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ApsTRACT. In this paper we study eigenvalue optimization of non-commutative
polvonomials. That 15, we compute the smallest or biggest eigenvalue a non-
commutative polynomial can attain, Our algonthm 1z based on sums of
hermitian squares. To test for exactness, the solutions of the dual 3DP are
investigated. When we consider the eigenvalue lowef bounds we can show
that attainability of the optimal value on the dual side implies that the
elgenvalue bound 1s attammed. We also show how to extract global eigen-
value optimizers with a procedure based on two ingredients:

- the first 15 the solution to the truncated (tracial) moment problem;

- the second 1z the Gelfand-Naimark-Segal {GNS) construction.
The implementation of these procedures in our computer algebra system NC-
S0 5tools 1s presented and several examples pertaining to matrix inequalities
are given to illustrate the results.
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1. INTRODUCTION

Starting with Helton’s seminal paper |HelO2|, free semialgebraic geometry
is being established. Among the things that make this area exciting are its
many facets of applications. A nice survey on applications to control the-
ory, systems engineering and optimization is given in [dOHMPOS|, while ap-
plications to mathematical physics and operator algebras have been done in
[K508a, KS08b, (CKP10|.

Unlike classical semialgebraic (or real algebraic) geometry where real poly-
nomial rings in commuting variables are the objects of study, free semialgebraic
geometry deals with real polynomials in nencommuting (NC) variables and their
finite-dimensional representations. Of interest are various notions of positivity
induced by these. For instance, positivity via positive semidefiniteness or the
positivity of the trace. Both of these can be reformulated and studied using
sums of hermitian squares (with commutators) and semidefinite programming.

We developed NCS0OStools as a consequence of this recent interest in free non-
commutative positivity and sums of (hermitian) squares (SOHS). NCS0Stools
is an open source Matlab toolbox for solving SOHS problems using semidefinite
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programming. As a side product our toolbox implements symbolic computa-
tion with noncommuting variables in Matlab. There 1s a small overlap in fea-
tures with Helton’s NCAlgebra package for Mathematica [HAOMS|. However,
NCSOStools performs only basic manipulations with noncommuting variables,
while NCAlgebra is a fully-fledged add-on for symbolic computation with poly-
nomials, matrices and rational functions in noncommuting variables.

Readers interested in solving sums of squares problems for commuting poly-
nomials are referred to one of the many great existing packages, such as SOS-
TOOLS [PPSP05], SparsePOP [WKK*09], GloptiPoly [HLL0J], or YALMIP
[L304).

This paper 1s organized as follows. The first section fixes notation and intro-
duces terminology. Then in Section [2] we introduce the central objects, sums
of hermitian squares and use these to study positive semidefinite NC polyno-
mials. The natural correspondence between sums of hermitian squares and
semidefinite programming is explained in some details in Section [3] The main
theoretical contribution here 1s an algorithm to extract an eigenvalue minimzer
of an NC polynomial. Detailed explanation with illustrative examples are in

Section 4]

1.1. Notation. We write N := {1,2,...}, R for the sets of natural and real
numbers. Let (X} be the monoid freely generated by X = (X1,...,X,), Le.,
(X} consists of words in the n noncommuting letters Xy,..., X, (including the
empty word denoted by 1).

We consider the algebra R(X) of polynomials in n noncommuting variables
X = (Xy,...,X,;) with coefficients from . The elements of R{X) are linear
combinations of words in the n letters X and are called NC' polynomials. The
length of the longest word in an NC polynomial f € R{X) is the degree of f
and 1s denoted by deg f. We shall also consider the degree of f in X;, deg; f.
Similarly, the length of the shortest word appearing in f € R{X) is called the
min-degree of f and denoted by mindeg f. Likewise, mindeg; f is introduced.
If the variable X; does not occur in some monomial in f, then mindeg; f = 0.

For instance, if f = X13 — 33X XX + 2X4X:%X4, then
deg f =4, deg; f=3, degyf=degzf=1degyf=2,

mindeg f =3, mindeg; f =1, mindeg; f = mindegy f = mindeg, f = 0.

0 An element of the form aw where 0 # a € R and w € (X)) is called a monomial
and a its coefficient. Hence words are monomials whose coefficient 1s 1.

