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Original scientific paper 

This paper describes the complete procedure for mathematical modeling 

of dynamic behavior of a spindle - holder – tool assembly. The developed 

model, in addition to translational, takes into account the rotational 

degrees of freedom, and therefore can be used for calculation and 

prediction of frequency response function of a spindle - tool holder – tool 

assembly. In order to properly describe behavior of a dynamic system 

with correspondent mathematical model, including a spindle assembly, it 

is necessary, in addition to the exact mathematical model, to define 

unknown model parameters, i.e. different types of connections, which are 

very difficult, often impossible, to determine in the experimental way. 

Accordingly, this paper describes the mathematical formulation of the 

Levenberg-Marquardt method which was applied to identify the unknown 

parameters of a spindle assembly. In order to verify the proposed 

mathematical model of the spindle – holder – tool assembly and the 

principles for identification of unknown parameters, the numerical 

analysis of the above systems was carried out. Furthermore, the model 

was experimentally verified on a free-free spindle – holder – tool system. 

 

Modeliranja dinamičkog ponašanja sustava glavno vreteno – držač 

alata – alat 

Izvornoznanstveni članak 

U radu se opisuje kompletna procedura matematičkog modeliranja 

dinamičkog ponašanja sustava glavno vreteno – držač alata – alat. 

Razvijeni model, pored translatornih, uzima u obzir i rotacijske stupnjeve 

slobode, a može poslužiti za proračun i predviđanje funkcije 

frekvencijskog odaziva sustava glavno vreteno – držač alata – alat. 

Ukoliko se želi pravilno procijeniti ponašanje nekog dinamičkog sustava 

opisanog odgovarajućim matematičkim modelom, pa tako i sklopa 

glavnog vretena, neophodno je, pored točnog matematičkog modela, 

definirati i parametre modela koji nisu poznati, tj. različite tipove veza, 

koje je veoma teško, najčešće i nemoguće, odrediti eksperimentalnim 

putem. U tom smislu, u radu se detaljno opisuje matematička formulacija 

Levenberg-Marquardt-ove metode koja je primijenjena za identifikaciju 

nepoznatih parametara veza sklopa glavnog vretena. U cilju verifikacije 

predloženog matematičkog modela, kao i opisanih principa identifikacije 

parametara, izvršena je numerička simulacija sklopa glavnog vretena.  

Nadalje, model je eksperimentalno verificiran na slobodno oslonjenom 

sustavu glavno vreteno – držač alata – alat. 

 

 

1. Introduction 
 

Most of the research related to machine tools is 

connected to the machine tools spindle, since the 

characteristics of the spindle, such as static and dynamic 

behavior, strength, speed, among many others, have a 

significant impact on machine tools performance. 

Emphasized the importance of spindle assembly is 

based on the fact that the essence of the machining 

process is reduced to relative motion of the tool in 

relation to a workpiece, so the accuracy of the spindle 

movement directly reflects the accuracy of the tool 

motion relative to the workpiece, and thus the accuracy 

of the final product. In order to ensure proper 

performance during the operation of machine tools, a 

spindle assembly should meet strict requirements 

concerning the appropriate dynamic stability, which 

generally has a determining influence on the overall 

stability of machine tools. Many research efforts have 

made significant contributions to modeling dynamic 

behavior of a spindle – holder – tool assembly [1-6]. 

The problem of considering dynamic properties of the 

machine tool – spindle – holder – tool system can be  
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Symbols/Oznake 

 

A 
- receptance matrix of the tool 

- matrica odgovora alata 
k 

- stiffness coefficient, Nm-1 

- koeficijent krutosti 

c 
- damping coefficient, kgs-1 

- koeficijent prigušenja 
K 

- stiffness matrix 

- matrica krutosti 

D 
- receptance matrix of the holder 

- matrica odgovora držača alata 
r 

- vector of residuals 

- vektor ostatka 

E 
- Youngs modulus, Nm-2 

- modul elastičnosti 
μ 

- dynamic viscosity, 

- dinamička viskoznost 

f(θ) 
- objective function 

- funkcija cilja 
ρ 

- density, kgm-3 

- gustoća 

G 
- receptance matrix of the global system 

- matrica odgovora globalnog sustava 
ω 

- angular velocity, rad s-1 

- kutna brzina 

H 
- receptance matrix 

- matrica odgovora  Subscripts/Indeksi 

H  
- Hessian approximation 

- aproksimacijska matrica Hessian matrice i 

- internal node on substructure 

- vanjska koordinata podsustava 

i 
- imaginary number 

- imaginarni broj c 

- coupling node on substructure 

- unutarnja koordinata podsustava 

I 
- identity matrix 

- jedinična matrica t 

- tranverse displacement/excitation 

- translatorni odgovor/pobuda 

J 
- Jacobian matrix 

- Jakobijeva matrica r 

- rotational displacement/excitation 

- rotacijski odgovor/pobuda 

 

