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Original scientific paper 
The aim of this paper is to present a tool condition monitoring (TCM) 
system that can detect tool breakage in real time using a combination of a 
neural decision system, an ANFIS tool wear estimator and a machining 
error compensation module. The principal presumption was that the force 
signals contain the most useful information for determining tool condition. 
Therefore, the ANFIS method is used to extract the features of tool states 
from cutting force signals. The trained ANFIS model of tool wear is then 
merged with a neural network for identifying tool wear condition (fresh, 
worn). A neural network is used in TCM as a decision making system to 
discriminate different malfunction states from measured signals. The 
overall machining error is predicted with very high accuracy by using the 
deflection module and a large percentage of it is eliminated through the 
proposed error compensation process. The fundamental challenge to 
research was to develop a single-sensor monitoring system, reliable as a 
commercially available system, but much cheaper than the multi-sensor 
approach. 
 

Sustav predviđanja i odlučivanja u procesu nadzora alata primjenom 
ANFIS-a i neuronske mreže 

Izvornoznanstveni članak 
Cilj ovog rada je prikazati sustav nadzora alata (TCM) koji može 
detektirati lom alata u stvarnom vremenu primjenjujući kombinaciju 
sustava za odlučivanje pomoću neuronske mreže, ANFIS procjena 
trošenje alata i modula za kompenzaciju pogreške u obradi. Glavna 
pretpostavka je da signali sila sadrže najkorisnije informacije za 
utvrđivanje stanja alata. Stoga se ANFIS model koristi za izdvajanje 
značajki o stanju alata kroz signale sila rezanja. Nakon faze učenja ANFIS 
model trošenja alata je integriran s neuronskom mrežom za utvrđivanje 
stanja istrošenosti alata (novi, istrošen). Neuronska mreža je korištena u 
TCM kao podloga za donošenja odluka, pri tomu izbjegavajući stanja 
prouzročena nepravilnostima u izmjerenim signalima. Predviđanje ukupne 
pogreške obrade s vrlo visokom točnošću pomoću modula za ugib alata i 
visokog postotka njegovog eliminiranja kroz predloženi proces 
kompenzacije pogreške.  
 

 

1. Introduction 
 
Detection of cutting tool condition is essential for 
faultless machining in flexible manufacturing systems 
(FMS). An unmanned flexible manufacturing system is 
the most developed type of FMS. Such a system 
replaces human operators with robots, thus reducing 
labor costs and preventing human errors. In such an 
automated and unmanned machining system, a 
computerized system must have capabilities for 
monitoring and controlling the machining process to 
perform the role of a human operator. Tool condition 
monitoring (TCM) is a fundamental requirement for the 
control of the machining process. The main goal of the 
development of TCM systems is to increase 

productivity and hence competitiveness by maximizing 
tool life, minimising downtime, reducing scrap and 
preventing damage. What was the traditional ability of 
the operator to determine the condition of the tool based 
on his experiences and senses is now the expected role 
of the monitoring system. The role of the operator is 
typically supervisory. Usually, the operator is also 
responsible for loading into and unloading parts from 
several machines in a manufacturing cell, meaning that 
his time of reaction to a problem with any machine will 
not be sufficient for the speed at which machining 
operations take place on modern machine tools. Each 
tool condition monitoring (TCM) system consists of 
sensors, signal conditioners/amplifiers and a monitor 
[1]. The monitor uses a strategy to analyse signals from 
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Symbols/Oznake 
 

ANFIS 
- Adaptive Neuro-Fuzzy Inference System 
- Adaptivni neuro-neizraziti sustav 