We equip R{X) with the involution * that fixes R U {X} pointwise and thus
reverses words, e.g.

(X7 — X2X3X1)" = X{ — X1 X3Xs.

Hence R{X) is the *-algebra freely generated by n symmetric letters. Let
SymR({X) denote the set of all symmetric elements, that is,

SymR(X) ={f e RX) | f ="}

The involution * extends naturally to matrices (in particular, to vectors) over
R(X). For instance, if V' = (v;) i1s a (column) vector of NC polynomials v; €
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R(X), then V* is the row vector with components v*. We shall also use V* to
denote the row vector with components v;.

2. POSITIVE SEMIDEFINITE NC POLYNOMIALS

A symmetric matrix 4 € R%*® is positive semidefinite if and only if it is
of the form BB for some B € R¥*%. In this section we introduce the notion
of sum of hermitian squares (SOHS) and explain its relation with semidefinite
programming.

An NC polynomial of the form ¢*g 1s called a hermitian square and the set of
all sums of hermitian squares will be denoted by ¥2. A polynomial f € R(X)
is SOHS if it belongs to ¥2. Clearly, ¥? C SymR(X). For example,

X1 X5 +2X,X; & SymR(X), X7XpX{ € SymR(X) \ £7,

24+ X1 Xo+ XoXy + Xn X3X; = 14 (14 X X)) (1 4+ X2X,) € X2

If f € R{X) is SOHS and we substitute symmetric matrices Ay,..., A, of the
same size for the variables X, then the resulting matrix f{ A1, ..., A,) is positive

semidefinite. Helton [Hel02] and McCullough [McCO1] proved (a slight variant
of ) the converse of the above observation: if f € R{X) and f(Ay,...,4,) =0
for all symmetric matrices A; of the same size, then f 1s SOHS. For a beautiful
exposition, we refer the reader to [MPO5].

The following proposition (cf. [Hel02, §2.2] or [MPO05, Theorem 2.1]) is the
noncommutative version of the classical result due to Choi, Lam and Reznick

(|[CLR95| §2]; see also [Par(03| PWO98|). The easy proof is omitted.
Proposition 2.1. Suppose f € SymR(X) is of degree < 2d. Then f € ¥2 if

and only if there exists a positive semidefinite matriz G satisfying

(1) f=WiGWa = Gi;(Wa)i(Wa);.
X
where Wy is a vector consisting of all words in (X} of degree < d.
Conversely, given such a positive semidefinite matriz G with rank r, one can
construct NC polynomials g1, ...,g9, € R(X) of degree < d such that

(2) F=> g
i=1

The matrix  1s called a Gram matriz for f. Polynomals g; are products of

i-th row of F with vector Wy, where F is such that G = FTF.

Example 2.2, In this example we consider NC polynomials in 2 variables which

we denote by X.Y. Let
f=1—-2X +2X2 4+ V2 _2X%Y —2Y X2+ 2V XY + 2V X %Y.
Let V' be the subvector [1 X Y X YT' of W3. Then the Gram matrix for f

with respect to V' 1s given by
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(That is, f = V*G(a)V.) This matrix is positive semidefinite if and only if
a = 1 as follows easily from the characteristic polynomial of G(a). Moreover,
G(1) = C'C for
c=[47 4 4]
From
CV=[1-X+XY X-Y-XY]|
it follows that
=1 -X+XY)P1-X+XY)+(X-Y - XY)P(X-Y - XY)ecx2

The problem whether a given polynomial 1s SOHS 1s therefore a special n-
stance of a sermidefinite feasihility problem. Our standard reference for semi-

definite programming (SDP) is [WSV00].

3. SUMS OF HERMITIAN SQUARES AND SDP

In this subsection we present a conceptual algorithm based on SDP for check-
ing whether a given f € SymR(X) is SOHS. Following Proposition we
must determine whether there exists a positive semidefinite matrix G such that
[ = W3GWy, where Wy is the vector of all words of degree < d, given in a
fixed order. This 1s a semmdefinite feasibility problem in the matrix varable G,
where the constraints {4;, G) = b; are implied by the fact that for each product
of monomials w € {p*q | p,q € Wy} = Wyy the following must be true:

(3) Z Gpg = Qw,
pgeWy
prg=w
where a,, is the coefficient of w in f (a, = 0 if the monomial w does not appear
in f).
Any input polynomial f is symmetric, so @, = aw* for all w, and equations

can be rewritten as

(4) Y Guet+ D Gup=aw+aw Ywe Wi,
uweWy uveWy
u*v=w u*v=w*

or equivalently,
(5) (A, G) = ay + ay Yw € Way,
where A, 15 the symmetric matrix defined by
2; fuve {ww'}, v =w,
(Aw)uwe =< 1; ifwve {w,w}, w*#w,

0; otherwise.

