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The unramified subquotient of the unramified principal series
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Abstract. We prove that, in a certain induced representation of p–adic symplectic group,
the unramified subquotient appears as a subrepresentation. This result has not only local
importance, but is also very useful in calculations with automorphic representations of
the corresponding group over adeles, since for an irreducible automorphic representation,
almost every local component representation is unramified.
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1. Introduction and preliminaries

Let F be a local non-archimedean field of characteristic zero, with ring of integers
OF . We are interested in the admissible representations of the symplectic group,
which we realize as a matrix group in the following way:

Sp2n(F ) =
{

g ∈ GL2n(F ) : g

[
0 −Jn

Jn 0

]
gt =

[
0 −Jn

Jn 0

]}

where Jn is the n× n matrix defined by Jn =




1

. .
.

1


 .

We fix K = Sp2n(OF ) as a maximal compact subgroup of Sp2n(F ). We say that
an irreducible admissible representation of Sp2n(F ) is unramified if it has a non-
zero K-fixed vector (also is called K–spherical). Then, necessarily, this vector is
unique, up to a scalar. We fix a Borel subgroup Bn of Sp2n(F ) consisting of all the
upper-triangular matrices in Sp2n(F ), and according to that choice, block-upper-
triangular matrices form the standard parabolic subgroups. Each such subgroup
is uniquely determined by an ordered partition (n1, n2, . . . , nk) of m ≤ n; in that
case the corresponding standard parabolic subgroup, denoted by P(n1,...,nk), has Levi
subgroup isomorphic to GL(n1, F )×GL(n2, F )×· · ·×GL(nk, F )×Sp2(n−m)(F ) (if
m = n the last factor in this product is not there). In this situation, for admissible
representations ρi of GL(ni, F ), i = 1, . . . , k and an admissible representation σ
of Sp2(n−m)(F ), we denote the parabolically induced (normalized) representation
IndSp2n(F )

P(n1,...,nk)
(ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρk ⊗ σ) by ρ1 × ρ2 × · · · × ρk o σ.
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For a unitary character χ of GL(1, F ), and α, β ∈ R such that β + α + 1 ∈ Z≥1,
we denote by ζ(−β, α;χ) the unique irreducible subrepresentation of

IndGL(β+α+1,F )
Bn

(ν−βχ⊗ · · · ⊗ ναχ)

(which is a character ν
α−β

2 χ ◦ det of GL(β + α + 1, F )). Here ν denotes a non-
archimedean absolute value on F.

In this paper we want to prove that in certain (parabolically induced) unrami-
fied principal series representations the (unique) irreducible unramified subquotient
appears as a subrepresentation. This result has an immediate application in the
global calculations with automorphic forms, since an automorphic representation of
Sp2n(A) has, at almost every local place, an unramified representation as a local
constituent (e.g., we use this result in [3]).

To be more precise, we prove the following (the notion of negative unramified
representation of a symplectic p-adic group is defined below):

Theorem 1. Let β > α > 0 be integers, and χ an unramified character of F with
χ2 = 1. Let π be a negative representation. Then, an irreducible unramified subquo-
tient of ζ(−β, α; χ)o π is a subrepresentation; it is also a negative representation.

We need the following simple, but important results:

Lemma 1. Let π be an irreducible representation of a reductive p–adic group and
let P = MN be a parabolic subgroup of G. Suppose that M is a direct product of two
reductive subgroups M1 and M2. Let τ1 be an irreducible representation of M1 and
let τ2 be a representation of M2. Suppose that π ↪→ IndG

P (τ1 ⊗ τ2). Then there exists
an irreducible representation τ ′2 such that π ↪→ IndG

P (τ1 ⊗ τ ′2).

Proof. This is Lemma 3.2 of [5].

Lemma 2. Let G = Sp2n(F ) and K as above. Assume that σ is K–spherical smooth
representation of G, and σ is a subquotient of IndMN (σ′ ⊗ 1N ), for some smooth
representation σ′ of M. Then σ′ is M ∩K–spherical.