zaključivanja 
Fx, FY, FZ 

- Cutting force signals  
- Signali sile rezanja 

ANN 
- Artificial neural network 
- Umjetna neuronska mreža FIS 

- Fuzzy inference system 
- Neizrazit sustav zaključivanja 

AE 
- Acoustic emission 
- Akustična emisija L1 

- Collision  
Kolizija 

Ai, Bi, 
Ci, Di, Ei 

- Nonlinear parameters 
- Nelinearni parametari L2 

- Tool fracture 
- Lom alata 

AD 
- Axial depth of cutting 
- Aksijalna dubina rezanja L3 

- Worn tool  
- Pohabani alat 

C 
- Constant 
- Konstanta L4 

- Missing tool  
- Bez alata 

CNC 
- Computer numerical control 
- Računalno numeričko upravljanje n 

- Rotational speed 
- Broj obrta 

d  
- Direction vector 
- Vektor smjera 

pi, qi, ri, 
si, ti  
 

- Linear parameters  
- Linearni parametari 

D1 
- Mill diameter 
- Promjer alata Q 

- Parameter that minimizes the error 
- Parametar koji minimizira pogrešku 

D2 
- Shank diameter 
- Promjer stabla RD 

- Radial depth of cutting 
- Radijalna dubina rezanja 

E 
- Modulus of elasticity 
- Modul elastičnosti TCM 

- Tool condition monitoring 
- Nadzor alata 

F 
- Applied force 
- Primijenjena sila v 

- Cutting speed  
- Brzina rezanja 

f 
- Feed rate   
- Pomak WB 

- Flank wear 
- Habanje boka 

FMS 
- Flexible manufacturing systems 
- Fleksibilni proizvodni sustavi Xm 

- Maximal deflection 
Maksimalni progib 

Fmax 
- Maximal force 
- Maksimalna sila  - Greek letters/Grčka slova 

FR 
- Resultant force 
- Rezultantna sila η  

- Learning rate,  
- Stopa učenja 

 
the sensors and to provide a reliable detection of tool 
and process failures. It can be equipped with a signal 
visualisation system and is connected to the machine 
control. Many studies have been conducted on the 
monitoring of malfunctions and abnormal cutting states 
of machine tools [2]. With regard to the monitoring of 
cutting tool states, two main factors are tool wear and 
failure. Tool failure has become more important 
recently since hard tools are frequently used in the 
cutting process.  
There are two techniques for tool wear sensing: direct 
and indirect. The direct technique includes the 
measuring of the actual wear by using radioactive 
analyses of the chip. Generally, direct measurements are 
avoided because of the difficulty with online 
measurements. For indirect methods of TCM, the 
following steps are to be followed: the use of single or 
multiple sensors [3] to capture process information; the 
use of signal processing methods to extract features 

from the sensor information; the use of decision-making 
strategy to utilize extracted features for the prediction of 
tool failure. The indirect technique includes the 
measuring of cutting forces, torque, vibration, acoustic 
emission (stress wave energy), sound, temperature 
variation of the cutting tool, power or current 
consumption of spindles or feed motors, and roughness 
of the machined surface [4]. The recent trend in TCM is 
the multi-sensor approach which is termed sensor 
fusion/sensor integration/sensor synthesis. The idea is to 
gather information from several sensors to make a 
comprehensive estimate of tool wear. The application of 
TCM in industry has mostly relied on robust and 
reliable sensor signals such as force, power and AE. 
They are relatively easy to install in existing or new 
machines, and do not influence machine integrity and 
stiffness. 
Recent studies show that force signals contained the 
most useful information for determining the tool 
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condition [5]. However, in many cases the use of force 
sensors is not practical for retrofit applications and the 
spindle power signal is often used as an alternative. 
Several different approaches have been proposed to 
automate the tool monitoring function. These include 
classical statistical approaches as well as fuzzy systems 
and neural networks. For instance, Iqbal [6] has 
developed an approach based on the least-squares 
regression for estimating tool wear in machining. Haber 
[7] has measured the flank wear of the cutting tool using 
computer vision. The capacity of artificial neural 
networks to capture nonlinear relationships in a 
relatively efficient manner has motivated Chien and 
Tsai [8] to apply these networks in developing tool wear 
prediction models. But in such models, the nonlinear 
relationship between sensor readings and tool wear 
embedded in a neural network remains hidden and 
inaccessible to the user [9]. In this study, we attempt to 
solve this situation by using the Adaptive Neuro-Fuzzy 
Inference System (ANFIS) to predict the flank wear of 
the tool in end-milling processes. This model offers the 
ability to estimate tool wear as its neural network based 
counterpart providing also an additional level of 
transparency that neural networks fail to provide. Then, 
a neural network is used as a decision making system to 
predict the condition of the tool. In this study, the 
cutting forces are used as the indicator of the tool flank 
wear variation.  

