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Abstract. In this paper, we obtain explicit parameter equations of spacelike rectifying
curves in E3

1 whose projection onto spacelike, timelike and lightlike plane of E3
1 is a normal

curve. We also obtain explicit parameter equations of spacelike normal curves in E3
1 whose

projection onto lightlike plane of E3
1 , with respect to a chosen screen distribution, is a

rectifying W-curve.
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1. Introduction

In the Euclidean space E3 there exist three classes of curves, so-called rectifying,
normal and osculating curves satisfying Cesaro’s fixed point condition ([10]) mean-
ing that rectifying, normal and osculating planes of such curves always contain a
particular point. If all normal or osculating planes of a curve in E3 pass through a
particular point, then the curve is spherical or planar, respectively. It is also known
that if all rectifying planes of a non-planar curve in E3 pass through a particular
point, then the ratio of torsion and curvature of such curve is a non-constant linear
function ([1]). Some characterizations of rectifying curves in Minkowski 3-space E3

1

are given in [7]. In particular, there exists a simple relationship between rectify-
ing curves and Darboux vectors (centrodes), which play some important roles in
mechanics, kinematics as well as in differential geometry in defining the curves of
constant precession ([2]). Normal curves in Minkowski 3-space are characterized in
[5,6]. Spacelike and timelike normal curves in E3

1 always lie in some quadric and
null normal curves in E3

1 are the null straight lines.
It is a quite interesting problem to obtain explicit parameter equations of recti-

fying and normal curves in Minkowski 3-space. In order to obtain such equations, it
is natural to impose some extra condition on the corresponding curve. In this paper,
we obtain explicit parameter equation of spacelike rectifying curve in E3

1 assuming
that orthogonal projection of such curve onto spacelike or timelike plane of E3

1 is a
normal curve. We prove that the straight lines are the only rectifying curves in E3

1

whose projection onto lightlike plane with respect to a chosen screen distribution is
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a normal curve. Also, we find explicit parameter equation of non-planar spacelike
normal curve in E3

1 assuming that the projection of such curve onto lightlike plane
of E3

1 (with respect to a chosen screen distribution) is a rectifying W-curve.

2. Preliminaries

The Minkowski 3-space E3
1 is the Euclidean 3-space E3 equipped with the indefinite

flat metric given by
g = −dx2

1 + dx2
2 + dx2

3,

where (x1, x2, x3) is a rectangular coordinate system of E3
1. Recall that an arbitrary

vector v ∈ E3
1 can be spacelike if g(v, v) > 0 or v = 0, timelike if g(v, v) < 0 and

null (lightlike) if g(v, v) = 0 and v 6= 0 ([3,9]). The norm of a vector v is given by
||v|| =

√
|g(v, v)| and two vectors v and w are said to be orthogonal, if g(v, w) = 0.

An arbitrary curve α(s) in E3
1, can locally be spacelike, timelike or null (lightlike),

if all its velocity vectors α′(s) are spacelike, timelike or null, respectively ([9]). A
spacelike or timelike curve α(s) has unit speed, if g(α′(s), α′(s)) = ±1. Arbitrary
curve in E3

1 is called W -curve, if all its curvature functions are constant.
Let {T, N, B} be the moving Frenet frame along a curve α in E3

1, consisting of the
tangent, principal normal and binormal vector field, respectively. If α is a non-null
curve with non-null principal normal N , the Frenet equations read ([8])




T ′

N ′

B′


 =




0 ε2κ1 0
−ε1κ1 0 −ε1ε2κ2

0 −ε2κ2 0







T
N
B


 , (1)

where κ1(s), κ2(s) are the first and second curvature of the curve, ε1 = g(T, T ) = ±1,
ε2 = g(N, N) = ±1 and g(B,B) = −ε1ε2, respectively.

If α is a spacelike curve with null principal normal N , it is called pseudo null
curve and the Frenet equations have the form ([11])




T ′

N ′

B′


 =




0 κ1 0
0 κ2 0
−κ1 0 −κ2







T
N
B


 , (2)

where the first curvature κ1(s) = 0 if α is a straight line, or κ1(s) = 1 in all other
cases. In this case, the following conditions hold

g(T, T ) = 1, g(N,N) = g(B,B) = 0, g(T, N) = g(T, B) = 0, g(N,B) = 1.

