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Abstract. In this paper, with different approaches we study rational approximation for
the algebraic formal power series in F2((X ™')) solving the irreducible equation

3
a” =R,

where R is a polynomial of F2[X]. Moreover, for some polynomials R, we give explicitly

the continued fraction expansion of the root of this equation.
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1. Introduction

1.1. Continued fraction algorithm in the field F,((X!))

Let p be a given prime number and F, the finite field of characteristic p having
g elements (¢ = p°, s > 1). We consider the ring of polynomials F,[X] and the
field of rational function F,(X), in an indeterminate X with coefficients in F,. Let
F,((X~1)) be the field of formal power series

Fo (X)) ={a=> X" a;€Fyng€Z}.

izno

If @ = 3,0, X " is an element of Fy((X~')) with ay, # 0, we introduce the
absolute value of « by |a| = ¢~™ which is not archimedian and —ng = deg«. This
field F,((X 1)) can be identified with the completion of F,(X) for this absolute
value. As in the classical case of the real numbers we have a continued fraction
theory with polynomials in X playing the role of integers. For each a € Fy((X 1))
we write [@] for the polynomial part of o and {a} = a — [a] for the fractional part
of a. For any a € F,((X1)), let ag = [a], we have :

1
a = ap + -1
ay + — 1
az + —
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and we denote
a=1ag,..-,0n,--.],
where (ay)g>1 are polynomials of degree > 1. The later expression is called continued

fraction expansion of o and the sequence (ax)r>0 is called the sequence of partial

P,
quotients of . Furthermore, the rational —~ = lag,...,a,] converges toa. For
n

P,
n > 0 the sequence (Q—)nzo is defined by:

n

Pn+1 - an+1pn + Pn—la
Qn-‘rl = an+1Q7L + Qn-1,
where Qo = 1,Q1 = a1, Py = ap and P; = agay + 1.
We have the following important equality :
P,
Q@n
We say that a formal power series has bounded partial quotients if the polynomial

(ak)k>0 are bounded in degrees.
Baum and Sweet have given in [1] the following lemmas:

lov — | = |ans1| M Qn|™2  for n>0.

Lemma 1. Let P,Q € F3[X] and a € Fo((X7Y)). If |Qa — P| = 2~ (d+deg @)
ged(P,Q) =1, d > 0, then for somen, Q = Qn, P =P, and dega, 1 = d.

Lemma 2. If a is an algebraic formal power series with unbounded (or bounded)
partial quotients, and if, in the continued fraction for «, we replace X by any poly-
nomial p(X) of positive degree in X, then we obtain another algebraic continued
fraction with unbounded (or bounded) partial quotients.

Khintchine [4] conjectured that if z is an algebraic number with degree > 3 then
x has a continued fraction expansion with unbounded sequence of partial quotients.
More is known in the case of algebraic formal power series over a finite field.

In 1976, Baum and Sweet [1] showed that the unique solution in Fo((X 1)) of
the cubic equation

X +a+X=0 (1)

has a continued fraction expansion with partial quotients of bounded degree. Their
proof does not yield a description of those partial quotients. Later Mills and Robbins
[8] succeeded in giving a complete description of the sequence of partial quotients
of the solution of the equation (1). They also provided some examples in higher
characteristic. Robbins [11] has also given a family of cubic formal power series with
bounded partial quotients. Nevertheless it appears that there is still very little known
about the nature of continued fractions of algebraic power series. In particular, even
though there seem to be many examples with bounded partial quotients, for any
particular example, it may be difficult or impossible to provide a proof. Baum
and Sweet [1] also gave some simple examples with unbounded partial quotients.
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Algebraic formal power series with unbounded partial quotients can also be quite
complicated even when the partial quotient sequence is recognizable. Such formal
power series were studied by Mills and Robbins [8] and Lasjaunias in [6], [5]. In
[9], Mkaouar described an algorithm to compute the partial quotients of continued
fraction expansion for certain algebraic formal power series. He gave the following
result

Theorem 1. Let P(Y) = A, Y™ + A, 1Y ' + ...+ Ay with A; € F [X] and
|An—1| > |Ail, for alli #n—1. Then P has a unique root o € Fo((X 1)) satisfying
|a] > 1. Moreover, [a] = —[AX—:] and the formal power series 3 = m has the

same property as o.

