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Abstract 

Like a linear programming (LP) problem, linear-fractional programming (LFP) problem can be usefully 

applied in a wide range of real-world applications. In the last few decades a lot of research papers and 

monographs were published throughout the world where authors (mainly mathematicians) investigated 

different theoretical and algorithmic aspects of LFP problems in various forms. In this paper we consider 

these two approaches to optimization (based on linear and linear-fractional objective functions on the same 

feasible set), compare results they lead to and give interpretation in terms of taxes, subsidies and manpower 

requirement. We show that in certain cases both approaches are closely connected with one another and may 

be fruitfully utilized simultaneously.     

 

Key words:  Linear programming, Linear-fractional programming, conflicting economic interests, 

redirection, unemployment 

 

1. INTRODUCTION 

Problems of linear programming arise in a wide range of real-world applications, for example in the case 

when there appears a necessity to optimize results of some activity: profit gained by a company, cost of 

production, cost of transportation, etc. Problems of linear-fractional programming appear in the same cases 

as LP problems (Bajalinov, 2003), (Martos, 1964), (Stancu-Minasian, 1997), but in contrast to LP, in LFP 

objective functions are of fractional type: profit gained by company per unit of expenditure, cost of 

production per unit of produced goods, cost of transportation per unit of transported goods, etc. Often such 

objective functions (linear and linear-fractional) appear on the same feasible set (i.e. subject to the same 

constraints) and express two different economic interests. 

It is well known that two or more objective functions defined on the same feasible set in general case lead to 

different (non-coincident) optimal solutions. It means that the economic interests expressed by linear 

objective function and linear-fractional objective function on the same feasible set in general case result 

different optimal solutions (and, hence, different decisions) which may conflict with one another. However 

sometimes it may occur that these objective functions lead to the same (coincident) optimal solutions 

(Bajalinov, 1999). 

Below we investigate all such possible cases and try to give suitable economic interpretations. 
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Consider the following linear programming and linear fractional programming problems 

                                                                  maxxP   , Sx                                                         (1) 

                                                                  maxxQ   , Sx                          (2) 

where Q(x)=P(x)/C(x),  P(x)= 



n

j
jj pxp

1
0  , C(x)= 




n

j
jj cxc

1
0  are affine functions and C(x) > 0 for all 

x  S={x  Rn: Ax≤b, x≥ 0},  A is (m x n) matrix, i.e. A = |aij|mxn,  Tnx,,x,xx 21 ,   Tnb,,b,bb 21 ,  

aij, bi, pj, cj are scalar constants and T denotes the transpose of a vector. Note that constants p0 and c0 do not 

play a principal role in LP case but may affect optimality in LFP case. Here and in what follows we suppose 

that these problems are solvable, i.e. feasible set S is not empty and objective functions P(x) and Q(x) on set 

S are bounded from above. 

 

2. NON-COINCIDENT SOLUTIONS 

Let us consider the case when problems (1) and (2) have different optimal solutions. Let vector x* be an 

optimal solution of LP problem (1) and x' denote an optimal solution of LFP problem (2). Obviously, in this 

case we have the following inequalities: 

P(x*) ≥ P(x')          (3) 

Q(x*) ≤ Q(x')        (4) 

The theoretical sense of these two inequalities (in terms of mathematical programming theory) is obvious: 

1. since vector x* maximizes linear objective function P(x) on feasible set S, it means that  

 P(x*) ≥ P(x), for all x S, including vector x'S; 

2. analogously, since vector x' maximizes linear-fractional objective function Q(x) on feasible set S, it 

means that Q(x') ≥ Q(x), for all x S, including vector x*S. 

But what do they mean these two inequalities in a practical aspect? To give an answer to this question let us 

suppose that there is a company which would like to optimize its activity using LP model (1) and LFP model 

(2). Let linear function C(x) express the cost of the company and function P(x) be a profit function. It is clear 

that in this case linear-fractional function Q(x)=P(x)/C(x) may be interpreted as efficiency expressed as 

profit/cost. So, if the company prefers to maximize its profit it has to organize its activity in accordance with 

optimal plan x* which provides P(x*) units of profit, but may not provide maximal efficiency Q(x'), since 

Q(x*) ≤ Q(x'). On the other hand, if company prefers to maximize its efficiency (calculated as profit/cost) it 

has to organize its activity in accordance with optimal plan x' which provides Q(x') units of profit per one 

unit of cost, but may not provide maximal profit P(x*), since P(x*) ≥ P(x'). 