2. Problem definition 
 
End-milling is an interrupted cutting process, which 
means that each cutting tooth generates a cyclic cutting 
force ranging from negative to maximum force, and 
back to negative. This force is graphed as a series of 
peaks (Figure 1).  
Cutting parameters and tool conditions affect the 
magnitude of the resultant force. Therefore, the resultant 
force FR, generated from the X and Y directions, is used 
in this experiment for detecting the tool state. If the tool 
condition is good, the peak measurement of each tooth’s 
force should be roughly the same during one revolution 
of the tool. If a tooth is broken, it generates a smaller 
peak force because it carries a smaller chip load. As a 
result, the tooth that follows a broken tooth generates a 
higher peak force as it extracts the chip that the broken 
tool could not. One main force principle can be used to 
detect tool condition: Maximum peak force in each 
revolution should be different in good tools and in 
broken tools [10]. Maximum peak force of a broken tool 
must be larger than that of a good tool. 
Figure 1 illustrates the diagram of undamaged and 
broken tools. Applying these principles, an in-process  

 
 

Figure 1. Cutting force signal of a good tool and a damaged 
tool 

Slika 1. Signal sile rezanja za dobar i polomljen alat  

tool breakage monitoring system was developed for 
end-milling operations. The cutting forces and the 
machining parameters were selected as input factors. 
 

3. Methodology and system components  
 
The proposed approach consists of three main steps. In 
step 1, an ANFIS model of tool wear is developed from 
a set of data obtained during actual machining tests 
performed on a Heller milling machine using a Kistler 
force sensor. The trained ANFIS model of tool wear is 
then merged subsequently in step 2 with a neural 
network for estimating tool wear condition (fresh, 
worn). Tool deflection that occurs during machining and 
especially when flexible tools, such as end mills are 
used, can result in dimensional errors on workpieces. 
Therefore, finally in step 3, an error compensation 
module is used that modifies the cutting conditions, 
compensates for the machining errors due to tool 
deflection and tool wear, without degrading the 
production performance and the machined accuracy. 
The compensation strategy allows the on-line 
optimization of feed rates or the tool path trajectory in 
order to achieve a specified tolerance. Figure 2 shows 
the basic architecture of the proposed system. 

3.1. ANFIS based tool wear predictor 
 
The relationship between the machining 
parameters/sensor signals and flank wear is first 
captured via a network and is subsequently reflected in 
linguistic form with the help of a fuzzy logic based 
algorithm. The estimation design process consists of a 
linguistic rule construction, the partition of fuzzy 
subsets and the definition of the membership function 
shapes. It uses training examples as input and constructs  
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Figure 2. Architecture of tool condition monitoring system 

Slika 2. Arhitektura sustava nadzora alata  

 
the fuzzy if-then rules and the membership functions 
(MF) of the fuzzy sets involved in these rules as output. 
This process is called a training phase. Two different 
membership functions, the triangular and the 
trapezoidal, were adopted during the training process of 
ANFIS in this study in order to compare the prediction 
accuracy of flank wear according to the two 
membership functions. After training the estimator, its 
performance was tested under various cutting 
conditions. Generally, a worn tool is not a catastrophic 
event and when detected, it is usually possible to 
continue machining to the end of the current operation. 
This is a typical TCM system where the sensor is used 
to collect the signals during milling through a data 
acquisition module. The signal processing module 
analyses the machining signals for extracting features 
sensitive to tool wear.  
The features, together with the machining parameters, 
constitute the data set to be used as input to the decision 
system and the estimator. The main purpose of the 
decision system and the estimator is to map the input 
features to the current state of tool, i.e. the amount of 
tool wear.  
A multi-layer perceptron neural network with the 
backpropagation algorithm is used in TCM as a decision 
system due to its ability of learning [11], noise 
suppression and parallel processing. The advantages of 
the multi-layer perceptron are described in [12].  
A random pattern classifier module divides the data into 
a training and a testing set. The training set is used for 
learning purposes while the testing set is used for testing 
the decision system performance. 