1.2. The approximation exponent

We study the approximation of the elements of F,((X~!)) by the elements of F,(X).
In particular, we consider this approximation for the elements of F,((X~!)) which
are algebraic over Fy(X). In order to measure the quality of rational approximation,
we introduce the following notation and definition. Let « be an irrational element
of Fy (X)),

For all real numbers p, we define

Bla, p) = }g?inf Q"|Qa — P

where P and @ run over F,[X] with @ # 0. Now the approximation exponent of «
is defined by
v(a) = sup{p € R: B(a, p) < oo}
It is clear that we have
B(a,p) =00 if > v(a), B(a, ) =01if p < v(a) and 0 < B(a, v(a)) < 0.

We recall that if = is a convergent to a, we have
n

deg Qn+1

Qna — Po| = Q| T en

Since the best rational approximation to « are its convergents in the above notation

we have

d d
%) =1+ limsup(%),

deg Q dega;
1<i<k

v(a) = lim sup(

It is clear that the approximation exponent can be determined when the continued
fraction of the element is explicitly known. Since |Q,a—P,| < \Qill’ for all irrational

a € F ((X™1)) we have v(a) > 1. Furthermore Mahler’s version of Liouville’s
theorem says that if o € F,((X 1)) is algebraic over F,(X) of degree n > 1 then
B(a,n — 1) > 0. Consequently, for a € F,((X~1)) algebraic over F,(X) of degree
n > 1 we have v(a) € [1,n — 1].

We now use the following vocabulary: If a € F,((X™')), we say that
e « is badly approximable if v(«) = 1 and B(«,1) > 0. This is equivalent to saying
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that the partial quotients in the continued fraction expansion for a are bounded.
e « is normally approximable if v(«) =1 and B(«,1) = 0.
e « is well approximable if v(a) > 1.

Many examples can be studied. A famous example in F,,((X ~!)), which was given
by Mahler in 1949 [7], satisfies the algebraic equation o = X ~*+aP. For this element
«, algebraic of degree p, the approximation exponent is maximal (v(a) = p — 1).
One is then led to wonder whether this example is exceptional. In 1975, another
example was given by Osgood [10]. Nevertheless, there exist in F,((X 1)) algebraic
elements « of degree > 2 for which v(a) = 1. The first example was obtained by
Baum and Sweet [1] : in Fo((X 1)), a satisfying (1) is a cubic element for which
v(a) =1 (and B(a,1) > 0). Other examples were given by Mills and Robbins|§],
for other characteristics, and they noticed that most of these elements belong to a
special class of formal power series, the class of hyperquadratic which we will call
H, of the irrational elements in F,((X 1)) (¢ = p*, s > 1), satisfying an algebraic
equation of the form

B Aa? + B
T Car ¥ D’
where A, B,C,D € Fy[X] and t > 0. It gradually became apparent that the elements
of class ‘H deserve special consideration. Later, the rational approximation of these
elements were studied by Voloch [13] and more deeply by de Mathan [3]. They could
show that there are no normally approximable elements of class H. By the work of
de Mathan [3], we know moreover that for elements of class H, the approximation
exponent v(«) is a rational number and B(«, v(a)) # 0, 00. Many elements of class
‘H are well approximable, but the question of determining those which are badly
approximable remains open.

Remark 1. If a and (3 are in F,((X™1)) and a = f(B"), where f is a linear
fractional transformation with polynomial coefficients and r is a power of the char-
acteristic p (we may have r = p° = 1), then we have v(a) = v(B) and B(a,v(a)) =
C-B(6,v(B)) where C > 0 is real number. In particular, for all A,B,C, D € F,[X]
with AD — BC # 0 and t > 0, we have

Ao? + B

(Capt +D)

via)=v
The proof of this Remark can be found in Schmidt’s article [12].
We consider now the case of an equation

a" =R 2)

in the field F,((X~')), where n divides p* — 1, and R € F,(X) such that R ¢
(Fp(X))™. It is clear that any root of (2) belongs to the class H because it is

equivalent to the equation

®t-1) t
noa=al.