Which optimal plan the company should prefer? To give an answer to this question let us return to inequality 

(4) and rewrite it in the following form: P(x*)/C(x*) ≤ P(x')/C(x') or (here we suppose that P(x')>0 and 

C(x*)>0) 
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P(x*)/P(x') ≤ C(x*)/C(x')       (5) 

From (3) we have that P(x*)/P(x') ≥ 1. Using the latter in (5) we obtain that C(x*)/C(x') ≥ 1 or (assuming that 

C(x')>0) 

   C(x*) ≥ C(x').        (6) 

Inequality (6) shows that the cost of optimal plan x* cannot be less than the cost of optimal plan x'. In other 

words, in general case we can say that optimal plan x' is cheaper than x*. Thus, the answer to the question 

“Which optimal plan the company should prefer?” may be formulated as follows: it depends on the costs 

C(x*) and C(x'), and the amount of money the company can spend. So there are following three possible 

scenarios: 

1. If the company cannot spend C(x*) units of money, there is only one possibility - to accept cheaper 

optimal plan x', implement it and obtain P(x') units of profit; 

2. If the company can spend C(x*) units, then there are following two  cases: 

a. to accept optimal plan x*, implement it and obtain P(x*) units of profit, or 

b. to accept optimal plan x', implement it k = C(x*)/C(x') ≥ 1 times and obtain kP(x')  units of profit. 

Observe, that 

k P(x') = P(x') C(x*)/C(x') = C(x*) Q(x')  ≥  C(x*) Q(x*) = P(x*).  (7) 

(7) shows, that profit in case (2.b) cannot be less then profit in the case (2.a). To illustrate all these possible 

scenarios let us consider the following numerical example. Let be the following two linear functions: 

P(x) =3.5x1+2x2+1.5x3+1x4,   C(x) =2x1+3x2+0.5x3+4x4,   (8) 

and feasible set S defined by the following constraints: 

2x1+2x2+1x3+4x4 ≤ 1000                  (9) 

1x1+0x2+1x3+2x4 ≤ 1500 

1x1+1x2+1x3+1x4  ≥  250 

xj ≥ 0, j=1,2,3,4. 

Solving LP problem 

P(x) = 3.5x1+2x2+1.5x3+1x4  max 

     x = (x1, x2, x3, x4)  S, 

we obtain optimal solution x*=(500, 0, 0, 0) and the following values: P(x*)=1750, C(x*)=1000, 

Q(x*)=1.75.  Then, solving LFP problem 

 

Q(x)=  max
xx.xx

xx.xx.





4321

4321

45032

151253
  

x=(x1, x2, x3, x4)  S, 

we obtain optimal solution x' = (0, 0, 1000, 0) and the following values: P(x') = 1500, C(x') = 500, Q(x') = 3.  

So, we have the following three possible cases: 
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1. If the company cannot spend C(x*) = 1000 units, there is only one possibility - to accept cheaper 

optimal plan x', implement it and obtain P(x') = 1500 units of profit; 

2. If the company can spend C(x*) =1000 units, then there are two following cases:         

a. to accept optimal plan x*, spend C(x*) = 1000 units to implement plan x* and then obtain P(x*) = 

1750 units of profit, or 

b. to accept optimal plan x', implement it C(x*)/C(x')=1000/500=2 times and obtain  

2*P(x') = 2*1500 = 3000 units of profit. 

Obviously, the most attractive case is (2.b) since it leads to the greatest possible profit. Note this case 

requires usage both LP and LFP approaches for modelling and optimization. 

 

3. COINCIDENT SOLUTIONS 

In this section we consider such situations when the problems do not have any common (coincident) optimal 

solutions and we show how it is possible to redirect objective functions in such a way that all optimization 

problems considered lead to the same optimal solution. 