Proof. This is Lemma 1.1 (ii) of [7].

We also need this fundamental result (essentially due to Tadić [9]), cf. Theorem
3.1 of [7]. Here, for a smooth representation σ of Sp2n(F ), the expression µ∗(σ)
denotes (a semisimplification) of the sum of the Jacquet modules of σ with respect
to all standard maximal parabolic subgroups of Sp2n(F ).

Theorem 2. Let σ be an irreducible admissible representation of Sp2n(F ). We
decompose into irreducible constituents in the appropriate Grothendieck group

µ∗(σ) =
∑

ξ,σ′
ξ ⊗ σ′.
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Assume that α, β,∈ R, α+β+1 ∈ Z>0, and χ is character of F ∗. Then the following
holds

µ∗(ζ(−β, α; χ)o σ) =
∑

ξ,σ′

α+β+1∑

i=0

i∑

j=0

ζ(−α, β − i; χ−1)× ζ(−β, j − β − 1; χ)× ξ

⊗ ζ(j − β, i− β − 1; χ)o σ′.

For an irreducible representation π of Sp2n(F ), by r1,...,1;0(π) we denote the
Jacquet module of that representation with respect to the Borel subgroup Bn.
An irreducible admissible unramified representation π of Sp2n(F ) is strictly (or
strongly) negative if for every irreducible subquotient χ1ν

s1 ⊗ · · · ⊗ χnνsn of
r1,...,1;0(π) (where χi are unitary characters, si ∈ R; i = 1, . . . , n), the following
holds

s1 < 0, (1)
s1 + s2 < 0, (2)

... (3)
s1 + s2 + · · ·+ sn < 0. (4)

We say that an unramified representation is negative if, in the situation as
above, inequalities are not necessarily strict (i.e., ≤ holds).

Let χ0 be the unique quadratic non–trivial unramified character of F.
The Jordan blocks are defined for an unramified strongly negative and negative

representations of a symplectic group Sp2n(F ) as follows. For an unramified strictly
negative representation σ of Sp2n(F ) there exists (a unique) set of positive odd
rational integers 2m1 + 1 < 2m2 + 1 < . . . < 2ml + 1 and 2n1 + 1 < 2n2 + 1 < . . . <
2nk +1 such that k is even and 2m1 +1+ · · ·+2ml +1+2n1 +1 · · ·+2nk +1 = 2n+1
(so l is odd) such that

σ ↪→ ζ(−nk, nk−1; χ0)× · · · × ζ(−n2, n1;χ0)
×ζ(−ml,ml−1; 1)× · · · × ζ(−m3, m2; 1)× ζ(−m1,−1; 1)o 1,

where, if m1 = 0, there is no factor ζ(−m1,−1; 1) (cf. [7], Lemma 5.5). Then, we
define

Jord(σ) = {(χ0, 2n1 + 1), . . . , (χ0, 2nk + 1), (1, 2m1 + 1), . . . , (1, 2ml + 1)}.
For a negative representation σneg there exist a unique strongly negative representa-
tion σsn and pairs (χ1, l1), . . . , (χj , lj) (li ∈ Zl≥1, χi unramified unitary characters)
unique up to a permutation and taking inverses of characters, such that (cf.[8] The-
orem 0-3)

σneg ↪→ ×j
i=1ζ(− li − 1

2
,
li − 1

2
;χi)o σsn.

Then we define a multiset Jord(σneg) = Jord(σsn) +
∑k

i=1{(χi, li), (χ−1
i , li)}. If χ

is an unramified unitary character, and σ negative or strongly negative unramified
representation, we denote Jordχ(σ) = {a : (χ, a) ∈ Jord(σ)}.
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2. The proof of the main theorem

As we can see from (5), Lemma 5.5 of [7] gives an embedding of strictly nega-
tive unramified representations in principal series representations (more precisely,
an embedding in a representation which is a subrepresentation of principal series
representations) but the exponents in this principal series are given in a precise or-
der. But often, especially in global calculations with automorphic forms, this is not
enough. We need to recognize the position of the unramified irreducible subquotient
inside a more general induced representation. In this section we prove that we can
embed strictly negative and negative representations in different ways in degenerate
principal series representations, i.e., we prove, at the end, the Theorem mentioned
in the Introduction. We prove it as a consequence of couple of propositions.