For instance, there are no examples of an algebraic formal power series solution for
this equation (where « is not quadratic) that is known to be badly approximable.
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It was proved by Osgood [10]that if ged(n,p) = 1 then the n'* root of 1+ + in
F,((X~')) has an approximation exponent equal to n — 1.

At the end of his paper, de Mathan [3] asked whether for an element « satisfying
the equation (2) one may have v(a) = 1 (where « is not quadratic). He gave the
approximation exponent of some examples of these elements for the case n = 3 and
p = 2. He proved the following result

Proposition 1. Let a, 3, v be elements of Fo((X 1)) such that

3 (XP4+X+1) 5 (X*+X2+X+1) 3 (X*4+X+1)
= = X4 T T xs

5 5 1
-, B(v,-) = =.
B =g

Lasjaunias [6] gave, depending on R, the approximation exponent of elements
satisfying the equation (2). In particular, for the case n = 3 and p = 2, he gave the
following Theorem

One has v(a) = %,B(a, %) =1,v(B) = g,B(ﬁ, g) =1Lv(y) =

Theorem 2. Let P,Q € Fy[X] be coprime and of same degree. Assume that g &g

(Fo(X))3. Let A\ = %. Then the equation y> = 5 has a unique root o €

Fo((X1) with o — 1] < 1. If A < (273&, then v(a) = 2 — 3X. Moreover, we
have v(e) = 2 if and only if there exist Py, Qo € Fa[X] and C € Fy[X] such that
E= (L)1 + ).
0
We now come to present our work. We will show that the irrational root of the

equation
a® =R,

where R € Fy[X] and deg R € 3N is well approximable for almost all R (note that
the approximation exponent of this root belongs to [1,2]). This result is based on a
specific decomposition of the polynomial R. This decomposition will allow us to de-
terminate the approximation exponent of the solution of this equation, furthermore,
it will help us in some cases to find an explicit continued fraction of this solution.
As an application, we finish by studying the continued fraction expansion and the
approximation exponent of the cubic root of polynomials of degree < 6.

2. Results

Lemma 3. Let R € Fo[X] be such that the degree of R is a multiple of 3. Then
there is a unique o € Fo((X 1)) such that o® = R.

Proof. Uniqueness is obvious. Let R = X™ +a,,_1X™ '+ ... 4 ag where m € 3N
R
and @ = X™. We have \§| =1. Let



618 K. Ayapi, M. HBAIB AND F. MAHJOUB

Then 0
n+1
Yn+1 + In :’Yn(l""(ﬁ)4 )
So 0 0
=11 Qg+ _ 1+ 9 gnt1
et =7l = 1+ (B = 14

Hence lim |y, 11 — Yn| = 0, then lim~, = v € Fo((X 1)) and
_TT 9
V= E)(R> =

Therefore v3 = g and so (7YX %)% = R. O

Lemma 4. Let R € F3[X] be such that deg R = 0(mod 3). Then the polynomial R
is uniquely expressible as S® + T, where S, T € F3[X] such that degT < 2deg S.

Proof. We have
R= > rX'€FX]
0<i<3m

> siX' € FolX]

0<i<m

with 73, = 1. We search

with s,, = 1 such that deg(R + S®) < 2m. Hence the first upper m + 1 coefficients
of S? and of R must be equal. This is equivalent to solving the following system of
m equations

SmSm—i + Sm—18m—it2 + -+ =T3m—; for 1<i<m.

This system is easily solved by induction starting from the first equation s,,8,—1 =
r3m—1. Setting T = R + 52 we have the desired statement. O

We can write the equation a® = R # 0 as o = L. In relation with the equation
defining elements of H, we have here |A| = \(AD BC’)| = |R|. Consequently, we
have the following Lemma (see [5, Lemma 3]).

Lemma 5. Let a be an irrational power series in Fo((X 1)) satisfying
a® =R, (3)

where R € Fo[X] and deg R € 3N. Let us suppose that there exist a partial quotient
a of « such that |a| > |R|. Then the sequence of partial quotients of the continued
fraction expansion for « is unbounded.