Note: A, = A4, for all w.

As we are interested in an arbitrary positive semidefinite G = [Gy, o]uvew
satisfying the constraints ([5)), we can choose the objective function freely. How-
ever, In practice one prefers solutions of small rank leading to shorter SOHS
decompositions. Hence we minimize the trace, a commonly used heuristic for
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matrix rank minimization [RFP10]. Therefore our SDP in the primal form is
as follows:

inf (I,G)
(SOHSspp) s.t. (AL, G) = ay, +a, Ywe Wy
G = O

(Here and in the sequel, I denotes the identity matrix of appropriate size.) To
reduce the size of this SDP (i.e., to make W; smaller), we may employ the
following simple observation:

Proposition 3.1. Let f € SymR{X), let m; = %, M; = deg—‘f m =
mindeg /M := %EL Set

Vi={we (X)|m; <deg;w < M; for all i, m < degw < M }.
Then f € £2 if and only if there erists a positive semidefinite matriz G satis-
fying f = V*GV.

Proof. This follows from the fact that the highest or lowest degree terms in a
SOHS decomposition cannot cancel. [ |

Example 3.2 (Example revisited). Let us return to
f=1-2X +2X?+ 7?2 _2X%YV —2Y X2 4 2V XY 4+ 2V X%V,
We shall describe in some detail (SOHSgpp) for f. From Proposition we

obtain
V=[ XY Xy vx].
Thus G 18 a symmetric 5 x 5 matrix and there will be 17 matrices A,,, as

[{u*v | u,v € V}| = 17. In fact, there are only 13 different matrices A4,, as
A, = Ay+. Here 1s a sample:

ooo011 00000

00100 00000
Avy =Avw = 01000, Awvyey=|00000].
¥Xx Xy 10000 |’ XY2X 00000

10000 00002

These two give rise to the following linear constraints in (SOHSspp ):

Gixy +Gxy +Gxy1+Giyx +Gyx +Gyx1 = (Axy,G)
= axy +ayx =0,
2Gyxyx = (Axy2x,G) = 2axy2x =0,

where we have used a,, to denote the coefficients of f and the entries of V' enu-
merate the columns, while the entries of V* enumerate the rows of (. Observe
that the second constraint tells us that the (Y X, Y X) entry of & is zero. As
we are looking for a positive semidefinite GG, the corresponding row and column
of G can be assumed to be identically zero. That is, the last entry of V is

redundant (cf. Example.

A further reduction in the vector of words needed is presented in [KP10] (the
so-called Newton chip method) and its implementation in NCSOStools is NCsos.
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4. EIGENVALUE OPTIMIZATION OF NC POLYNOMIALS AND FLAT EXTENSIONS

One of the features of our freely available Matlab software package NCS0Stools
|CKP] is NCmin which uses sum of hermitian squares and semidefinite program-
ming to compute a global (eigenvalue) minimum of a symmetric NC polynomial
f- This is discussed in detail in [KP10, §5]. Here we present the theoretical
underpinning of an algorithm to extract the minimizers of f, implemented in
NCopt.

The main mgredients are the noncommutative moment problem and its so-
lution due to MeCullough [McCO1], and the Curto-Fialkow theory [CF96| of
how flatness governs the truncated moment problem. Owur results are influ-
enced by the method of Henrion and Lasserre [HLO5| for the commutative case,
which has been implemented in GloptiPoly [HLL0O9]. For an investigation of
the non-global case in the free noncommutative setting see

4.1. Eigenvalue optimization is an SDP. Let f € SymR(X)04. We are
interested in the smallest eigenvalue f* € R of the polynomial f. That is,
(6)

f*=inf {{f(A)v,v) | A an n-tuple of symmetric matrices, v a unit vector}.