3.1.1. ANFIS architecture, modelling algorithm 
 
Using a given input/output data set, the ANFIS method 
constructs a fuzzy inference system (FIS) whose 
membership function parameters are adjusted by using 
the backpropagation algorithm. This allows fuzzy 
systems to learn from the data they are modelling. The 
FIS structure is a network-type structure, which maps 
inputs through input membership functions and 
associated parameters, and then through output 
membership functions and associated parameters to 
outputs.  
Figure 3 shows the fuzzy rule architecture of ANFIS 
when the triangular membership function is adopted. 
The architectures shown in Figure 3 consist of 31 fuzzy 
rules. The process variables are force sensor readings 
(FR), cutting speed (v), feed rate (f), depth of cutting 
(AD/RD), machining time and flank wear (wB). The 
domain of definition of these variables is normalized in 
the range (0,1), where 1 corresponds to the maximal 
value of that variable. 
The fuzzy inference system under consideration has 5 
inputs and one output wB. For a first-order Sugeno fuzzy 
model, a typical rule set with 31 fuzzy rules can be 
expressed as: 
Rule i: 
IF (v is Ai) AND (f is Bi) AND (AD/RD is Ci) AND (FR 
is Di) AND (Time is Ei) THEN 
wBi =piv+qif+riAD/RD +siFR+tiTime 
 
where i=1...31; pi, qi, ri, si  and ti are linear parameters 
and Ai, Bi, Ci, Di, Ei are nonlinear parameters. 
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Normal / Normalno – No / Ne

ANFIS
(sugeno)
31 rules / 
Pravila

Flank 
wear / 

Habanje 
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wB
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ANN decision system / ANN sustav 
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BROKEN / WORN - Stop 
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Tool condition / Action
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Figure 3. Components of TCM (In-process ANFIS predictor and ANN decision system) 

Slika 3. Komponente TCM (ANFIS sustav predviđanja u procesu i ANN sustav odlučivanja) 

 
The ANFIS architecture is explained in detail in [13]. 
ANFIS applies two techniques in updating parameters. 
For the premise parameters that define the membership 
functions, ANFIS employs gradient descent to fine-tune 
them. For each consequent parameter that defines the 
coefficients of each output equation, ANFIS uses the 
least-squares method to identify parameter.  This 
approach is thus called Hybrid Learning method 
because it combines the gradient descent method and 
the least-squares method [14]. 
The modelling process starts by selecting a data set 
(input-output data pairs) and dividing it into a training 
data set and a testing data set. The training data set is 
used to find initial premise parameters for the 
membership functions by equally spacing each of the 
membership function. A threshold value for the error 
between the actual and the desired output is determined. 
Consequent parameters are found by using the least-
squares method. Then, an error for each data pair is 
found. If this error is larger than the threshold value, 
update the premise parameters using the gradient 
descent method as the following (Qnext=Qnov+ηd, where 
Q is a parameter that minimizes the error, η the learning 
rate, and d is a direction vector). The process is 
terminated when the error becomes less than the 
threshold value. Then, the testing data set is used to 

compare the model with the actual system. During 
training in ANFIS, 150 sets of experimental data were 
used to conduct 500 cycles of learning. 
The findings are analyzed and discussed in Section 5. 

3.2. ANN decision system 
 
The neural decision-making system was developed with 
Matlab software. The neural network used to predict the 
cutting tool condition is shown in Figure 3. It has tool-
breakage detection capability and is based on pattern 
recognition. The neural network stores a number of 
reference force patterns that are characteristic of tool 
breakage. When a tool tooth breaks, the cutting force 
suddenly rises for a while and then drops to zero. The 
system continuously monitors the signal for a break 
pattern. If the pattern is identified, a break is declared 
within 10 ms of the breakage.  
Four steps were required to develop a neural decision 
system. In step 1, the network architecture and 
prediction factors were selected. The network had two 
hidden layers and used a set of 5 normalized inputs for 
tool condition prediction: (1) cutting speed, (2) feed 
rate, (3) depths of cut, (4) forces, (5) tool wear. The 
output layer consisted of only two neurons: (1) normal 
and (2) broken/worn.  
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In step 2, the learning rate, momentum factor and the 
number of hidden layers/hidden neurons were defined. 
The number of hidden neurons was set at 12, the 
learning rate was set at 1, and the momentum item was 
0.4. The number of training/testing cycles was 1700. 
In step 3, the data set was divided into the training and 
the testing set. 200 data points were used in this study. 
Good tools collected half of these and broken tools 
collected the rest. All the data were scaled.  
It is very difficult to mimic the moment of chipping or 
breaking in an experiment. Therefore, in this study, first, 
the normal tool cuts a part of the workpiece. After 
confirming that the system classified normal cutting 
state, the cutter was retracted to remove one insert. 
After that, it was checked whether the monitoring 
system classified abnormal cutting state. The same 
process was repeated with the cutter whose one side 
worked and the other was broken. The broken side of 
the tool possessed varying degrees of breakage (0.5mm 
x 0.5mm; 1.5mm x 1.5mm; 1.5mm x 2mm). The 
damage was limited to the cutting edge. Damage 
observed on the rake surface, such as crater wear, was 
quite limited. There were six cutting passes performed 
for the down milling cases and four cutting passes 
performed for the up milling cases. Within these cutting 
passes performed, the wear propagation was almost 
linearly related to the cutting time for both the down 
milling and the up milling. For the cases of down 
milling, the width of flank wear was about 0.1mm after 
the first cutting pass. After the sixth cutting path, the 
width of flank wear was about 0.3 mm. For up milling, 
the development of tool wear was more rapid compared 
with that for down milling. The width of flank wear was 
over 0.2mm even after the first cutting pass. After the 
fourth cutting pass, it reached as high as 0.5 mm, 
compared with the width of flank wear of only 0.19–
0.25mm for the down milling cases after the same 
cutting pass. 
In step 4, the training and testing phase is accomplished. 
During the training stage, the neural network adjusted 
its internal weight values to give correct output results 
according to the input features. Finally, in the last step 
the trained neural network was used to predict tool 
conditions. 