To compute the continued fraction expansion of a formal power series satisfying
(3), with R = 83 + T and degT < 2degS, we can use the algorithm given in
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Theorem (1). In fact, if we substitute o = .S + % in (3) where 8 € Fo((X')) with
|3 > 1, we obtain that /3 is a solution of the algebraic equation

TR+ S%32 +S6+1=0 (4)

with degT < 2degS. So if we determine the explicit continued fraction of 3, we
deduce that of &. We will present the steps of the algorithm, derived from Theorem
(1), which allows us to determine the partial quotients of 3 in the following Lemma

Lemma 6. By [ag,...,an,...] we denoted the continued fraction expansion of the
irrational solution 3 of the equation (4)and By = [am, @ma1, - - .]. If we take Ag =T,
By =52, Co =8 and Dy =1 then deg By > deg Ao, Co, Dy.

As B = am + ﬁ%“, then, by iteration on m, By, satisfies an equation of the form

Amﬁfn + Bmﬁ?n + Cmﬁm + Dm =0

with
Apmi1 = Apmad, + Bpa? + Cpam + Dy,
By = Amagn + Cm,
Cm—i—l = Amam + Bma
Dm+1 = Am7
2 Bm+1
and we have ag = [—] and ami1 = | | for all m > 0.
T Am+1

Note that if A, divides B,,, then Cy,11 =0, Bppo = Apy1a?, and A, q0 = Ay,
for all m > 0.

Remark 2. We write below the few lines of program (using Maple) to obtain the
first fifty partial quotients of the continued fraction expansion of the solution of the
equation (3).

p:=2:n:=50:e=T
a:=array(l..n):b:=array(1..n):c:array(l..n)d:array(1..n)
cal1]=e:b[1]=8 %:c[1]=S:d[1]=1:q[1]=quo(b[1],al[1],X)mod 2:

for i from 2 to n do

ali]:=simplify(ali-1]*q[i-1] 3+b[i-1]%q[i-1] %+ c[i-1]*q[i-1]+d[i-1])
mod p:

bli]:=simplify(ali-1]*q[i-1] 2+c[i-1]) mod p:
cli]:=simplify(ali-1]*q[i-1]+b[1-1]) mod p:

dl[<i]:=simplify(ali-1]) mod p:

qli]:=quo(b[i],ali],X) mod p:od:print(qg);

Using the previous algorithm, we give now theoretically the explicit continued
fraction expansion of cubic root of some polynomials R € F2[X] and their corre-
sponding values of approximation exponent.
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Theorem 3. If T divides S, i.e. there exists K € Fa[X] such that S = KT, then
the continued fraction expansion of the irrational solution of the equation

A =824+T

in the field Fo((X~ 1Y) is a = [KT,K?*T,KT,~], where v = [ag,...,an,...] €
Fo((X~1)) such that a, = K2 Tun+1 (K3T2 + 1)u» with

2n+1 —_1)"
Up = —;< ) )

for all n > 0. Moreover, we have v(a) = 2.

Proof. In this case, we have § =

1

5 is a solution of the following equation:
T3 + K*T?3* + KT+ 1=0.

We write o = KT + % and 8 = [by, by, --]. Using the formulas from the Lemma

6 we get by = K2T and by = KT. From there on we denote b,, = a,_2. We have

a = [KT,by,by,7] where v = [ag, a1, az,---]. Then by induction we obtain

n 2n+1 _1 n
an = K2 T+ (K3T? 4+ 1), where u,, = %, for n > 0.

Consequently, there are two rationals A and p such that deg(a,) = 2"\ + (=1)"u
for n > 0 where A = 4deg(K) + § deg(T) and p = deg(K) + 5 deg(T). Therefore,

deg(an+1)
Zogign deg(a;)
tends to 1 as n tends to infinity. So v(v) = 2 and by Remark (1) v(a) =v(y). O

Theorem 4. If T divides S* and not S, i.e. there exists K € F3[X] such that
S? = KT, then the continued fraction expansion for the irrational solution of the
equation
?=834+T
in the field Fo((X7Y)) is o = [S, K, S, 7], where v = [ag,...,an,...] € Fo((X1))
such that a, = K¥" T (KS 4 1)+ and
2n+ 71 n+1
for allm > 0. Moreover, we have v(a) = 2.