Recall that the normal and rectifying curves in E3
1 are defined in [6] and [7] as the

curves whose the position vector α (with respect to some chosen origin) always lies in
its normal plane T⊥ and rectifying plane N⊥, respectively. Therefore, the position
vector of normal or rectifying curve α in E3

1 satisfy the equations g(α, T ) = 0,
g(α, N) = 0, respectively.

Let Ω be the lightlike plane of E3
1 . Denote by TΩ the tangent bundle subspace

of Ω in E3
1 . Since g|Ω is degenerate on Ω, the radical or the null space of TpΩ at

each point p ∈ Ω, is a subspace Rad TpΩ defined by ([3])

RadTpΩ = {Y ∈ TpΩ | gp(X, Y ) = 0, ∀X ∈ TpΩ}.
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For the radical space there holds

Rad TpΩ = TpΩ ∩ TpΩ⊥.

Moreover, since Ω is lightlike plane in E3
1 , it follows that dim(TpΩ⊥) = 1 and

therefore dim(Rad TpΩ) = 1 and RadTpΩ = TpΩ⊥. The vector bundle Rad TΩ is
called the radical (null) distribution of Ω.

Denote by S(TΩ) a complementary vector bundle of RadTΩ in TΩ. This means
that

TΩ = Rad TΩ⊕ S(TΩ).

Vector bundle S(TΩ) is called a screen distribution on Ω. In particular, for a
given screen distribution S(TΩ) there exists a unique complementary vector bundle
ltr(TΩ) to TΩ in TE3

1 |Ω. The vector bundle ltr(TΩ) is called the lightlike transversal
vector bundle of Ω. Consequently, the tangent bundle TE3

1 splits into the following
three non-intersecting complementary (but not orthogonal) vector bundles ([3]):

TE3
1 |Ω = Rad TΩ⊕ S(TΩ)⊕ ltr(TΩ).

Let us consider arbitrary curve α lying fully in E3
1 (and not lying in its lightlike plane)

and its projection β = P ∗(α) onto lightlike plane Ω of E3
1 , where P ∗ : E3

1 → Ω is
the projection map. Then the projection map P ∗ is not orthogonal and unique ([4]).
In particular, the curve α(s) = (α1(s), α2(s), α3(s)) and the projected curve β are
related by

α(s) = β(s) + g(α(s), A)B, (3)

where A and B are null vectors satisfying the conditions

RadTΩ = span{A}, ltr(TΩ) = span{B},
g(A, B) = 1, g(B, W ) = 0, ∀W ∈ S(TΩ).

Next we show that by choosing different screen distributions on Ω, different param-
eter equations of the projected curves β = P ∗(α) can be obtained.

Up to isometries of E3
1 , assume that Ω has the equation x1 = x2. Then the

radical distribution RadTΩ is spanned by

A = (1, 1, 0). (4)

Let Q = (0, 1, 0) be locally defined nowhere zero section defined on the open subset
U ⊂ E3

1 . Then g(Q,A) = 1, g(Q,Q) = 1 and therefore the lightlike transversal
vector bundle is spanned by ([3])

B =
1

g(A,Q)
{Q− g(Q,Q)

2g(A,Q)
A} = (−1

2
,
1
2
, 0). (5)

It follows that the corresponding screen distribution S(TΩ) is spanned by

W = (0, 0, 1). (6)
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Substituting (4) and (5) in (3), we obtain that the projected curve β has parameter
equation of the form

β(s) = (
α1(s) + α2(s)

2
,
α1(s) + α2(s)

2
, α3(s)). (7)

Let Q = (0, 1, 1) be the next locally defined nowhere zero section defined on the
open subset U ⊂ E3

1 . Then g(Q,A) = 1, g(Q,Q) = 2, so relation (5) implies that
the lightlike transversal vector bundle is spanned by

B = (−1, 0, 1). (8)

It follows that the corresponding screen distribution S(TΩ) is spanned by

V = (1, 1,−1). (9)

Substituting (4) and (8) in (3), we find that the projected curve β is given by

β(s) = (α2(s), α2(s), α3(s) + α1(s)− α2(s)). (10)

Therefore, different choices of screen distributions on Ω provide different param-
eter equations of the projected curves (for more details, see [4]).