Hence f* is the greatest lower bound on the eigenvalues f(A) can attain for
n-tuples of symmetric matrices A, i.e., (f — f*)(A) = 0 for all n-tuples of
symmetric matrices A, and f* is the largest real number with this property.
Given that a polynomial is positive semidefinite if and only if it is a sum of
hermitian squares (the Helton-McCullough SOHS theorem), we can compute
f* conveniently with SDP. Let

Jpsohs — sup A

(SDPeig—min) s. t. f—X e ¥2
Then fsohs — f*,

In general (SDPejg_min|) does not satisfy the Slater condition. That is, there
does not always exist a strictly feasible solution. Nevertheless (SDP gig_min| sat-

isfies strong duality [KP10, Theorem 5.1], i.e., its optimal value f*" coincides
with the optimal value L. of the dual SDP:

Lsohs = TnfL{f)
s. t. L:SymR(X)z04 — R is linear
Li1)=1
L(p'p) 2 0 for all p € R{X)<q.

{DSDFEig—min Jd

4.2, Extract the optimizers. In this section we investigate the attainability
of f* and explain how to extract the minimizers A, v for f if the lower bound
f* 1s attamned. That 15, A 15 an n-tuple of symmetric matrices and v 15 a umt
eigenvector for f(A) satisfying

(7) 7= {f(A)v,v).

Of course, in general f will not be bounded from below. Another problem is
that even if f 1s bounded, the mfimum f* need not be attamed.
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Example 4.1, Let f = Y2+ (XY — 1)*(XY —1). Clearly, f*°* > 0. However,
f(1/e.e) = €2, so f*1 = 0 and hence Leps = 0. On the other hand, f* from
(6) and the dual optimum L., are not attained.

Let us first consider f*. Suppose (A, B) is a pair of matrices yielding a
singular f(A. B) and let v be a nullvector. Then

B*% =0 and (AB-I)*(AB—TI)v=0.
From the former we obtain Bv = 0, whence
v=Iv=(AB—1IT)v =0,

a contradiction.

We now turn to the nonexistence of a dual optimizer. Suppose otherwise
and let L : SymR({X) -4 — R be a minimizer with L(1) = 1. We extend L to
R{X)<4 by symmetrization. That is,

L(p) = 5L+ 1)

We note L induces a semi-scalar product (i.e., a positive semidefinite bilinear
form) (p,q) — L(p*q) on R{X ) <2 due to the positivity property. Since L(f) = 0,
we have
LY?)=0 and L((XY-1)%XY -1))=0.
Hence by the Cauchy-Schwarz inequality, L(XY) = L(Y X) = 0. Thus
0=L((XY -1)"(XY —1)) = L((XY)*(XY)) + L(1) = L(1) = 0,

implying L(1) = 0, a contradiction.
Hence despite the strong duality holding for , the eigenvalue
infimum f* and the dual optimum Ly, need not be attained, so some caution
1s necessary. In the sequel our main interest lies in the case where f* 1s attained.

We shall see later below (see Corollary [4.6)) that this happens if and only it the
infimum Leope = f5% = f* for (DSDPeig—min)d+1 1s attained.

Definition 4.2. To each linear functional L : R(X)-2y — R we associate
a matrix My (called an NC Hankel matriz) indexed by words u,v € {X) of
length < d, with

(8) {’4"_{&)-1;‘1,1 = L[ﬂ*t'}.

If L is positive, i.e., L(p*p) = 0 for all p € R(X) =4, then M, is positive semi-
definite. We say that L is unital if L(1) = 1.

Note that a matrix M indexed by words of length < d satisfving the NC
Hankel condition My, v, = Mus ., if ujv1 = ujve, yields a linear functional L
on B{X)<24 as in . If M is positive semidefinite, then L is positive.

Definition 4.3. Let A € R** be a symmetric matrix. A (symmetric) extension
of A is a symmetric matrix A € RET0%(s+) of the form

< A B

=i
for some B € Bs*¢ and C' € Rf*¢. Such an extension is flat if rank A = rank A,
or, equivalently, if B = AZ and C = Z'AZ for some matrix Z.
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Proposition 4.4. Let f € SymR(X ) <24 be bounded from below. If the infimum
Leohs for (DSDPeig_min)d+1 is attained, then it is attained at a linear map L
that is flat over its own restriction to R{X)<24.