Proof. With the same method used in the last proof we compute the partial quo-
tients of «. Further, there exist two constants X' and u' such that deg(a,) =
27X + (=1)"u’ for n > 0. The constants X and u' can also be explicited: A\ =
2deg(K) + 2 deg(T) and p' = § deg(K) — ¢ deg(T). Therefore,

deg(ant1)
Zogign deg(a;)

tends to 1 as n tends to infinity. So v() = 2 and by Remark (1) v(a) =v(y). O
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We provide now some remarks as an immediate consequence of Remark 1.
Remark 3.

(i) If ged(S,T) = K3, then there exist S’ € Fao[X] and T' € Fa[X] such that
S = K35, T = KT and gcd(S’,T") = 1. So, we can study the equation
33 = K883 + T and deduce the behavior of the partial quotients of o from (3
such that o = K 3.

(i) Suppose that there exists K € Fo[X] such that S = KS', T = K3T' where
S" and T' € Fo[X] then o = K353 + K3T' = K3(S® +T"). So we study
the properties of the formal power series v> = S’ +T' and since o = =, we
deduce the properties of continued fraction for a.

(iii) If o® = K?",n > 0 and K € Fo[X], then we survey the equation v* = K. «
and y have the same rational approzimation properties since o = 2" .

Now we give results concerning the approximation exponent of the cubic root
of a polynomial. First, following the result given by Lasjaunias in Theorem (2),
and using a method introduced by de Mathan in [3] to calculate the approximation
exponent v(«) when v(«) is large enough, we add the following lemma

Lemma 7. Let P,Q € F3[X] be a coprime and of same degree. Assume that g ¢
(Fo(X))3. Let

) - deg(P—Q)
deg@
Then the equation y® = g has a unique root o € Fo((X 1)) with |a — 1] < 1.
Moreover, if A < %, then v(a) > 2 — 3\,

Proof. We follow the proof of Theorem (2) fairly closely. We prove the existence
and the uniqueness of the irrational solution « with the same reasoning as the proof

of Lemma 3.
Let us consider Py, Qo € F,[X] such that ged(FPy, Qo) =1 and

Py ‘
— -1 <1
Qo
We define a sequence of Fy(X) by:
P _ (P (@) . .
=(=|(=% | fori> d ged(P;,Q;) = 1.
Qint (Q> (R) or i >0 and ged(P;, Q;) (S1)

Then (S;) is equivalent to

20 —(—1)% (=17

2! 5
% = (g;) (g) for i > 0 and ged(P;, @Q;) = 1. (S2)
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. P; .
Since |a| = |Q—| =1 for all ¢ > 0 and
i

Py P1 P,Q
o — =
Qit1 QCVZ Q

then for all 2 >0

P |1 Q ? B |?
‘Q_QH-I_OC_Pi ‘ Qi

Thus for all 4 > 0 _

Pl I
o — .= a— %
: . Py :

We consider the sequence starting from @ =1 with Py = Qg = 1. Then
a—% :\a—1|21.

Since (a — 1)(a®> + a+ 1) = a® — 1 and |a] = 1, then |a? + a + 1| = 1 and so
| — 1| = |a® — 1|. Then for i > 0 we have

P - ‘P 2
oa——|=|la° =1 =|=-1| ,
‘ i | | Q
80
Pi __ot(q__ deg
a— o] =@ 0T (5)
Set des(P
p—1 - deePrQ
deg @
From (S3) we have
21— (—1)?
Qi =1QI = .
Then , .
|Qil = = QI
From the equality (5) we have
P; i
a— 2| = Q —p2 ,
=19
then
Pi _ qyitl
loo — —[ = [Qs] QM (6)

Equality (6) yields that v(a) > 3u—1 =2 — 3. O
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Theorem 5. Let S, T € Fy[X] with degT < 2deg S. Let a be the irrational solution
of the equation > = S3 4+ T.

