solution of strictly positive degree of the equation (4).
Indeed, by the change of variable α = S + 1

β we get that the equations (4) and
(3) are equivalent. According to Remark 1, we have ν(α) = ν(β) and therefore we
obtain the approximation exponent of β.
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