Let χ be an unramified character of F with χ2 = 1. Let π be a strongly negative
representation of Sp2n(F ), and α and β rational integers satisfying β > α ≥ 0.

Proposition 1. If [2α+1, 2β+1]∩Jordχ(π) = ∅, then, in the appropriate Grothendie-
ck group, we have

ζ(−β, α; χ)o π = π1 + π2 + Π,

where π1 and π2 are non-isomorphic irreducible subrepresentations of ζ(−β, α;χ)oπ
(now we view it as a genuine representation, not in the semisimplification), one
of them is strongly negative spherical; and Π is the unique irreducible quotient.

Proof. We know that, up to a sign, Aubert duality ([1, 2]) (at the level of Grothen-
dieck groups) applied to an irreducible representation π gives again an irreducible
representation ([1], Corollaire 3.9). We denote this (genuine) representation by π̂.
We use the fact that, under the Aubert involution, the duals of strongly negative
representations are square–integrable representations. In the case of the cuspidal
support we have here, this involution is equivalent to Iwahori-Matsumoto involution.
This means that π̂ is a square–integrable representation with the same cuspidal
support as π. Also, if (χ, a) ∈ Jord(π̂), then (χ, a) ∈ Jord(π) where now Jord(π̂)
is Jordan block of square–integrable representation, as defined by Mœglin ([4, 5]).
Indeed, assume that (χ, a) ∈ Jord(π̂). Then δ([ν−

a−1
2 χ, ν

a−1
2 χ]) o π̂ is irreducible

and a is odd (since L(χ, Λ2C, s) = 1) (cf. for example, Section 2 of [5] where
Jordan block of a square–integrable representation of a symplectic group is defined).
But, according to [1], the representation δ([ν−

a−1
2 χ, ν

a−1
2 χ])o π̂ is irreducible if and

only if ζ(−a−1
2 , a−1

2 ; χ) o π is irreducible. So, if a ∈ Jordχ(π̂), the representation
ζ(−a−1

2 , a−1
2 ; χ) o π is irreducible. But then, (if we also assume a ≥ 3 if χ =

1) by Corollary 5.1 of [7], a ∈ Jordχ(π). This means Jord(π̂) ⊂ Jord(π), unless
(1GL1 , 1) ∈ Jord(π̂); this case is a bit more subtle. Namely, if π is embedded in
the induced representation as in (5) below, we want to prove that the irreducibility
of 1GL1 o π forces that the representation ζ(−m1,−1; 1) does not appear in the
induced representation, i.e., that m1 = 0, and (1GL1 , 1) ∈ Jord(π). If we assume
the opposite, the irreducible representation 1GL1 o π is a subrepresentation of Π1 =
ζ(−mk,mk−1; 1)×· · ·×ζ(−m3,m2; 1)oπ0, where π0 is a unique irreducible spherical
(negative) subrepresentation of 1GL1 × ζ(−m1,−1; 1)o 1. This means that 1GL1 ⊗π
has to appear with multiplicity at least two in the appropriate Jacquet module
of Π1. But, if ζ(−m1,−1; 1) really appears in Π1, this is not the case, since then
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1GL1⊗1Sp2m1
would have to appear with multiplicity at least two in the appropriate

Jacquet module of π0 (as can be seen by application of Theorem 2), which is not
the case. So, if [2α + 1, 2β + 1] ∩ Jordχ(π) = ∅, then we also have [2α + 1, 2β + 1] ∩
Jordχ(π̂) = ∅. Now we apply Theorem 2.1 of [6], to obtain the claim in the dual
situation. Namely, the two square–integrable subrepresentations of δ([ν−αχ, νβχ])o
π̂ described in Theorem 2.1 of [6], say σ1 and σ2, each have δ([ναχ, νβχ])⊗ π̂ in their
appropriate Jacquet module (and Langlands quotient of δ([ναχ, νβχ])o π̂ does not
have that representation in the Jacquet module). By the properties of the Aubert
involution (Theorem 1.7 (ii) in [1]), the irreducible representation ζ(−β, α; χ)⊗ π is
part of the appropriate Jacquet modules of σ̂i; i = 1, 2.