3.3. Tool deflection module 
 
The main objective of the deflection module is to 
determine the deflection of end mills under milling 
forces. For the deflection analysis of end mills, the tool 
holder is assumed to be rigid and the cantilever beam 
model is used. However, the holder and the clamping 
stiffness can also be included in the analysis if they are 
known. End mill deflections can be approximated by 
using the beam model. The loading and the boundary 
conditions of the end mill used in the model are shown 
in Figure 4, where D1 is the mill diameter, D2 is the 

shank diameter, L1 is the flute length, L2 is the overall 
length, F is the point load. Modelling can be unpractical 
and time consuming for each tool configuration in a 
virtual machining environment. Therefore, simplified 
equations are generated to predict deflections of tools 
for given geometric parameters and density. The static 
characteristics of end mills can be shown as: 

( ) N
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4
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where F is the applied force and E is the modulus of 
elasticity (MPa) of the tool material. The geometric 
properties of the end mill are in mm. The constant C is 
9.05, 8.30 and 7.93 and constant N is 0.950, 0.965 and 
0.974 for 4-flute, 3-flute and 2-flute tools, respectively 
[5]. 
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Figure 4. Cutting force induced tool deflection 

Slika 4. Ugib alata prouzročen silom rezanja  

3.4. Error compensation module 
 
The developed module (see Figure 2) aims at facilitating 
the compensation of surface errors in machining caused 
by tool deflection and tool wear [5]. The measured 
cutting forces are fed into a deflection model for the 
prediction of dynamic behaviour of the tool during 
cutting. An iterative procedure is used to determine the 
milling error through trial and error of the cutting force 
and deflection. The predicted deflected tool profile is 
used to identify the “real” material volume that is 
removed during machining. As soon as the milling error 
is obtained, the error compensation can be achieved by 
optimising the tool path or by feed rate adjustment.  
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Figure 5. Final surface profile before and after compensation; a) without compensation, b) with compensation 

Slika 5. Završna površina profila prije i nakon kompenzacije; a) bez kompenzacije, b) s kompenzacijom  

 
Both modifications lead to changes of cutting 
conditions. Figure 5 shows an instance of the tool path 
with and without compensation. Due to cutting force-
induced tool deflections, some amount of material will 
be left on the desired surface (surface error) as shown in 
Figure 5a. In this case, the resulted milled profile (actual 
profile) will be different from the desired profile and the 
error depends on many factors, such as cutting 
conditions, tool material, tool overhang, etc. In order to 
reduce the error between actual and desired profiles, one 
can offset the tool towards the machined surface by an 
amount which depends on the local surface error. It is 
necessary to compute the amount of offset or 
compensation along the entire path of cut.  
The second way is to adjust (decrease) the feed rate in 
sections where the predicted tool deflection is the 
greatest thus avoiding surface error. 
The compensation procedure steps can be formulated as 
an algorithm as shown below: 