(i) If T divides S?, then v(a) = 2.

T
(i) If T does not divide S and degT < deg S, then v(a) > 2 — jZiS.
degT
(iii) If gcd(S,T) =1 and 0 < degT < (2 — /2)deg S, then v(a) =2 — deg S’
e
Proof. (i): Let 5 = %. Then
T 1
S=14 — =1+ —.
g tm=ltgy

So by Theorem 2 v(3) = 2. Hence 1/(%) = 2 and by Remark 1 we deduce that
via) =2.
(i7): Let 8 = % Then
R
63:R+T‘
Suppose that ged(R,T) = K € Fy[X], then there exist U,V € F3[X] such that
ged(U, V) =1 such that R= KU and T = KV. So

R U
R+T U+V
We have
0 < degV  degT 1
“degU ~degR 3
Then from Lemma 7 A deo T
eg eg
>2— —
vB) 22 =350 72" Geg S
Suppose that K = 1. Then
degT degT
>2-3 -
v(6) 2 deg R deg S
We conclude that dea T
cg
>2—
V)22 g
So by Remark 1 we deduce that
degT
>2— .
v(e) 2 deg S

(#i1): We prove this case by using Theorem 2 and with the same reasoning as
i). O
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We see that v(«a) > 1 in the two cases i) and i), then we deduce from this
Theorem that if T' divides S or T does not divide S and degT < deg S then « has
a continued fraction expansion with unbounded partial quotients.

As an application of previous results, we will study the continued fraction ex-
pansion and the approximation exponent of the cubic root of polynomials of degree
< 6. This study yields the following result.

Corollary 1. The continued fraction expansion of the cubic root of a polynomial of
degree < 6 is unbounded.

Proof. The following table presents the study of the irrational root of the equation

3 _ Tq H
a® = R € F3[X]| where R is a polynomial of degree 3. O
. Method of determination of partial quotients
Equations . . v(a)
or approximation exponent of «
a=[X, X%, X, bg, -+ bn, -]
3 _ x3 —
a® = X2 +1 g1 5 2n+1+(_1>n v(ia) =2
bp = X (X2 +1) 3 Theorem 3
3 _ x3 2
el = XTAXTHX substituting X by X + 1 Lemma 2 v(a) =2
=(x+1)3+1
a=[X,X,X,bg,  ,bn, -],
a3 =x3 4+ x gntly(_qyntl on+ly(_q)n v(a) =2
by = X 3 (x2+1) 3 Theorem 3
3 _ x3 2
o = X7+ X3 substituting X by X + 1 v(a) =2
= (X+1D34+Xx+1
3 5 a3 X34 X 41 3
a® = X° 4+ X +1 —— = ————— Corollary 1, Remark 1 v(ia) = 35
X3 X3 2
a3 =x34x241 substituting X by X + 1 ‘ v(a) = % ‘

Remark 4. For some equations, we will compute the approximation exponent of
their solutions in the same way as the Proposition 1.

We also remark that

3 X?+X+1 X*4+X2+X
o = X2 = X3 .

Then (Xa)3 = X3+ X2+ X = (X +1)3+ L,v(Xa) =2 and then v(a) = 2.
We will give now the table which presents the study of the irrational root of the

equation a® = R € Fo[X] where R is a polynomial of degree 6. Before this, we
introduce the following remarks.
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Method of determination of partial quotients