Another way to prove this Proposition is to directly transfer the results of Muić,
but we would have to use the fact that Iwahori-Matsumoto involution (which is
sufficient in this case) respects composition series.

Proposition 2. Assume that π is a strongly negative representation of Sp2n(F ), χ
an unramified character with χ2 = 1 and α, β rational integers satisfying β > α ≥ 0.
The irreducible spherical subquotient of ζ(−β, α; χ)oπ is a subrepresentation of that
representation.

Proof. Let Jord(π) = {(1, a1), . . . , (1, ak), (χ0, b1), . . . , (χ0, bl)}, with the notation
explained in the Preliminaries, so that χ0 denotes the unique unramified, non–trivial
quadratic character of F. We note that

∑
(χ,m)∈Jord(π) m = 2n+1, ai, i = 1, 2, . . . , k

and bj , j = 1, 2, . . . , l are odd integers with k odd and l even. We also impose that
a1 < a2 < · · · < ak and b1 < b2 · · · < bl. We denote ai = 2mi + 1 and bj = 2nj + 1.
Then

π ↪→ ζ(−mk,mk−1; 1)× · · · ×ζ(−m3, m2; 1)× ζ(−nl, nl−1; χ0) (5)
× · · · ×ζ(−n2, n1; χ0)× ζ(−m1,−1; 1)o 1.

Here if m1 = 0, i.e., a1 = 1 there is no last factor in the previous expression. We
prove the proposition by a case by case analysis. In Proposition 3 we prove that the
irreducible spherical subquotient of

ζ(−β, α; 1)× ζ(−mk,mk−1; 1)× · · · × ζ(−m3,m2; 1)× ζ(−m1,−1; 1)o 1 (6)

is a subrepresentation there (if χ = 1) or, symmetrically, analogously is proved (left
to the reader) that the irreducible spherical subquotient of

ζ(−β, α;χ0)× ζ(−nl, nl−1; χ0)× · · · × ζ(−n2, n1; χ0)o 1 (7)

is a subrepresentation.
We comment only on the reduction in the first case; i.e., how from Proposition 3

this Proposition follows. Assume that π1 is the irreducible spherical subquotient of
(6). We moreover prove in Proposition 3 that (since α, β satisfy conditions imposed
above) π1 is necessarily a strongly negative or negative representation. In the case π1

is strongly negative, we have that Jord(π1) = {(a1, 1), . . . , (ak, 1)}∪{(2α+1, 1), (2β+
1, 1)}. We then denote

ζ(χ0, . . .) = ζ(−nl, nl−1; χ0)× · · · × ζ(−n2, n1;χ0),
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for the unramified representation of the appropriate general linear group appearing
in the description of π. We then have

ζ(−β, α; 1)o π ↪→ ζ(−β, α; 1)× ζ(χ0, . . .)×ζ(−mk, mk−1; 1)× · · · × ζ(−m3,m2; 1)
oζ(−m1,−1; 1)o 1 ∼= ζ(χ0, . . .)×ζ(−β, α; 1)× ζ(−mk, mk−1; 1)× · · ·

×ζ(−m3,m2; 1)o ζ(−m1,−1; 1)o 1 = Π

so that, assuming π1 is a subrepresentation of (6) (by Proposition 3), ζ(χ0, . . .)oπ1 is
a subrepresentation of Π. On the other hand, we can embed π1 into a representation,
say, Π′ according to Jord(π1) (in the same way we embedded π). But then ζ(χ0, . . .)o
Π′ has a unique (strongly negative!) unramified subquotient, say π0, which is a
subrepresentation there (cf. introduction of [7]). Because of the multiplicity one
result for unramified representations, this means that π0 ↪→ ζ(χ0, . . .) o π1. This
means that π0 ↪→ Π, but then another multiplicity one argument forces π0 ↪→
ζ(−α, β; 1)o π, and the claim is shown.