 

3.1. Case 1 

Let be given LP problem (1). Consider the following new LP problem 

                                                                   maxxC   , Sx      (10)                                   

Let vector  ''
n

'''' x,,x,x''x 21  be an optimal solution for problem (10). Consider some hypothetic economic 

system consisting of n industries. Let us suppose that linear function  xC  describes the manpower 

requirement of the system in point nRx , here jx  denotes the output of j-th industry. Further, let us 

suppose that the main economic interest of the society is minimization of unemployment. So, from the point 

of view of the society the activity of the economic system must be organized in accordance with output 

vector x'' which solves problem (10). At the same time let us suppose that the main aim of the owners of the 

system is maximization of profit function P(x). In other words, from the point of view of the owners the 

economic system must operate in accordance with output vector x* which maximizes profit function P(x), 

i.e. solves problem (1). Note in general case *x''x    It is obvious that  

    P(x*) ≥ P(x'')    and C(x*) ≤ C(x'')                                            (11) 

i.e. economic interests mentioned above are conflicting in the following sense: 

1. if the economic system operates according to plan x'' manpower requirement is maximal but profit 

may be not maximal. In this case we have     0 ''xP*xP  units of lost profit; 

2. if the system operates according to plan x* profit is maximal but manpower requirement may be not 

maximal. In this case we have     0 *xC''xC  units of lost manpower requirement; 
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Our aim now is to show that there is a very simple way to redirect these conflicting economic interest in such 

a way that profit function  xP  on feasible set S will lead to the same output plan x'' as objective function 

 xC . Let  ms,,s,s''J 21  denote the index-set of basis variables for vector x'' and  
msss A,,A,AB 

21
  

be the appropriate basis, where  Tmjjjj a,,a,aA 21 is j-th column-vector of matrix A=|aij|m×n. In 

accordance with theory of simplex method (Dantzig, 1963), (Dantzig, Thapa, 2003), (Gass, 1985), 

(Vanderbei, 2007) we have: 

                        0
1




m

i
jijsj cxc

i
 , n,,,j 21                                                                        (12) 

where coefficients  n,,,j,m,,,ixij  2121   are defined from the following systems of linear equations:  

j

m

i
ijs AxA

i


1

,  n,,,j 21        

Let us consider new vector  nt,,t,t,tt 210  and replace vector  np,,p,p,pp 210  in LP problem (1) 

with new vector  

 n'p,,'p,'p,'p'p 210   where  jjj tp'p   , n,,,,j 210 .   (13) 

Thus, we have a new LP problem 

                                                                   maxx'P  , Sx       (14) 

where   



n

j
jj px'px'P

1
0 . Now using system (12) we construct the following system of conditions 

                             n,,,j,'px'p
m

i
jijsi

210
1




                                                   (15) 

Obviously, if coefficients n,,,,j,'p j 210  satisfy system (15), it means that vector x'' solves problem 

(14). Let us rewrite (15) in the following form 

                                   n,,,j,pxptxt
m

i
jijs

m

i
jijs ii

21
11

 


                                (16) 

Observe, in system (16) elements jp and ijx  are known constants and coefficients, so only n unknown 

elements n,,,j,t j 21   have place in the left-hand side of the system. Further, it is easy to show that 

system (16) defines non-empty set of points 1 nRt  since constraints (16) can be satisfied with any vector t 

determined from the following constraints 

                                          021   ,n,,,j,ctp jjj                                                     (17) 

Indeed, if we replace elements jt in the left-hand side of (16) with   n,,,j,pc jj 21  we obtain:  

n,,,j,pxppxp j

m

i
ijsj

m

i
ijsj ii

21
11

 


 . So we have that  n,,,j,j 210  . 
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Thus, we have shown that there exist such vectors 1 nRt  which (being used as a correction vector for the 

original profit vector p) can redirect the objective function  xP  of problem (1) in such a way that vector x'' 

provides not only the maximal level of manpower requirement but provides maximal profit too. Obviously, 

values jt  may be interpreted as taxes or subsidies (depending on their signs) for j-th industry per unit of 

output.  

Furthermore, let us consider the following function:   0
1

txtxT
n

j
jj  


.  It can be shown that there are such 

vectors 1 nRt   that   00
1

 


t''xt''xT
n

j
jj  i.e. there is (at least one) vector t of such taxes and subsidies 

that their total sum in output point x'' is equal to zero. Indeed, let jjj pct   , n,,,,j 210 , 0 , then 

we have 

        


00
1

0
1

pc''xpct''xt''xT
n

j
jjj

n

j
jj   

    ''xP''xCp''xpc''xc
n

j
jj

n

j
jj 



























 


 0

1
0

1

    (18) 

Choosing   

  
 
 ''xC

''xP
          (19) 

from (18) we obtain that   0''xT .  