Equations or approximation exponent of « v(e)
a3 =x% 11 a= (X2, X% X% by, b, -], v(a) =2
ant1_qyn
o3 a2 g %
= (x2)3 41 by = X (x6 +1) Theorem 3
a3 =x0 + xT 4 x2 substituting X by X + 1 Lemma 2 v(ia) =2
=X +18+1
a3 =x% +x a=(x2, X3, X% bg, - b, ], v(a) =2
nt1 27L+2+(71)n+1 2n+1+(71)n
=(x2)3 4+ x by = X2 X 3 (x5 +1) 3 Theorem 3
ol =x0 4+ x¥ 4+ x2 + x substituting X by X + 1 2
a3 =x8 1 x 41 Theorem 5 3
= (X33 4+ x 41
a3 =x0 p xT i xZ1x+1 substituting X by X + 1 v(a) =3
a3 = X0 1+ x2 a= (X2, X% X% by, ..., bn,. via) = 2
ant2.4 (_qyn+l ontly(_q)n
= (x2)3 4 x2 b = (X2) 3 (x%+1) ~3  Theorem 3
o3 = x84 x17 substituting X by X + 1 v(a) =2
o =x0 4+ x2 11 a3 = (X3 4+ X + 1)2 Remark 1, 3 and Proposition 1 v(a) = %
a3 = x6 + x4Z +1 substituting X by X + 1 v(a) = %
3 s 5 a3 x4+ x2 1 x  XP4+x+1 -
a3 =x6 4+ x2 4 x - = = Theorem 2,Remark 1 v(a) > L
x6 X6 x5 -0
i ——s T ET—— 7
a® =X+ X*F+ X +1 substituting X by X + 1 v(a) > 5
ad =x0 + X2 4+ X +1 degagg = 12 Lemma 5, Remark 2 via) > 1
=(x2)8 + X2+ X 41
ad =x06 + xT+ x substituting X by X + 1 v(a) > 1
a3 = x06 + x3 a=[X2,X,X2, by, bn,.. ], via) =2
g s PR Nt G O o SN G D i
= (x2)3 4 x3 bp = X (x3) 3 (x3 4+1) 3 Theorem 4
a3 =x0 1 xTH x3 4+ x substituting X by X + 1 v(a) = 2
5 6 5 s x6 1 x3 11
a® = X + X°+1 — = ———— Remark 4, 1 v(ia) =2
X6 X6
ad=x0 4+ x4+ x3 4+ x+1 substituting X by X + 1 via) =2
o’ =x0 4+ x3 4+ x degays = 8 Lemma b, Remark 2 via) > 1
= (x2)3 + x3 + x
ol =x0 + xT 4+ x3 41 substituting X by X + 1 via) > 1
013 P
a3 = x6 4 x4 4 x3 —3:x3+x+1Rcmark1 ll(a):%
PE
a3 =x0 1 x3 4 x 41 substituting X by X + 1 (o) = %
3 s 3 5 a3 x4y x3 1+ x2 xPix+1 5
a3 = x6 4 x3 4+ x - = = Proposition 1, Remark 1 v(a) =32
X6 X6 x4 4
a3 = x0 y x% 4 x3 substituting X by X + 1 v(a) = %
+X2 4 X 41
3 6 4 5 5 a3 x0 r x3 + x2 +Xx X5+ X2+ X +1 .
a% = x60 4 x4 4 x3 4 x2 4+ x — = = Remark 4, 1 v(a) > %
X6 X6 x5
a3 =x0 4+ x3 4+ x2 41 substituting X by X + 1 V(o) > %
3 5 T 3 7
. . « x0 4+ xT41 x3 1 x
B = x0 4 x* 4 x3 4 x2 — = - - = v(e) = 4