If π1 is a negative representation, and we have that π1 is a subrepresentation
of (6), then π1 ↪→ ζ(−α, α; 1) o σsn, or π1 ↪→ ζ(−α, α; 1) × ζ(−β, β; 1) o σsn, or
π1 ↪→ ζ(−β, β; 1) o σsn for some strongly negative representation σsn (depending
whether {(2α+1, 1), (2β+1, 1)}∩Jord(π) = {(2α+1, 1)}, or {(2α+1, 1), (2β+1, 1)}
or {(2β + 1, 1)} respectively). But then again, if, for example, the first case occurs,

ζ(χ0, . . .)o π1 ↪→ ζ(χ0, . . .)× ζ(−α, α; 1)o σsn
∼= ζ(−α, α; 1)× ζ(χ0, . . .)o σsn

so that ζ(χ0, . . .) o σsn has again a strongly negative subrepresentation, say σ′sn,
then ζ(−α, α; 1) o σ′sn has a (negative) unramified subrepresentation π0 (Theorem
6.1 of [7]; note that [7] does not use the fact σ′sn is unitary). This means (again
by multiplicity one) that ζ(χ0, . . .)o π1 has π0 for a subrepresentation, and, in the
same way as before, we have that π0 ↪→ ζ(−β, α; 1) o π. Other cases are treated
similarly.

So, to complete the proof of Proposition 2, we are left to prove the following
statement. Keeping the notation from above, let π′1 be an unramified strongly
negative representation with Jord(π′1) = {(1, 2a1+1), . . . , (1, 2ak+1)} and β > α ≥ 0
integers.

Proposition 3. The unramified subquotient of

ζ(−β, α; 1)o π′1

is a negative subrepresentation; strongly negative only if Jord(π′1)∩{1, 2α+1), (1, 2β+
1)} = ∅.
Proof. First, assume that Jord(π′1)∩{(2α+1, 1), (2β+1, 1)} = ∅. If 2α+1 is greater
than every element in Jord(π′1), the statement is just the canonical description of
strongly negative representations, cf. Introduction of ([7]); the same thing goes if
2β + 1 is smaller than any element in Jord(π′1). So let |[2α + 1, 2β + 1]∩ Jord(π′1)| =
l > 0, so that

at−1 < α < at < · · · < at+l−1 < β < at+l,

where {2a1+1 < 2a2+1 < · · · < 2at+1 · · · < 2at+l−1+1 < · · · < 2ak+1} = Jord(π′1).
Now we divide our discussion into several cases:
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(i) l even and t even,

(ii) l even and t odd,

(iii) l odd and t even,

(iv) l odd and t odd.

We now discuss the first case, so l and t are even. Then

π′1 ↪→ ζ(−ak, ak−1; 1)× · · · × ζ(−at+l+1, at+l; 1)
×ζ(−at+l−1, at+l−2; 1)× · · · × ζ(−at+1, at; 1)
×ζ(at−1, at−2; 1)× · · · × ζ(−a3, a2; 1)× ζ(−a1,−1; 1)o 1.

On the other hand, for the strongly negative representation π with Jord(π) =
Jord(π′1) ∪ {(2α + 1, 1), (2β + 1, 1)} the following holds:

π ↪→ ζ(−ak, ak−1; 1)× · · · × ζ(−at+l+1, at+l; 1)× ζ(−β, at+l−1; 1)
×ζ(−at+l−2, at+l−3; 1)× · · · × ζ(−at+2, at+1; 1)× ζ(−at, α; 1)
×ζ(−at−1, at−2; 1)× · · · × ζ(−a3, a2; 1)× ζ(−a1,−1; 1)o 1.

