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On path graphs of incidence graphs

Dean Crnković
∗

Abstract. For a given graph G and a positive integer k the Pk-path
graph Pk(G) has for vertices the set of paths of length k in G. Two ver-
tices are connected in Pk(G) when the intersection of the corresponding
paths forms a path of length k − 1 in G, and their union forms either
a cycle or a path of length k + 1. Path graphs were proposed as a gen-
eralization of line graphs. In this article we investigate some properties
of path graphs of bipartite graphs, especially path graphs of incidence
graphs of configurations.
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1. Introduction and preliminaries

In this article all graphs are simple and finite. The set of vertices of graph G is
denoted by V (G) and the set of edges by E(G). A clique is a set of vertices every
pair of which are adjacent. The cardinality of a largest clique in graph G is denoted
by ω(G).

A vertex colouring of a graph G = (V (G), E(G)) is a mapping c : V (G) → K,
such that c(v) �= c(w) whenever v and w are adjacent. The elements of the set
K are called the available colours. The set of vertices which are mapped to one
colour is called a colour class. A chromatic number of G, denoted by χ(G), is the
smallest integer k, such that G has a colouring c : V (G) → {1, . . . , k}. Obviously,
ω(G) ≤ χ(G), since each two vertices of a clique are adjacent and therefore must
be in distinct colour classes.

For S ⊆ V (G) an induced subgraph G(S) of a graph G is a graph with vertex
set S and the edge set consisting of all the edges of G with both ends in S. A
graph G is perfect if ω(H) = χ(H) for every induced subgraph H of G. Many
problems of interest in practice but intractable in general can be solved efficiently
when restricted to the class of perfect graphs. For example, the question of when
a certain class of linear programs always has an integer solution can be answered
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in terms of perfection of an associated graph. The following theorem is proved by
Lovász in 1972 (see [7]):

Theorem 1 [Perfect graph theorem]. Graph G is perfect if and only if its
complement G is perfect.

The perfect graph theorem was conjectured in 1960 by Berge. Until its proof,
it was known as the weak perfect graph conjecture. In 1960 Berge proposed the
conjecture, known as the strong perfect graph conjecture. This conjecture was
recently proved by Chudnovsky, Robertson, Seymour and Thomas (see [3]).

Theorem 2 [Strong perfect graph theorem]. A graph G is perfect if and
only if neither G nor G contains an odd cycle of length at least 5 as an induced
subgraph.

The line graph L(G) of a graphG is the graph with the set of vertices V (L(G)) =
E(G) in which two vertices are adjacent if and only if the corresponding edges of G
are adjacent. Bipartite graphs and line graphs of bipartite graphs are perfect (see
[4]). The perfect graph theorem implies that the complements of bipartite graphs
and the complements of line graphs of bipartite graphs are perfect.

For a given graph G and a positive integer k the Pk-path graph Pk(G) has for
vertices the set of paths of length k in G. Two vertices are connected in Pk(G)
when the intersection of the corresponding paths forms a path of length k − 1 in
G, and their union forms either a cycle or a path of length k + 1. Path graphs are
introduced as a generalization of line graphs (see [2]). Obviously, P1(G) coincides
with L(G). In fact, in [2] the authors restrict themselves to the P2(G) case and
consider some of the properties of line graphs, such as sufficient conditions for the
Hamiltonicity. A number of articles dealing with path graphs have appeared since
then, see for example [6] and [8].

Definition 1. A λ-configuration (vr, bk)λ is an incidence structure of v points
and b blocks such that

1. each block is incident with exactly k points,

2. each point is incident with exactly r blocks,

3. every pair of points is incident with at most λ blocks.

If v = b and hence r = k, then λ-configuration is symmetric.

Definition 2. Let I be an incidence structure with the set of points P =
{P1, P2, . . . , Pv} and the set of blocks B = {x1, x2, . . . , xb}. The incidence matrix of
I is a b× v matrix M = (mij) defined by

mij =
{
1 if Pj is incident with xi,
0 otherwise.

Definition 3. Let M be the incidence matrix of an incidence structure I.
Denote by M t the transpose of M . The graph with adjacency matrix

[
0 M
M t 0

]

is called the incidence graph of I.
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Definition 4. A 2 − (v, k, λ) design is a λ-configuration (vr, bk)λ such that
every pair of points is incident with exactly λ blocks.

If v = b, then a 2− (v, k, λ) design is called a symmetric (v, k, λ) design.
For further basic definitions and properties of configurations and designs we

refer the reader to [1], [5] and [9].