3. Some relations between spacelike rectifying curves and pla-
nar normal curves in E3

1

In this section we obtain some explicit parameter equations of spacelike rectifying
curves in E3

1 . Recall that up to a parametrization, every spacelike rectifying curve
with non-null principal normal in E3

1 has one of the following parameter equations
([7]):

α(t) =
a

cos t
x(t), β(t) =

b

sinh t
y(t), γ(t) =

c

cosh t
z(t),

where a, b, c ∈ R+
0 , x(t) is some unit speed spacelike curve lying in the pseudosphere

S2
1(1), y(t) is some unit speed timelike curve lying in the pseudosphere S2

1(1) and
z(t) is some unit speed spacelike curve lying in the pseudohyperbolic space H2

0 (1).
In particular, rectifying curve α has spacelike rectifying plane, while the rectify-
ing curves β and γ both have timelike rectifying planes and spacelike and timelike
position vectors, respectively.

In the theorems which follow, we will determine explicit parameter equations of
the curves x(t), y(t) and z(t) by imposing extra condition on the rectifying curve.
Namely, we will assume that its orthogonal projection onto non-degenerate plane of
E3

1 is a normal curve.

Theorem 1. Let α be a spacelike rectifying curve in E3
1 and β the orthogonal pro-

jection of α onto spacelike plane of E3
1 .

(i) If α has non-null principal normal and β is normal curve, then up to a
parametrization α is given by

α(u) = (c cos u, cos(cu), sin(cu)), (11)

where c ∈ R+
0 , c 6= 1;
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(ii) If α has null principal normal and β is normal curve, then up to a parametriza-
tion α is given by

α(u) = (cos u, cosu, sin u). (12)

Proof. (i) Let β be the orthogonal projection of α onto spacelike plane of E3
1 . Then

α is given by
α(s) = β(s) + µ(s)v, (13)

where s is arclength parameter of α, µ(s) is some non-constant differentiable function
and v= (1, 0, 0) is a unit timelike vector.

Assume that α has non-null principal normal and that β is a normal curve. Then
the equation of β reads

β(t) = (0, cos t, sin t) (14)

where t is arclenght parameter of β. Differentiating relation (13) with respect to s
and using the condition g(α′(s), α′(s)) = 1, we get

1 + µ′2(s) = t′2(s). (15)

Differentiating relation (14) with respect to s we find

g(β(s), β′′(s)) = −t′2(s), (16)

which together with the condition g(α(s), α′′(s)) = 0 yield

t′2(s) + µ′′(s)µ(s) = 0. (17)

Relations (15) and (17) imply second order differential equation

µ′′(s)µ(s) + µ′2(s) + 1 = 0 (18)

whose general solution reads

µ(s) =
√

c2 − (s + c1)2, (19)

where c ∈ R+
0 , c1 ∈ R and |c| > |s + c1|. The arclength parameter of β is given by

t(s) =
∫ s

0

||β′(u)|| du.

By using relations (13) and (19) we obtain

||β′(s)|| = 1√
1− (

s + c1

c
)2

,

and therefore
t(s) = c arcsin(

s + c1

c
). (20)

Relations (14) and (20) imply

β(s) = (0, cos(c arcsin(
s + c1

c
), sin(c arcsin(

s + c1

c
)). (21)
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Substituting (19) and (21) in (13) and using reparametrization

u = arcsin(
s + c1

c
), (22)

we obtain that α is given by (11). In particular, by using (13),(19) and (21) we get

g(α′′(s), α′′(s)) =
c2[(1− c2)(s + c2

1)
2 + c2(c2 − 1)]

c2 − (s + c1)2)3
. (23)

Since g(α′′(s), α′′(s)) 6= 0 it follows that c 6= 1 which proves statement (i).
(ii) Assume that α has null principal normal and that β is a normal curve. As

in the proof of statement (i) we easily obtain that α is given by (11). In particular,
by using (23) it follows that g(α′′, α′′) = 0 if c = 1. Finally, putting c = 1 in (11)
we get that α is given by (12), which proves statement (ii).

Remark 1. By reparametrization u = arcsin(
a

c
tan z), a2 = 1− c2, c ∈ R+

0 , c 6= 1,

parameter equation (11) can also be written as

α(z) =
a

cos z
x(z),

where

x(z) =
1
a
(
√

cos2 z − a2, cos(c arcsin(
a

c
tan z)) cos z, sin(c arcsin(

a

c
tan z)) cos z)

is a unit speed spacelike curve lying in a pseudosphere S2
1(1).