simplified so that instead of viewing it as a single one, 

the specified system is regarded as composed of three 

separate subsystems as follows: a machine tool – 

spindle, holder and tool. Out of these three subsystems, 

the tool and holder are the most suitable for modeling 

because they are not structurally complex.  On the other 

hand, modeling of dynamic behavior of the machine 

tool – spindle system is much more complicated. 

Modeling of dynamic behavior of the spindle assembly 

is done mainly using finite element method, but it 

requires detailed knowledge of dimensions of a spindle, 

stiffness of bearing as well as damping. When it comes 

to commercial machine tools, these data are unknown or 

are only partially known to the end user. Additionally, 

information on damping of the spindle assembly, 

because of its importance, still remains in the active area 

of research and is usually not available. All this points 

to a scenario where we can consider the modeling of 

structural components that are not complicated: a holder 

and tool, and experimental identification of those 

components which are difficult to model: a machine tool 

– spindle. The most important requirements of spindle 

assembly exploitation are parameters of dynamic 

behavior, so the main aim of this paper is development 

of a mathematical model for modeling of dynamical 

behavior of a spindle - holder – tool assembly. 

 

  

2. Mathematical model of a spindle – 

holder – tool assembly 
 

Since the spindle assembly is one of the most important 

machine tool components, it is necessary to develop an 

appropriate mathematical model that will be the most 

suitable and reliable one for the given physical system 

and in accordance with that, this chapter describes the 

complete procedure for mathematical modeling of the 

spindle - holder - tool assembly.  It is generally accepted 

that an analysis of complex dynamical systems can be 

simplified by breaking a system down to a set of 

interconnected subsystems. In this sense, the problem 

referring to dynamic properties of the spindle system - 

holder - tool system can be simplified so that instead of 

viewing it as single, the specified system is regarded as 

the one composed of three separate subsystems, namely: 

a spindle, holder and tool.  

Components of the spindle – holder – tool assembly 

should be coupled elastically due to flexibility and 

damping introduced by contacts at spindle – holder and 

holder – tool interfaces. Furthermore, we have applied 

the approach [7,8], where part of the holder inside the 

spindle is considered as integrated to the spindle (Figure 

1). Some authors [9] applied somewhat different 

approach, where the spindle and holder are connected 

with a series of parallel springs. However, the approach 

presented in [7,8] provides a more realistic model, 

because only the dynamics due to the masses of these 

subsystems will be included into the model or it will be 
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required to include their stiffness effects with 

distributed springs.  

 

Figure 1. Elastic coupling of the spindle – holder system 

Slika 1. Elastično spajanje glavnog vretena s držačem alata 

Complex stiffness matrix, representing the spindle – 

holder interface dynamics has the following form: 

0

0

VD t VD t

VD

VD r VD r

k i c

k i c
K , (1)  

where:VDkt  – translational stiffness, VDct  – translational 

damping, VDkr – rotational stiffness and VDcr – rotational 

damping at the spindle – holder interface. 

Assuming that response matrices of the subsystem V 

(spindle with bearings) and subsystem D (holder) are 

known, then it is possible by using a method of 

receptive coupling, to obtain the global system response 

matrix VD (spindle – holder) at the holder tip: 

1
1

ii ii ic cc cc VD ciVD D D D V K D . (2) 

Similarly, the part of the tool inside the holder is 

considered rigidly joined to the holder, so the 

receptance matrix of the tool can be coupled with the 

rest of the system, as depicted in Figure 2. 

 

Figure 2. Elastic coupling of the spindle – holder – tool 

system 

Slika 2. Elastično spajanje glavnog vretena – držača alata s 
alatom 

Receptance matrix of the global system VDA (spindle – 

holder – tool) at the tool tip has the following form:  

1
1

ii ii ic cc cc DA ciVDA A A A VD K A . (3)
 

In the equationabove,A is a subsystem of a tool and DAK 

is the complex stiffness of holder – tool interface 

dynamics:  

0

0

DA t DA t

DA

DA r DA r

k i c

k i c
K , (4)

 
where: DAkt  – translational stiffness, DAct  – translational 

damping, DAkr – rotational stiffness and DAcr – rotational 

damping at the holder – tool interface. 