Proof. For this proof it 1s beneficial to work with NC Hankel matrices. Let L be
a minimizer for fDSDPeig—min)dH- To it we associate My, and its restriction
My. Then
M; B
Mgy = |:Bt (_‘*:|

for some B,C. Smce Mj.; and My are positive semdefimite, B = M3Z and
C = ZtMgZ for some Z (this is easy to verify using Schur complements; or see
|CF96]). Now form a “new” Mgiq:

Loss — My B

VAT Bt ZtMaZ
This matrix 1s obviously flat over My, positive semidefinite, and satisfies the NC

Hankel condition (it is inherited from Mg, since for all quadruples u, v, z, w of
words of degree d + 1 we have u*v = z*w if and only if u = z and z = w). So

}: I Z]"'Ma[1 Z].

it yields a positive linear map L on R({X ) <2442 flat over f"IR{E}ﬂd = Llp(x).aa-

Moreover, L(f) = L(f) = Laohs- [

The following theorem is a solution to the free noncommutative moment
problem in the truncated case. It resembles the classical results of Curto and
Fialkow [CF96] in the commutative case. For the free noncommutative moment
problem see [McCO1| or also [PNAIO|. A similar statement (with a positive
definiteness assumption) is given in [MPO05].

Theorem 4.5. Suppose L : R(X) <2442 — R is positive and flat over Llp x)_.,-
Then there is an n-tuple A of symmetric matrices of size s < dmR(X) =g and
a vector v such that

(9) L(p*q) = (p(A)v,q(A)v)
for all p,q € R{(X} with degp + degq < 2d.

Proof. For this we use the Gelfand-Naimark-Segal (GNS) construction. To L we
associate two positive sermidefinite matrices, Mg, and its restriction My. Since
Mg 1s flat over My, there exist s hinear independent columns of My labeled by
words w € (X) with degw < d which form a basis B of E' = range M,,. Now
L (or My,) induces a positive definite bilinear form (i.e., a scalar product)
(et p on E.

Let A; be the left multiplication with X; on E, i.e., if @ denotes the column
of Mg, labeled by w € (X)<cgyq, then A;: @ — Xju for u € {X)<q. The

operator A4; 1s well defined and symmetric:

(AP Qe = L(p"Xiq) = (P. AG) E.
Let v := T, and A = (A1,...,A,). Note it suffices to prove (9] for words
)

u,w € {X) with degu + degw < 2d. Since the A; are symmetric, there is no
harm in assuming deg u, deg w < d. Now compute

L(u*w) = (@, W) g = (u(A), w(A) e = (u(A)v,w(A)v)E. u
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Corollary 4.6. Let f € R(X)<24. Then f* is attained if and only if there is a
feasible point L for (DSDPeig_min)d+1 satisfying L(f) = f*.

Proof. (=) If holds for some A.wv, then L(p) := (p(A)v,v) is the desired
feasible point. (<) By Proposition we may assume L is flat over L|px <2a*

Now Theorem applies and yields A,v. By definition, ||v| = /(v,v) =
L(1) = 1. Hence f(A) has (unit) eigenvector v with eigenvalue f*. [

4.3. Implementing the extraction of optimizers. Let f € SymR(X)<a4.

Step 1: Solve {DSDFEig_min]dJrl. If the problem is unbounded or the optimum
1s not attained, stop. Otherwise let L denote an optimizer.

Step 2: To L we associate the positive semidefinite matrix Mg, = [Jgf g} .
Mg B
B Z'Myz
This matrix yields a positive linear map f;vcrn R(X)<24+2 which is flat
over Llp(x) .0y = LIR(X)c0s- In particular, L(f) = L(f) = f*. )
Step 3: As in the proof of Theorem use the GNS construction on L to
compute symmetric matrices A; and a vector v with L(f) = f* =

(f(A)v,v).