1. Measure the cutting forces; 
2. predict the tool deflection; 
3. compare the difference between ideal tool 

position and deflected tool position with the 
prescribed tolerance value; if the difference is 
within the tolerance value then go to step 1, or 
else reduce the feed rate or modify the tool 
position; 

4. go to step 1. 
The machining experiments were conducted on a 
variety of variable curvature surfaces to assess the 
compensation module and also to know the extent of 
possible improvement in accuracy of machined parts. In 
carrying out machining experiments, it is necessary to 
distinguish between two types of curved geometries, 
namely convex and concave geometries. Here, the 
concave type of geometry is the one in which the local 

center of curvature of a workpiece and the tool centre lie 
on the same side. Cutter deflections and surface error 
were estimated based on the methodology discussed 
earlier. The workpiece geometry was first machined 
without compensation. Subsequent to machining, 
surface error was measured along the entire path of cut. 
The measured surface error values were compared with 
the estimated values. 

4. Experimental design 
 
Experiments were performed on a HELLER machine 
tool (type BEA1) with FAGOR CNC controller. The 
monitoring involved an end milling process of steel 
parts using two end mill tools [15]: a normal tool and a 
tool with a broken tooth. The cutting tool used in the 
machining test was a solid end milling cutter (R216.24-
16050 IAK32P) with four cutting edges. The tool 
diameter was 16 mm. Its helix angle was 10°.  The 
corner radius of the cutter was 4 mm. The insert had an 
outer coated layer of TiN exhibiting low friction and 
welding resistance. The workpiece material used in the 
machining test was Ck 45 and Ck 45 (XM) with 
improved machining properties. Workpieces were cut 
off from a warm-rolled bar. The dimension of the 
workpiece was 200mm × 70mm × 70mm. The 
workpiece was mounted in a 3 component piezoelectric 
dynamometer (Kistler 9255) to monitor the cutting 
forces in the X and Y directions. The force 
dynamometer was mounted on the machining table and 
connected to a 3-channel charge amplifier. The signals 
were monitored by using a fast data acquisition card 
(National Instruments PC-MIO-16E-4) and software 
written with the National Instruments CVI programming 
package. The experimental set-up is shown in Figure 2. 
Flank wear was observed during the experiments. The 
cutting tool flank wear was discontinuously measured 
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          Table 1.    Partial results of TCM testing (ANFIS wear prediction and ANN tool condition estimation) 

          Tablica 1. Djelomični rezultati TCM testiranja (ANFIS predviđanje trošenja i ANN procjena stanja alata)    

Tool 
Conditions 

/ Stanje 
alata 

Input factors / Ulazni faktori ANN outputs / 
ANN izlazi 

 
ANN 

Prediction /  
ANN  

predviđanje 

 
ANFIS 

Prediction 
 / ANFIS 

predviđanje
WB 

[mm] 

F [N] n 
(min-1) 

f 
[mm/rev] 

AD 

[mm] 

RD 

[mm] 

ANN1 ANN2 

Normal / 
Normalan 427.2 440 0.17 1.2 8 0.9 0.1 Normal / 

Normalan 0.11 

Broken / 
Slomljen 777.9 440 0.17 1.2 8 0.02 0.98 Broken / 

Slomljen 0.24 

Normal / 
Normalan 433.9 440 0.13 1.4 8 0.3 0.7 Broken / 

Slomljen 0.17 

Broken / 
Slomljen 729.6 440 0.13 1.4 8 0 1 Broken / 

Slomljen 0.26 

Normal / 
Normalan 650.5 440 0.20 1.4 8 0.89 0.11 Normal / 

Normalan 0.13 

Broken / 
Slomljen 925.7 440 0.20 1.4 8 0 1 Broken / 

Slomljen 0.27 

Normal / 
Normalan 614.4 480 0.20 1.4 8 0.88 0.12 Normal / 

Normalan 0.15 

Broken / 
Slomljen 751.9 480 0.20 1.4 8 0.03 0.97 Broken / 

Slomljen 0.23 

Normal / 
Normalan 904.3 360 0.22 1.6 8 0.89 0.11 Normal / 

Normalan 0.14 

Broken / 
Slomljen 991.9 360 0.22 1.6 8 0 1 Broken / 

Slomljen 0.31 

  
 