To illustrate these results we consider problems (1) and (10) using functions  xP  and  xC  as defined in 

(8). First, solving problems (1) and (10) we have 

       ,*xC,*xP,,,,,*x 100017500000500   

       .''xC,''xP,,,,,''x 150010000005000   

Hence (see (13) and (19))    

 
3

2


)''x(C

)''x(P  ,    





 

3

2
1

6

1
10

6

1
2043210 ,,,,t,t,t,t,tt  

and   

   







3

2
2

3

1
2

3

1
1043210 ,,,,'p,'p,'p,'p,'p'p ,    1000''x'P ,    0''xT . 

3.2. Case 2 

Let be given LFP problem (2) and LP problem (10). Consider the economic system described in the previous 

subsection. Following notations and assumptions introduced above we suppose that linear function  xC  

describes the manpower requirement of the economic system in point nRx , linear function  xP  expresses 
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profit and linear-fractional function  xQ  is efficiency calculated as profit/cost. Furthermore, as before, we 

assume that the main economic aim of the decision maker is maximization of manpower requirement in the 

society. But the owners, in contrast to previous case, prefer to maximize the efficiency of the economic 

system calculated as profit/manpower requirement. 

Let vector x' denote an optimal solution of LFP problem (2) and vector x'' be an optimal solution of LP 

problem (10) with associated basis B (see previous subsection). Obviously, 

                                                                   ''xQ'xQ                                                                  (20) 

and 

        ''xC'xC        (21) 

i.e. economic interests mentioned above are conflicting in the following sense: 

1. if the economic system operates according to plan ''x  the level of manpower requirement is 

maximal but efficiency may be not maximal; lost efficiency is     0 ''xQ'xQ ; 

2. if the given system operates according to plan x' the level of efficiency is maximal but manpower 

requirement may be not maximal; lost manpower requirement in this case is     0 'xC''xC . 

Our aim now is to show that there is a simple way to redirect these conflicting economic interest in such a 

way that LFP function  xQ  on feasible set S will lead to output plan ''x . Since vector ''x  is optimal 

solution of LP problem (10) it means that has place system (12). Consider new vector  nt,,t,tt 10  and 

replace vector  np,,p,pp 10  in LFP problem (2) with new vector 

 n'p,,'p,'p'p 10 ,      where  jjj tp'p  , n,,,,j 210    (22) 

Thus, we have a new LFP problem 

      
  max
xC

x'P
x'Q  ,  Sx       (23)  

where   0
1

px'px'P
n

j
jj  


. 

Consider the following LFP reduced costs (Bajalinov, 2003), (Martos, 1964) of problem (23) in point ''x :  

                                           ''xP''''xC'''x jjj    ,  n,,,j 21                                       (24) 

where j

m

i
ijsj 'px'p'

i


1

 ,  j

m

i
ijsj cxc''

i


1

 , n,,,j 21 .  



Croatian Operational Research Review (CRORR), Vol. 1, 2010  

 
 

 59

In accordance with theory of simplex method for LFP, if    0''xj , n,,,j 21  then vector ''x  is optimal 

solution for LFP problem (23). In other words, this optimality criteria defines such coefficients  j'p , 

n,,,,j 210   that vector ''x solves LFP problem (23). Thus we have the following constraints for j'p : 

     00
11






















 


'p''x'p''''xC'px'p''x

m

i
ssjj

m

i
ijsj iii

 ,  n,,,j 21  

or  

      00
1




'p''''xC'p''x''x''xC'p jj

m

i
sjijs ii

 , n,,,j 21    (25) 

Using (22) in (25) we rewrite the latter in the following form 

    ''xˆt''''xCtFt jjj

m

i
ijsi

 


0
1

 , n,,,j 21       (26) 

where  
isjijij ''x''x''xCF  , and      0

1

p''''xCpFp''xˆ
jj

m

i
ijsj i

 


. 

Constraints (26) define set of such vectors 1 nRt  which redirect original fractional objective function 

 xQ  in such a way that it leads to optimal solution ''x . Moreover, it is easy to show that this set is not 

empty. Indeed, let us choose components jt  in the following way: 

                               jjj pct   , n,,,,j 210 , 0                                                       (27) 

then we have  

     jjjj

m

i
ijsssj ''pcpxpcp'

iii
  

1
, n,,,,j 210 , 

and  

        ''x'Cpcpxpcp''x'P
m

i
ssss iiii

 


000
1

 . 