In Step 3, to construct symmetric matrix representations A; € ®s** of the

Modifty Mgy q: ﬂ&'d_,_l = { } . where Z satisfies My 2 = B.

multiplication operators we calculate their image according to a chosen basis
B for E = range Mz,;. To be more specific, A7, for u, € (X} <4 being the
first label in B, can be written as a unique linear combination Z;=1 Aju; with
words u; labeling B such that L((u1X; — 3 Aju;)* (w1 X; =3 Aju;)) = 0. Then
[}.1 )us]t will be the first column of A;. The vector v 1s the eigenvector
of f(A) corresponding to the smallest eigenvalue.
Warning 4.7. Running the above algorithm raises several challenges in prac-
tice. Since the primal problem often has no strictly feasible point
we have no guarantee that the optimal value Lope of (DSDPejg_min)d+1 1s at-
tained. We do not know how to test for attainability efficiently, since all state-of-
the-art SDP solvers return only an s-optimal solution (a point which is feasible
and gives optimal value up to some rounding error).
Detecting unboundedness of {DSDPeig_min}d_,_l seems easier. First of all, the
SDP solver is likely to detect it directly. Otherwise numerical problems will
be mentioned, and we then solve the (usually much smaller) primal problem
(ISDP cig—min| to detect its infeasibility, which is equivalent to the unboundedness
of {DSDPcig—min}d+l-
In summary, the performance of our algorithm to extract the optimizers
depends heavily on the quality of the underlying SDP solver.

Remark 4.8, We finish this section by emphasizing that the extraction of
eigenvalue optimizers (theoretically) always works if the optimum for (DSDP gz —min )d+1
is attained. This 1s in sharp contrast with the commutative case; cf.

4.4. Example for eigenvalue minimization. In this subsection we present a
toy example of eigenvalue optimization as presented in Section[4, The numerical
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results were obtained using our open source software NCSO0Stoels, developed
by the authors of this paper.

Example 4.9. Let us introduce NC variables x, y by

>> NCvars x y;

and an NC polynomial

>> £ = (1-3sxxy+y*x) 7x(1-3xxxy+y*x) + (x72-1)72 + (y™2-y)"2;

As 1s usual in Matlab, the prime ’ denotes an involution, in our case acting
on NC polynomials. By definition, f is a sum of hermitian squares. We shall
compute the eigenvalue minimum f* of f and determine the minimizers A4, B, v
satisfying (f(A, B)v,v) = f*. Here A, B are symmetric matrices, and v is
a unit eigenvector of f(A, B), corresponding to the eigenvalue Ay, (f(A.B)).
Running

>> NCmin (f)

yvields an eigenvalue minmimum f* = 0.0000. We next run the algorithm pre-
sented in Subsection to extract optimizers:

>> [X,fX,eig_val,eig_vec]=NCopt (f)

The output: X 1s a 2 x 16 matrix, whose rows represent symmetric matrices
A, B; fX is the 4 x 4 matrix f(A, B); eig_val are the eigenvalues of fX, and
eig vec are the corresponding unit eigenvectors. In our example,

0.9644 —-0.0379 -0.1276  0.0879
A — —0.0379 —-0.9828 0.1588  0.0235
o —0.1276  0.1588  0.4923  0.2253
0.0879  0.0235  0.2253 —-0.9790
[ 0.8367 0.1790 0.3326  0.0832
B — 0.1790 0.0215  0.1388  0.5320
o 0.3326 0.1388 —-0.0227 -0.6871
0.0832 0.5320 —-0.6871 —0.1778
[ 0.7978  1.2130  0.8094  0.6920
F(A.B) = 1.2130  3.3980 —-2.6498 —0.0064
’ B 0.8094 —2.6498 10.5185  3.0781
0.6920 —-0.0064  3.0781  7.9733

and the smallest eigenvalue f* of f(A, B) is (only 4 decimal digits displayed)
0.0000, with the corresponding unit eigenvector

v=[-0.8741 04515 0.1789 0.0072]".

We note the minimum of f on R? can be computed exactly using Mathematica.

It 1s 0.0625.

CONCLUSIONS

In the paper we presented a sums of hermitian squares approach to detect
positivity of given non-commutative polynomials with a special focus on com-
puting lower bounds for eigenvalue minimization of such polynomials, based on
semidefinite programming. To test for exactness of bounds we investigated the
solution of the dual semidefinite program. We showed that attainability of the
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optimal value on the dual side implies that the eigenvalue bound is attained.

In such a

case we can extract the global eigenvalue optimizers. The proce-

dure, based on solution of the truncated free moment problem and the GNS
construction 1s presented and demonstrated with an example.
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