2. Path graphs of bipartite graphs

Theorem 3. Let G be a graph. The path graph Pn+1(G) is isomorphic to a subgraph
of the graph P1(Pn(G)).

Proof. First we will prove that each vertex of the graph Pn+1(G) corresponds
to one vertex of P1(Pn(G)).

A vertex of the graph Pn+1(G) corresponds to a path v1v2 . . . vn+1vn+2, where
v1, v2, . . . , vn+1, vn+2 are vertices of the graph G. This path corresponds to paths
v1v2 . . . vn+1 and v2 . . . vn+1vn+2, which determine two adjacent vertices of the
graph Pn(G). These two adjacent vertices of the graph Pn(G) give rise to one ver-
tex of the graph P1(Pn(G)). Obviously, two distinct vertices of the graph Pn+1(G)
correspond to distinct vertices of the P1(Pn(G)).

Now we will prove that two vertices from P1(Pn(G)) are adjacent if the corre-
sponding vertices from the path graph Pn+1(G) are adjacent.

Two adjacent vertices of the graph Pn+1(G) correspond to paths v1v2v3 . . .
vn+1vn+2 and v2v3 . . . vn+1vn+2vn+3. The path v1v2v3 . . . vn+1vn+2 corresponds
to the paths v1v2v3 . . . vn+1 and v2v3 . . . vn+1vn+2, which determine two adjacent
vertices of the graph Pn(G), corresponding to a vertex X of the graph P1(Pn(G)).
Similarly, the path v2v3 . . . vn+1vn+2vn+3 corresponds to paths v2v3 . . . vn+1vn+2

and v3 . . . vn+1vn+2vn+3, corresponding to two vertices of the path graph Pn(G),
determining a vertex Y of the graph P1(Pn(G)). Vertices X and Y are adjacent in
P1(Pn(G)). ✷

Lemma 1. Let G be a bipartite graph and k a positive integer. Then P2k(G) is
also a bipartite graph.

Proof. Let {X,Y } be a bipartition of the set V (G). Let us define sets X and
Y :

X is the set of all paths of length 2k in G with the first vertex in X,

Y is the set of all paths of length 2k in G with the first vertex in Y.

Two paths from the set X (or Y ) cannot intersect each other in a path of length
2k − 1 in such a way that their union forms a path or a cycle of length 2k + 1.
Therefore, {X,Y } is a bipartition of the graph P2k(G). ✷

A direct consequence of Lemma1 and the perfect graph theorem is
Theorem 4. Let G be a bipartite graph and k a positive integer. Then P2k(G)

and P1(P2k), and their complements are perfect graphs.
Remark 1. Let G be a bipartite graph and k a positive integer. Then P2k+1(G)

is not necessarily a perfect graph.
Example 1. Let V = {v1, . . . , v7} be the set of vertices, and E = {e1, . . . , e7}

the set of edges of a graph G, where e1 = v1v2, e2 = v2v3, e3 = v3v4, e4 = v4v5,
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e5 = v5v6, e6 = v6v7, and e7 = v7v4. G is a bipartite graph with bipartition
{{v1, v3, v5, v7}, {v2, v4, v6}}. The graph P3(G) consists of 9 vertices Z1, . . . , Z9,
where Z1 corresponds to the path v1v2v3v4, Z2 = v2v3v4v5, Z3 = v3v4v5v6, Z4 =
v4v5v6v7, Z5 = v5v6v7v4, Z6 = v6v7v4v3, Z7 = v7v4v3v2, Z8 = v5v4v7v6, Z9 =
v6v5v4v7. A subgraph of P3(G) induced by vertices Z1, Z2, Z3, Z4, Z5, Z6 and Z7

is a cycle. The strong perfect graph theorem implies that P3(G) is not a perfect
graph.

Since incidence graphs are bipartite, we will investigate the path graphs of some
incidence graphs. We will especially take into consideration the path graphs of
incidence graphs of λ-configurations and 2-designs, and incidence structures corre-
sponding to these path graphs. It turns out that some of these path graphs are
incidence graphs of λ-configurations.

3. Path graphs of incidence graphs

Theorem 5. Let G be a k−regular graph, k ≥ 2. Then P1(G) and P2(G) are
(2k − 2)−regular graphs.

Proof. Let us consider the vertex Z of P1(G) corresponding to an edge e = v1v2.
Neighbors of Z correspond to the edges xv1 or v2y, where for both x and y we have
k − 1 possibilities.