with a tool microscope of 0.01 mm accuracy. The 
machining tests were carried out in two types of end 
milling operations: down milling and up milling 
operations. The experiments were carried out for all 
combinations of the chosen cutting parameters and tool 
wear. In the experiments the cutting parameters were set 
as [16]: 0.45 mm/tooth),  four levels of cutting speed 
(v1=200, v2=360, v3=340 and v4=480min-1) and three 
levels of 0.45 mm/tooth), four levels of cutting speed 
(v1=200, v2=360, v3=340 and v4=480min-1) and three 
levels of radial/axial depth of cut (RD1=1d, RD2=0.5d, 
RD3=0.25d; AD1= 2, AD2=4, AD3=8mm; d=16mm-cutting 
parameter). The parameters such as tool diameter, rake 
angle, etc. were kept constant.  

5. Results and discussion 
 
The in-process sensing technique together with a 
decision-making system are essential for the successful 
operation of TCM. The neural network was capable of 
detecting tool conditions accurately in real time. The 
accuracy of the training data was 98.1%, and the 
accuracy of the testing data was 94.9%. The results of 
the neural network testing are shown in Table 1. 
The output node value of a backpropagation neural 
network was mapped as 0.01 for the normal cutting state 
and 0.99 for the tool breakage. When the neural network 

outputs are over 0.9 (tool breakage), the neural network 
sends the signal “Tool broken” to the PC. When both 
neural network outputs are below 0.9, the neural 
network sends the signal “Tool condition Normal”. The 
reason why values over 0.9 were recognized as the 
abnormal state is that the cutter with severe flank wear 
increases power at frequencies higher than tooth-passing 
frequency, so that he neural network may decide about 
the states incorrectly. To evaluate the effects of the 
threshold value on the performance of the neural 
decision-making system, about 45 experimental tests 
were carried out. From the results the following 
conclusions can be drawn: 
- The optimum threshold value ranges from 0.87 to 

0.92 
- The decision system with a threshold value of 0.9 

gives the smallest tool failure prediction errors. 
Experimental tests have confirmed that this method 
with the 0.9 threshold has monitored tool breakage 
very accurately. Figures. 6a and 6b represent the 
cutting force signals for the normal and the broken 
tool. The developed decision system incorporates 
simple fixed limits for the tool breakage detection. 
The limits are: L1 (collision), L2 (tool fracture), L3 
(worn tool) and L4 (missing tool limit). 
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Figure 6. Thrust force of normal (a) and broken (b) tool in real time monitoring; (c) indicative tool breakage 
force pattern with limits; (d) dynamic limit strategy; (e) indicative tool breakage force pattern – ceramic 

Slika 6. Pasivna (odrivna) sila za normalno (a) i polomljeno stanje alata (b) u realnom vremenu; (c) indikativni uzorak stanja 
sile polomljenog alata s granicama; (d) strategija dinamičke granice; (e) indikativni uzorak stanja sile polomljenog 
alata - keramika   

 
In our current study, we are trying to replace fixed 
limits (Figure 6c) with self-adjusting limits (Figure 6d). 
The two dynamic limits above and below the 
monitoring signal follow the monitor signal 
continuously, for every load level at a limited adoption 
speed. In the case of an extremely fast crossing of one 
of the two dynamic limits, he limits are frozen and total 
breakage is distinguished via the neural network 
decision system. 
This stage of the system is still in the testing phase. The 
detection system demonstrated a very short response 
time to tool conditions. Because tool conditions could 
be monitored in a real time, the worn tool could be 
replaced immediately to prevent damage to the product 
and the machine. 
In this study, the ANFIS system is used to predict the 
flank wear of the tool in an end milling process. A total 
of 150 sets of data were selected from the total of 300 
sets obtained in the end milling experiments for the 
purpose of training in ANFIS. The other 150 sets were 
then used for testing after the training was completed to 
verify the accuracy of the predicted values of flank 
wear. The experimental results indicate that the 
proposed ANFIS model has a high accuracy for 
estimating flank wear with short computational time. 
Figure 7 shows the scatter diagram of the predicted 
values and the measurement values of flank wear of 150 
sets of testing data when triangular membership 
functions are used in ANFIS. It shows that the predicted 
values of flank wear between 0.15 and 0.4 all follow the 
450 line very closely. In other words, the predicted 

values are not far from the experimental measurement 
values. 
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Figure 7. Scatter diagram of measured wB and predicted for 
testing data using triangular membership function 

Slika 7. Dijagram mjerenih i predviđenih wB vrijednosti za 
testirane podatke korištenjem trokutaste funkcije  

Figure 8 compares the predicted values with the 
measurement values after training by ANFIS with the 
triangular membership functions. 