Theorem 2. Let α be spacelike rectifying curve in E3
1 and β the orthogonal projec-

tion of α onto timelike plane of E3
1 .

(a) If α has non-null principal normal and β is spacelike or timelike normal curve
respectively, then up to a parametrization α is given by

α(u) = (cosh(cu), sinh(cu), c cosh u),

or by
α(u) = (sinh(cu), cosh(cu), c sinhu),

where c ∈ R+
0 , c 6= 1.

(b) If α has null principal normal and β is spacelike or timelike normal curve
respectively, then up to a parametrization α is given by

α(u) = (cosh u, sinhu, cosh u),

or by
α(u) = (sinh u, cosh u, sinh u).

(c) If β is null normal curve, then α is the straight line.
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Proof. In cases (a) and (b) the proof is similar to the proof of Theorem 1, so we
omit it and give the proof only for the case (c). Assume that β is the orthogonal
projection of α onto timelike plane of E3

1 . Then α is given by

α(s) = β(s) + µ(s)v, (24)

where s is arclength parameter of α, µ(s) is some non-constant differentiable func-
tion and v = (0, 0, 1) is a unit spacelike vector. Assume that β is a null normal curve.
Then up to isometries of E3

1 , β is the null straight line given by β(t) = t(1, 1, 0). Dif-
ferentiating relation (24) with respect to s and using the condition g(α′(s), α′(s)) = 1
we obtain µ(s) = s. Hence α(s) = s(1, 1, 1) which means that α is the straight
line.

In the next theorem we prove that the straight lines are the only rectifying
curves in E3

1 whose projection onto lightlike plane (with respect to a chosen screen
distribution) is a normal curve.

Theorem 3. Let α be a spacelike rectifying curve with non-null principal normal
in E3

1 and β the projection of α onto lightlike plane with the equation x1 = x2. If
β is a normal curve and the screen distribution is given by (6) or (9), then α is the
straight line.

Proof. Assume that β is a normal curve and that the screen distribution is given by
(6). By using relation (7) and the condition g(β(s), β′(s)) = 0 we find α3(s)α′3(s) =
0. It follows that α is a planar curve and therefore the straight line.

Next, assume that the screen distribution is given by (9). By using relation (10)
and the condition g(β(s), β′(s)) = 0 we obtain

(α3(s) + α1(s)− α2(s))(α3(s) + α1(s)− α2(s))′ = 0,

where s is arclength parameter of α. We distinguish two cases:

(1) α3(s) + α1(s)− α2(s) = 0;

(2) (α3(s) + α1(s)− α2(s))′ = 0.

(1): α3 + α1 − α2 = 0. Then the curve α is given by

α(s) = (α1(s), α1(s) + α3(s), α3(s)), (25)

so the condition g(α′(s), α′(s)) = 1 implies

α1(s) =
1
2

∫
ds

α′3(s)
− α3(s). (26)

From the relation g(α(s), α′′(s)) = 0 we find

α′′1α3 + α1α
′′
3 + 2α3α

′′
3 = 0. (27)

Relations (26) and (27) imply

α′′3(s)(− α3(s)
α′23 (s)

+
∫

ds

α′3(s)
) = 0.

We distinguish two subcases:
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(1.1) α′′3(s) = 0;

(1.2) − α3(s)
α′23 (s)

+
∫

ds
α′3(s)

=0.

(1.1): If α′′3(s) = 0, by using (25) and (26) we obtain that α has parameter
equation

α(s) = (
s− 2a2s− 2ab

2a
,

s

2a
, as + b), a ∈ R0, b ∈ R

and thus it is the straight line.
(1.2): If

− α3(s)
α′23 (s)

+
∫

ds

α′3(s)
= 0,

differentiating the last equation with respect to s we find α3(s)α′′3(s) = 0. Conse-
quently, this subcase reduces to the subcase (1.1), which means that α is the straight
line.

(2): (α3(s) + α1(s)− α2(s))′ = 0. Then α is given by

α(s) = (α1(s), α1(s) + α3(s)− c, α3(s)), c ∈ R,

and therefore it is congruent to the curve given by (25). Hence α is the straight line,
which proves the theorem.

Remark 2. The projected curve β in Theorem 3 is the null straight line.