x6

4,2
- %ﬁ Proposition 1, Remark 1
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a3 = Xx0O + X3 + x2 + X substituting X by X 4+ 1 v(a) = %
ad =x0 4t X3+ X2+ X +1 degasg = 18 Lemma 5, Remark 2 via) > 1
=(x2)3 + x3 4+ X2 4 X 41
a3 =x0 4+ xT+ x3 4+ x2%2 11 substituting X by X + 1 v(ia) > 1
3 6 5 o 3 2
a3 = x6 4 x 3 = X° 4+ X? Remark 1 v(a) =2
X
a3 = X6 + X5 + X2 + X substituting X by X 4+ 1 v(ia) =2
ad = x0 4 x5 41 degagg = 10 Lemma 5, Remark 2 via) > 1
a3 =x0 4y x5+ X2+ x +1 substituting X by X + 1 v(a) > 1
B 5 i s xP+xP 11 (x+1)3xZ2+1
a3 = x6 4+ x5 4+ x — = = Theorem 2, Remark 1 | v(a) > 1
X6 x5 x3 X2
S — 5 7 —
a3 = x84 x5 4 xZ 41 substituting X by X + 1 v(a) > 1
a3 = x6 + x5 + X2 degai3 = 10 Lemma 5, Remark 2 v(ia) > 1
a3 =x0 + x5+ x +1 substituting X by X + 1 v(a) > 1
()/3 -
a3 = x6 4 x5 4 x3 —3:X3+X2+1Rexnark1 via) =3
X
a3 =x0 + x5+ x3+1 substituting X by X + 1 V(o) = %
3 7 3 i
) a (X2 4+ X3+ X2+ x+1
ad =x6 4 x5 4 x3 4+ x2 41 = Lemma 2 Remark 1 v(a) =3
(X2 4+ x)3 (X2 4+ x)3
a3 =x0 4 x5 4+ x3 +x Theorem 4 via) =2
a3 =x0 1 x5+ X3+ X2+ Xx+1 degasg = 18 Lemma 5, Remark 2 v(ia) > 1
i — 5 3 pi abstitut
a3 =x0 1 x5 4 x3 4+ x?7 4 x substituting X by X + 1 v(a) > 1
043 q
a3 = x6 4 x5 4 x4 — = x% 4+ x2 + X Remark 1, 4 via) =2
PE
a3 =x0 4+ x5+ xT 4+ X214+ X +1 | substituting X by X + 1 v(a) =2
a3 =x0 4+ x5 4+ xT 41 degaig = 10 Lemma 5, Remark 2 v(ia) > 1
ol =x0 + x5 + x¥T 4+ x%2 + x substituting X by X + 1 v(ia) > 1
a3 =x0 4+ x5+ x¥T 4+ x a=[XZ4+X,X,XZ+X,bg,.-bn,-..], v(a) = 2
n+2 _qyn+1
5 3 3 ot g 2T (=)
=(x24+x)3 4 x34x b = X (X3 4+ X) 3
antly(_q)n
x(X3 + X2+ 1) 3 Theorem 4
a3 = x0 + x5+ xT 4 x2 substituting X by X + 1 (o) = 2
a3 =x0 4+ x5+ xT 4 x +1 degayg = 10 Theorem 5, Remark 2 v(a) > 1
o’ =x0 4+ x5+ xT+x2%2+1 substituting X by X + 1 via) > 1
«@ :X6+X5+X4+X3+1 Theorem 3 v(ia) =2
=(x24+x)3 41
«@ :X6+X5+X4+X3 substituting X by X + 1 v(ia) =2
a3 =x0 + x5+ xT+ x3 + x Theorem 3 v(ia) =2
= (x24+x)3 +x
i 5 T 3 P —
a3 =x8 1 x5 4+ xT4H x3 4 X +1 | substituting X by X + 1 v(a) =2
a3 = x80 + x5 + xT 4 x3 + x2 a=[XZ+X,X2 4+ 1,X%2 4+ X,bg,.--,bn,-. ], (o) = 2

= (X2 +Xx)3 +x

2

v +1
b = (x2 + 12" (x2)

2n+2+(71)n+1
3

antly(_q)n

x(X* 4 x3 4+ x24 X +1)

3

Theorem 4
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a3 =x0 4 x5 4+ xT 1 x3 1 x2 11 substituting X by X + 1 v(a) =2
3 i 3 i
o X2 X+ DS X2 - X +1+1
a® = x6 4 x5 4 x4 4 x3 ,:( ) , via) = 3
(X2 4+ X +1)3 (X2 4+ X +1)3
+X2 4+ X +1 Proposition 1 Remark 1
a3 =x0 + x5+ xT+ x3 + x2 +x Theorem 3 V(o) =2
=(x2+x)% + x2 4+ x

In conclusion, we note that throughout this work we give results for the ap-
proximation exponent to the solution of strictly positive degree of the equation (4).
Indeed, by the change of variable @ = S + % we get that the equations (4) and
(3) are equivalent. According to Remark 1, we have v(a) = v(3) and therefore we
obtain the approximation exponent of 3.
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