5.1. Quantitative effect of tool flank wear on the 
cutting forces 

 
The study further evaluates the three dynamometer 
cutting force components in order to identify which 
component is the most sensitive to tool wear.  
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Figure 8. Comparison of measured and predicted 
flank wear (v=180 m/min, AD=2 mm, f=0.1 
mm/tooth) 

 
Slika 8. Usporedba izmjerenih i predviđenih vrijednosti 

trošenja stražnje površine alata (v=180 m/min, 
AD=2 mm, f=0.1 mm/zubu) 

 
The study also shows that tool flank wear results in a 
substantial increase in the force components and that the 
maximal thrust force is more sensitive to tool flank 
wear. These findings are used as a primary basis for  
 

developing the tool condition monitoring strategy. 
Figure 9 shows the evolution of the cutting forces, Fx, 
Fy and Fz with the tool flank wear (wB = 0, 0.1, 0.2 and 
0.3mm). It can be noted that the cutting forces increase 
with the tool flank wear.  
This result is in agreement with the experimental results 
found by [17]. It is believed that the increase in the 
force components with wear land size is a result of the 
secondary rubbing or ploughing process between the 
wear land and the workpiece. 
Quantitative comparisons have been carried out based 
on the percentage increase in the “as measured” force 
components for cutting tools with a wear land with 
respect to those of “sharp” tools.   
It is apparent that average deviations in the maximal 
cutting force component are noticeable with about 11.7 
and 21.36% for 0.4 and 0.6mm wear land sizes, 
respectively, as compared to the sharp tool cutting. The 
corresponding thrust force component shows similar 
trends, but with increased average deviations for the two 
wear land sizes (18.2 and 32.6%, respectively), while 
the maximum deviations are as high as 119.4 and 
201.6% for 0.4 and 0.6mm of wear land, respectively. 
This finding implies that the thrust force component is 
more sensitive to flank wear. 
 

 

Figure 9. Effect of tool flank wear on cutting forces (Fx, Fy and Fz) cutting parameters: (a) wB=0mm, (b) wB = 0.1mm, (c) wB 
= 0.2mm and (d) wB = 0.3mm 

Slika 9. Utjecaj trošenja stražnje površine alata na sile rezanja (Fx, Fy i Fz) uz parametre rezanja: (a) wB=0mm, (b) wB = 
0.1mm, (c) wB = 0.2mm and (d) wB = 0.3mm 
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6. Conclusion 
 
A system for monitoring tool condition in real time was 
developed and the following results were obtained 
through verification experiments: (1) The proposed 
monitoring system of a cutting process may be very 
useful because of its parallel processing capability; (2) It 
enables monitoring of the cutting process with high 
reliability; the ANFIS component can estimate the flank 
wear progress very fast and accurately, once the 
maximum cutting forces are known. The following 
conclusions can be drawn from the analysis:  
- Flank wear could efficiently be predicted by using 

cutting conditions and forces as the fuzzy input 
variables in the ANFIS system. 

- The error of the tool wear values predicted by 
ANFIS with the triangular membership function is 
only 4%, reaching accuracy as high as 96%. When 
the trapezoidal membership function was adopted, 
the average error was around 5.4%, with an 
accuracy of 94.6%.  

- The ANFIS system could predict flank wear for 
different cutting conditions with an average 
percentage deviation of 4.7%, or an accuracy of 
95.3% 

- The predicted flank wear was found significantly 
sensitive to the measured maximum cutting forces 
(radial), especially the thrust cutting component 
(Fx). 

A monitoring system using a neural network is able to 
classify various cutting states, such as tool breakage and 
tool wear. In future, different decision making tools, 
such as fuzzy logic, should be applied to see which one 
could obtain a smaller error of detection. This study also 
briefly presents a compensation method in milling in 
order to take into account tool deflection during cutting 
condition optimization or tool path generation. The 
results indicate that surface errors due to tool deflections 
can be reduced by 65-78%. The presented research will 
be useful in many industrial scenarios to achieve quality 
parts without sacrificing productivity. 
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