Since the cuspidal support of ζ(−β, α; 1)oπ′1 coincides with the cuspidal support of
π, we have π ≤ ζ(−β, α; 1)oπ′1. Let τ1 = ζ(−ak, ak−1; 1)× · · ·× ζ(−at+l+1, at+l; 1),
and τ2 = ζ(−at−1, at−2; 1) × · · · × ζ(−a3, a2; 1) × ζ(−a1,−1; 1) o 1 be unramified
representations of the appropriate general linear and symplectic group, respectively.
Then

ζ(−β, α; 1)oπ1 ↪→ ζ(−β, α; 1)×ζ(−at+l−1, at+l−2; 1)×· · ·×ζ(−at+1, at; 1)×τ1oτ2,

and

π ↪→ ζ(−β, at+l−1; 1)× ζ(−at+l−2, at+l−3; 1)× · · · × ζ(−at+2, at+1; 1)
×ζ(−at, α; 1)× τ1 o τ2.

But this means that there exists an unramified irreducible representation π′ ≤
ζ(−at+l−2, at+l−3; 1)× · · · × ζ(−at+2, at+1; 1)× ζ(−at, α; 1)× τ1 o τ2 such that

π ↪→ ζ(−β, at+l−1; 1)o π′ ↪→ ζ(−β, α; 1)× ζ(α + 1, at+l−1; 1)o π′.

Examining the cuspidal support, we see that π′1 is the unique irreducible unramified
subquotient of ζ(α + 1, at+l−1; 1) o π′, so that by Lemma 1 and Lemma 2 we have
π ↪→ ζ(−β, α; 1)o π′1.

We now analyze the second case: l even and t odd. Let τ1 = ζ(−ak, ak−1; 1)×· · ·×
ζ(−at+l+2, at+l+1; 1), and τ2 = ζ(−at−2, at−3; 1)×· · ·×ζ(−a3, a2; 1)×ζ(−a1,−1; 1)o
1. Then

π ↪→ τ1 × ζ(−at+l, β; 1)× · · · × ζ(−at+1, at; 1)× ζ(−α, at−1; 1)o τ2.
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Let π0 be the unique unramified (negative) subrepresentation of τ1o τ2; then, obvi-
ously Jord(π0) = {2ak + 1, . . . , 2at+l+1, at−2, . . . a2, a1}. We then have

π ↪→ ζ(−at+l−1, at+l−2; 1)×· · ·×ζ(−at+1, at; 1)×ζ(−at+l, β; 1)×ζ(−α, at−1; 1)oπ0.

Let π′0 be a spherical subquotient (subrepresentation) of ζ(−at+l, β; 1)×ζ(−α, at−1;1)
o π0, so that π ↪→ ζ(−at+l−1, at+l−2; 1)× · · · × ζ(−at+1, at; 1)o π′0. By Proposition
1, we know that π′0 is also a subrepresentation of ζ(−β, α; 1)×ζ(−at+l, at−1; 1)oπ0.
We therefore have a sequence of intertwinings induced by the intertwinings in the
general linear groups

π↪→ζ(−at+l−1, at+l−2; 1)×· · ·×ζ(−at+1, at; 1)×ζ(−β, α; 1)×ζ(−at+l, at−1; 1)oπ0 →
ζ(−at+l−1, at+l−2; 1)× · · · × ζ(−β, α; 1)× ζ(−at+1, at; 1)× ζ(−at+l, at−1; 1)oπ0 →

...

ζ(−β, α; 1)× ζ(−at+l−1, at+l−2; 1)× ζ(−at+1, at; 1)× ζ(−at+l, at−1; 1)o π0.

Since the kernel of every of the above homomorphisms is not unramified, we still
have

π ↪→ ζ(−β, α; 1)× ζ(−at+l−1, at+l−2; 1)× ζ(−at+1, at; 1)× ζ(−at+l, at−1; 1)o π0.

Now we easily see that π ↪→ ζ(−β, α; 1)o π′1.
The third and the fourth case are similar the second, and the first, respectively,

and are left to the reader.
Special cases (i.e., when t = 1, or t + l− 1 = k or l = 0) are handled in the same

way as these situations above, just simpler (e.g., when l = 0 we immediately apply
Proposition 1).