Hence,          0 ''xC''''xC''''x jjj  , n,,,j 21 . The latter equalities mean that when 

choosing vector t  by formulas (27) the new linear-fractional objective function  x'Q  on feasible set S leads 

to optimal solution ''x . Thus, we have shown that there exist such vectors 1 nRt  which (being used as a 

correction vector for the original profit vector p) can redirect original fractional objective function  xQ  of 

problem (2) in such a way that vector ''x provides not only maximal level of manpower requirement but it 

provides maximal efficiency too. Obviously, values jt may be interpreted as taxes or subsidies (depending 

on their signs) for j-th industry per unit of output. Moreover, in the same manner as it was done in previous 
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subsection, it may be shown that there are such vectors 1 nRt  that their total sum in output point ''x  is 

equal to zero. 

To illustrate these results we consider problems (2) and (10) using functions,  xP ,  xC  and  xQ  as 

defined in (8)-(9). First, solving problems (2) and (10) we have 

  0100000 ,,,'x  ,    1500'xP ,    500'xC ,   3
500

1500
'xQ  

  005000 ,,,''x  ,    1000''xP ,    1500''xC ,  
3

2

1500

1000
''xQ  

Hence (see (19), (22) and (27)), we have 

  
 
  3

2


''xC

''xP  ,  





 

3

2
1

6

1
10

6

1
20 ,,,,t , 








3

2
2

3

1
2

3

1
10 ,,,,'p  

    1000''x'P ,   
3

2

1500

1000
''x'Q ,   0''xT . 

 

CONCLUSIONS 

 
If a real-world optimization problem can be reduced to a linear programming model, often it automatically 

means that the problem may be re-formulated as an LFP problem too. In this case the following question 

may appear: what type of objective function do we have to apply - linear or linear-fractional? The 

investigation of such situations has led us to the results presented above. These results in economic terms 

may be briefly summarized as follows. 

We considered the following three possible situations when different economic interests lead to different (in 

some sense conflicting) optimal solutions. In the first case profit maximization and maximization of 

efficiency lead to different optimal solutions and we do not try to redirect these objective functions but we 

show how it is possible to utilize optimal solution obtained for maximal efficiency in order to obtain some 

more profit. The second and the third cases deal with the situations when conflicting economic interest 

should be redirected. We show that such redirection often (at least mathematically) can be implemented by 

using suitable taxes and subsidies. Such taxes and subsidies may be found from the system of constraints 

presented above. Moreover, as it was shown above such set of taxes and subsidies contains at least one 

vector of such taxes and subsidies which may be referred to as equitable since their total sum in the point of 

optimal solution is equal to zero, so such “reconciliation” may be free of charge for the both sides of such 

types of conflicting situations. In other words, minimization of unemployment may be done (at least 

theoretically) free of charge. 

The results presented in this paper are based on the theoretical investigations of interconnections between LP 

and LFP models. There are plenty of practical applications for the results of this study. Future work in this 
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domain includes development and implementation of special module/procedure (in the frame of 

programming package WinGULF) for determining proper correction vector t for given LP and LFP 

problems. In the next step it could be highly useful to perform real-life data based numerical experiments for 

some regions and/or economics. 

Finally, we have just to note that all optimization problems in the numerical examples were solved by 

package WinGULF 4.2 (Linear and linear-fractional programming package based on special "fractional" 

extension of primal simplex method with built in branch-and-bound engine for integer problems. For more 

information see author's Web-site zeus.nyf.hu/~bajalinov) developed by the author for educational purposes, 

and then checked in Microsoft Excel (Spreadsheet software trademark of Microsoft Corporation) using add-

in Solver (Trademark of Frontline Systems, Inc.). 

 

REFERENCES 

Bajalinov, E. (2003), Linear fractional programming: Theory, methods, applications and software, Kluwer 

Academic Publishers. 

Bajalinov, E. (1999), “On an approach to the modelling of problems connected with conflicting economic 

interests” European Journal of Operational Resarch, Vol. 116, pp. 477 – 486. 

Dantzig, G. (1963),  Linear programming and extensions, Princeton, N.J.: Princeton University Press. 

Dantzig, G., Thapa, M.N. (2003), Linear programming 2: Theory and extensions, Springer. 

Gass, S.I. (1985), Linear programming: methods and applications, 5th ed. New-York: McGrow-Hill. 

Martos, B. (1964), Hyperbolic programming, Naval Res. Log. Quarterly, Vol.11, pp. 135-155. 

Stancu-Minasian, I.M. (1997) Fractional programming: theory, methods and applications, Kluwer 

Academic Publishers.  

Vanderbei, R.J. (2007), Linear Programming: Foundations and Extensions, Springer. 