Let us now take into consideration the graph P2(G) and its vertex W = v1v2v3.
Neighbors of W are of the type xv1v2 or v2v3y. We have k − 1 posibilities for
choosing both x and y. ✷

Remark 2. Let G be a k−regular graph, k ≥ 2, and n ≥ 3. Then Pn(G) is not
necessarily a regular graph.

Theorem 6. Let G be a k−regular bipartite graph, k ≥ 2. Then P1(G) and
P3(G) are (2k−2)−regular graphs and P2(G) is a (2k−2)−regular bipartite graph.

Proof. We have to prove that P3(G) is a (2k−2)−regular graph. If Z = v1v2v3v4
is a vertex of P3(G), then the neighbors of Z are of the type xv1v2v3 or v2v3v4y.
Since G is bipartite, v1 cannot be adjacent to v3, so we have k − 1 possibilities for
choosing the vertex x. Similarly, v4 cannot be adjacent to v2, so we have k − 1
possibilities for choosing y. ✷

Theorem 7. Let G be the incidence graph of a λ-configuration (vr, bk)λ. Then
P1(G) and P3(G) are (k + r − 2)−regular graphs.

Proof. G is a bipartite graph with a bipartition {X,Y }, where X corresponds
to the first b rows (and columns) of the adjacency matrix of G, and Y corresponds
to the other v rows (and columns). In other words, the vertices from the set X
correspond to the blocks, and the vertices from the Y correspond to the points of
the λ-configuration.

Let e = v1v2 be an edge in G, v1 ∈ X and v2 ∈ Y . Then v1 has k− 1 neighbors
other than v2 and v2 has r − 1 neighbors other than v1. There are k + r − 2 edges
adjacent to e in the graph G, so the vertex Z = v1v2 has k + r − 2 neighbors in
P1(G).

In a similar way one can prove that P3(G) is a (k + r − 2)−regular graph. ✷

Theorem 8. Let G be the incidence graph of a λ-configuration (vr, bk)λ. Then
P2(G) is a bipartite graph. Further, the graph P2(G) is an incidence graph of a
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(r − 1)-configuration (v′r′ , b′k′)r−1 with the following properties:

1. v′ =
(
k
2

)
b,

2. b′ =
(
r
2

)
v,

3. k′ = 2k − 2,

4. r′ = 2r − 2,

5. every pair of points is incident with r − 1, 2, 1 or 0 blocks,

6. every pair of blocks is incident with k − 1, 2, 1 or 0 points.

Proof. G is a bipartite graph with the bipartition {X,Y }, where X corresponds
to the set of blocks and Y corresponds to the set of points of the λ-configuration.
P2(G) is also a bipartite graph with the bipartition {X,Y }, such that:

X is the set of all paths of length 2 in G with the first vertex in X,

Y is the set of all paths of length 2 in G with the first vertex in Y.

The graph P2(G) is an incidence graph of the incidence structure I, where X
corresponds to the set of blocks and Y corresponds to the set of points of I. Let
Z = v1v2v3 be a vertex from Y . Then v1, v3 ∈ Y and v2 ∈ X . We have |X | = b
possibilities for choosing v2, and for fixed v2 we have

(
k
2

)
possibilities for choosing

the set {v1, v3}, which proves that v′ =
(
k
2

)
b. In a similar way one can prove that

b′ =
(

r
2

)
v.

The neighbors of the vertex Z ∈ Y , Z = v1v2v3, are of the type xv1v2 or v2v3y,
where x, y ∈ X . Since the vertices v1 and v3 have degree r and they are both
adjacent to v2, we have r − 1 possibilities for x and y. Therefore Z has 2r − 2
neighbors, i.e. r′ = 2r − 2. Similarly, k′ = 2k − 2.

The vertex Z = v1v2v3 from Y and the vertex Z1 = v3v4v5 have one common
neighbor, namely the vertex which corresponds to the path v2v3v4. Vertices Z =
v1v2v3 and Z2 = v1v6v3 have two common neighbors which correspond to the paths
v6v1v2 and v2v3v6. The vertex Z and the vertex Z3 = v0v2v3 have r − 1 common
neighbors which correspond to the paths v2v3y, where y can be chosen from the set
of r − 1 vertices. Z and the vertex Z4 = v1v2v7 have also r − 1 common neighbors
corresponding to the paths xv1v2, where x can be chosen from the set of r − 1
neighbors of v1 other than v2. Two vertices from Y corresponding to the paths
which have no common points do not have common neighbors. So every pair of
points is incident with r − 1, 2, 1 or 0 blocks.