We now prove our main result, which is the generalization of Proposition 2; and
is also needed in the applications in the theory of automorphic forms (e.g., [3]).

Theorem 3. Let β > α > 0 be integers, and χ an unramified quadratic character of
F. Let π be a negative representation. Then, an irreducible unramified subquotient
of ζ(−β, α;χ)o π is a subrepresentation; it is also a negative representation.

Proof. Since the representation π is negative, there exist (by Theorem 6.1 of [7])
a unique strongly negative representation σsn and a sequence of unitary characters
χ1, . . . , χk (also unramified), such that

π ↪→ ζ(−α1, α1;χ1)× · · · × ζ(−αk, αk;χk)o σsn,

where α1, . . . , αk ∈ 1
2Z≥0. Since the cuspidal support of ζ(−β, α; χ)o π is the same

as the cuspidal support of

ζ(−α1, α1;χ1)× · · · × ζ(−αk, αk; χk)× ζ(−β, α;χ)o σsn,

and this representation has a negative subrepresentation (this follows from the proof
of Theorem 6.1 (ii) of [7] and Propositions 2 and 3 here), say π2, we have that
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π2 ≤ ζ(−β, α;χ)o π. On the other hand, by Proposition 2, there is a negative rep-
resentation, say π3, which is a subrepresentation of ζ(−β, α;χ)oσsn. Now, consider
the following sequence of homomorphisms induced from the appropriate homomor-
phisms of general linear groups:

π2 ↪→ ζ(−α1, α1;χ1)× · · · × ζ(−αk, αk;χk)o π3 ↪→
ζ(−α1, α1; χ1)× · · · × ζ(−αk, αk; χk)× ζ(−β, α; χ)o σsn →
ζ(−α1, α1; χ1)× · · · × ζ(−β, α; χ)× ζ(−αk, αk; χk)o σsn →
ζ(−α1, α1; χ1)× · · · × ζ(−β, α; χ)×ζ(−αk−1, αk−1; χk−1)×ζ(−αk, αk; χk)oσsn →

...

ζ(−β, α; χ)× ζ(−α1, α1; χ1)× · · · × ζ(−αk, αk; χk)o σsn.

Each of this homomorphisms is either isomorphism (if ζ(−αi, αi; χi) × ζ(−β, α; χ)
is irreducible), or its kernel is not spherical. More precisely, if ζ(−αi, αi; χi) ×
ζ(−β, α;χ) reduces, then either we have −αi ≤ −β−1 ≤ αi < α or −β ≤ −αi−1 ≤
α < αi (e.g.,[7], section 2). If the first possibility should occur, we would have β+1 ≤
αi < α which contradicts our assumptions on α and β. If the second possibility
occurs, an irreducible unramified representation ζ(−β, αi; χi) × ζ(−αi, α; χi) is a
quotient of ζ(−αi, αi; χi)×ζ(−β, α;χ), and is not in the kernel of the homomorphism

ζ(−αi, αi; χi)× ζ(−β, α;χ) → ζ(−β, α;χ)× ζ(−αi, αi;χi).

So we have

π2 ↪→ ζ(−β, α;χ)× ζ(−α1, α1; χ1)× · · · × ζ(−αk, αk;χk)o σsn,

and also

ζ(−β, α; χ)o π ↪→ ζ(−β, α;χ)× ζ(−α1, α1; χ1)× · · · × ζ(−αk, αk;χk)o σsn,

and the claim follows.

Remark 1. Although all the details are not checked, the author believes that similar
results hold for other (quasi-split) classical p-adic groups. There is no real math-
ematical obstacle to the simultaneous treatment of all the classical groups, but the
notational awkwardness-namely, for other classical groups the (degenerate) principal
series representations in question might have half-integer exponents (which is the
consequence of the situation with the rank-one reducibility) and this would somewhat
notationally complicate the exposition.
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