4. Some relations between non-planar spacelike normal curves
and planar rectifying curves in E3

1

It is known that every non-planar spacelike normal curve in E3
1 lies in some quadric

([5]). In this section, we obtain some explicit parameter equations of non-planar
spacelike normal curves in E3

1 assuming that their projection onto lightlike plane
of E3

1 , with respect to a chosen screen distribution, is a rectifying W-curve. In Eu-
clidean 3-space, it is known that for rectifying curves the curvature ratio κ2(s)/κ1(s)
is a non-constant linear function ([1]). The same property hold for timelike and
spacelike rectifying curves with non-null principal normal in Minkowski 3-space ([7]).
On the other hand, rectifying curves with null principal normal in E3

1 are planar
curves lying fully in the lightlike plane {T,N}. Therefore, every rectifying curve
with null principal normal in E3

1 is a pseudo null curve. The following theorem is
given in [11] for pseudo null W-curves.

Theorem 4 ([11, Theorem A]). All pseudo null spacelike curves in E3
1 with constant

curvatures can be classified as:

(1) κ1(s) = 0 if and only if β is a part of a spacelike straight line;

(2) κ1(s) = 1 and κ2(s) = 0 if and only if β is a part of a planar curve with
parametrization

β(s) = (
s2

2
,
s2

2
, s); (28)
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(3) κ1(s) = 1 and κ2(s) = c2 = constant 6= 0 if and only if β is a part of a planar
curve with parametrization

β(s) =
1
c2
2

(cosh(c2s) + sinh(c2s), cosh(c2s) + sinh(c2s), c2
2s). (29)

In the next theorem, we obtain explicit parameter equation of non-planar space-
like normal curve in E3

1 whose projection onto lightlike plane of E3
1 (with respect to

a chosen screen distribution) is a rectifying W-curve.

Theorem 5. Let α be a non-planar spacelike normal curve in E3
1 and β the projec-

tion of α onto lightlike plane with the equation x1 = x2 and the screen distribution
given by (6). If β is a rectifying W-curve with parameter equation (28) or (29)
respectively, then α is given by

α(s) = (− c

s2
+

s2

2
+

1
2
,

c

s2
+

s2

2
− 1

2
, s), s2 > 8c, c ∈ R, (30)

or else by

α(s) = (
2− c2

c2
2

ec2s − ce−c2s +
c2
2

4
s2e−c2s,

1
c2

ec2s + ce−c2s − c2
2

4
s2e−c2s, s),

where c2 ∈ R0, c ∈ R.

Proof. First assume that β is given by (28). From relations (7) and (28) we obtain
that α is given by

α(s) = (s2 − α2(s), α2(s), s), (31)

where α2(s) is some differentiable function and s is arclength parameter of β. By
using the condition g(α(s), α′(s)) = 0 we obtain linear differential equation

α′2(s) +
2
s
α2(s) = 2s− 1

s
, s 6= 0

whose general solution reads

α2(s) =
c

s2
+

s2

2
− 1

2
, c ∈ R.

Substituting this in (31) we find that α has parameter equation (30).
If β is given by (29), the proof is analogous.

Remark 3. The curve given by (30) lies in pseudosphere −x2+y2+z2 = 2c if c > 0,
lightcone −x2 + y2 + z2 = 0 if c = 0 and pseudohyperbolic space −x2 + y2 + z2 = 2c
if c < 0.

The last theorem can be proved in a similar way.
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Theorem 6. Let α be a non-planar spacelike normal curve in E3
1 and β the projec-

tion of α onto lightlike plane with the equation x1 = x2 and the screen distribution
given by (9). If β is a rectifying W-curve with parameter equation (28) or (29)
respectively, then α is given by

α(s) = (
1

s(1 + s
2 )

(c +
s4

4
+

s3

2
+

s2

2
),

s2

2
, s(1 +

s

2
)− 1

s(1 + s
2 )

(c +
s4

4
+

s3

2
+

s2

2
))

where c ∈ R, or else by

α(s) = (
1

s + 1
c2

ec2s
(c +

1
c2
2

e2c2s +
s2

2
+

s

c2
ec2s),

1
c2

ec2s, s +
1
c2

ec2s

− 1
s + 1

c2
ec2s

(c +
1
c2
2

e2c2s +
s2

2
+

s

c2
ec2s)), c2 ∈ R0, c ∈ R.
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