In a similar way one can prove that every pair of blocks is incident with k−1, 2, 1
or 0 points. ✷

Corollary 1. Let G be the incidence graph of a 2 − (v, k, λ) design. Then the
graph P2(G) is the incidence graph of a (r − 1)-configuration (v′r′ , b′k′)r−1 with the
following properties:

1. v′ =
(
v
2

)
λ,
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2. b′ =
(
r
2

)
v,

3. k′ = 2k − 2,

4. r′ = 2r − 2,

5. every pair of points is incident with r − 1, 2, 1 or 0 blocks,

6. every pair of blocks is incident with k − 1, 2, 1 or 0 points.

Proof. Let the sets X and Y be defined as in the proof of Theorem 8, and let
Z = v1v2v3 be the vertex from Y . There are

(
v
2

)
possibilities for choosing a subset

{v1, v3} from the set Y . The vertices v1 and v3 have λ common neighbors, so we
have λ possibilities for choosing v2. ✷

Corollary 2. Let G be the incidence graph of a symmetric (v, k, λ) design.
Then the graph P2(G) is the incidence graph of a (k− 1)-configuration (v′r′ , b′k′)k−1

with the following properties:

1. v′ = b′ =
(
v
2

)
λ,

2. k′ = r′ = 2k − 2,

3. every pair of points is incident with k − 1, 2, 1 or 0 blocks,

4. every pair of blocks is incident with k − 1, 2, 1 or 0 points.

Proof. For a symmetric (v, k, λ) design b = v and r = k. ✷

Theorem 9. Let G be the incidence graph of a 2− (v, k, λ) design D and P a
point of D. Further, let v be a vertex of G which corresponds to the point P and H
a subgraph of P2(G) which has for vertices the set of paths of length 2 containing
the vertex v. Then H is the incidence graph of a (r − 1)-configuration (v′r′ , b′k′)r−1

with the following properties:

1. v′ = (v − 1)λ,

2. b′ =
(
r
2

)
,

3. k′ = 2k − 2,

4. r′ = r − 1,

5. every pair of points is incident with 1 or r − 1 blocks,

6. every pair of blocks is incident with 0 or k − 1 points.

Proof. Let the sets X,Y,X and Y be defined as in the proof of Theorem 8. The
graph H is a bipartite graph with the bipartition {X1, Y 1}, X1 ⊆ X, Y 1 ⊆ Y , such
that

X1 = {xvy| x, y ∈ X}, Y 1 = {vxy| x ∈ X, y ∈ Y }.
Let us count the elements of Y 1. We have v−1 possibilities for choosing the vertex
y from the set Y , since y �= v. Vertices v and y have λ common neighbors, hence
v′ = |Y 1| = (v − 1)λ.
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The vertex v has r neighbors, all of them from the set X . Because of this
b′ = |X1| =

(
r
2

)
.

Let us determine k′. In other words, we have to determine the degree of a vertex
Z = v1vv2 in H . The neighbors of Z correspond to paths xv1v and vv2y, x, y ∈ X .
Since v1, v2 ∈ Y , they have degree k in G. So v1 and v2 have k− 1 neighbors other
than v, hence k′ = 2k − 2.

Let us count the vertices of H which are neighbors of W ∈ Y 1, W = vv3v4.
These vertices correspond to paths xvv3, x ∈ X . The vertex v has r − 1 neighbors
other than v3, so r′ = r − 1.

Two vertices from Y 1,W1 = v5v6v andW2 = vv7v8, have one common neighbor,
namely the vertex from X1 corresponding to the path v6vv7. The vertices W1 and
W3 = v9v6v have r− 1 neighbors of type v6vx, x ∈ X . That proves that every pair
of points is incident with 1 or r − 1 blocks.

Vertices Z1 = v10vv11 and Z2 = v12vv11 from X1 have k− 1 common neighbors
of type vv11y, y ∈ Y . If two vertices from X1 correspond to paths which do not
share an edge, then they do not have common neighbors. So every pair of blocks is
incident with 0 or k − 1 points. ✷

We have constructed λ-configurations using the path graphs of incidence graphs
of configurations and designs. These λ-configurations have at most four possibilities
for intersection of two blocks, and λ-configurations from Theorem 9 have only two
possibilities for intersection of two blocks. Dually, the same condition is valid for
points. Some of the described λ-configurations, e.g. the ones from Corollary 2, are
symmetric.

The method described in this article can be further investigated. We can expect
that using similar techniques one can construct other incidence structures interest-
ing from a combinatorial point of view.
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