In order to be able to use equation (3) to predict the 

frequency response function of the tool tip, it is 

necessary to know translational and rotational dynamic 

response for each of the components of the spindle - 

holder – tool assembly. Response matrix of the tool and 

holder can be obtained by an analytical method, using 

some of the beam theories or through the FEM analysis. 

Defining spindle response poses a problem because data 

regarding dimensions, material, the manner of bearing, 

the number, and type of bearings are unknown so their 

modeling is critical. On the other hand, it is possible 

only experimentally to measure translational dynamic 

response of the spindle, whereas to complete the 

receptance matrices it is necessary to know rotational 

response. The following section presents methodology 

for identification of rotational dynamic response of the 

spindle – holder – tool assembly. 

2.1. Calculation of rotational degrees of freedom 

 

In many areas of structural dynamics, rotational degrees 

of freedom – RDOF play an important role in 

receptance coupling of subsystems, and therefore they 

have to be considered as independent coordinates. As 

the possibility to measure RDOF is very limited, only 

translational degrees of freedom – TDOF are mostly 

considered. However, in receptance coupling of the 

spindle – holder – tool assembly, information on RDOF 

plays an important role, and their neglect may result in 

an unreliable final model. 

Silva [10] presented a method to determine the 

rotational response of an arbitrary system without their 

direct measurements. It is assumed that a spindle 

assembly (Figure 3) consists of subsystems A and B. 

The objective is receptance coupling of these two 

subsystems with inclusion of RDOF in the synthesis.  

In deriving equations for calculating RDOF, for 

generalization purposes, a label B is used instead of the 

spindle – holder system (VD), while for an additional 

part of the holder that is rigidly connected with it, a 

label A is used. Two subsystems under consideration are 

shown in Figure 3, where AFi, AFc, BFc and Axi, Axc, Bxc 

mark excitation force and translational displacements, 

respectively. WithAMi, AMc, BMc indicate excitation 

torque, while Aθi, Aθc, Bθc represent rotational 

displacements. 
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Figure 3. Substructuring of the spindle assembly 

Slika 3. Podstrukturiranje sklopa glavnog vretena  

As noted, RDOF must be considered for good 

prediction of FRF, and in accordance with these 

responses of the global system G11 and G12 can be 

considered using the following equations: 

11

1

ii ii ic ic

A tt A tr A tt A tr

ii ii ic ic

A rt A rr A rt A rr

cc cc cc cc ci ci

A tt A tr B tt B tr A tt A tr

cc cc cc cc ci ci

A rt A rr B rt B rr A rt A rr

H H H H
G

H H H H

H H H H H H

H H H H H H

, (5)

 

12

1

ic ic ic ic

A tt A tr A tt A tr

ic ic ic ic

A rt A rr A rt A rr

cc cc cc cc cc cc

A tt A tr B tt B tr A tt A tr

cc cc cc cc cc cc

A rt A rr B rt B rr A rt A rr

H H H H
G

H H H H

H H H H H H

H H H H H H

. (6) 

 

The objective is receptance coupling of these two 

subsystems with inclusion of RDOF in synthesis. The 

assumption is that a subsystem A can be modeled using 

the finite element software, and thus determine the 

complete FRF response matrix with translational and 

rotational dynamic responses, while the subsystem B 

cannot be modeled, but only experimentally measured. 

Thus, with FEM simulation of the subsystem A, 

dynamic responses AHtt, AHtr, AHrt, AHrrcan be obtained 

as to complete the following FRF matrices: AHii, AHic, 

AHci and AHcc. As regards the subsystem B, only 

translational response BHtt can be experimentally 

measured in a reliable way, because responses BHtr and 

BHrr are related to RDOF and, practically, it is 

impossible to measure them. The methodology 

presented in [10] defines the rotational responses of 

only one FRF, whereas in this case there are two FRF to 

be determined as follows: BHtr=BHrt and BHrr. In this 

sense, the equation presented in this paper is extended 

by the system of two equations with two unknowns. 

After appropriate mathematical transformations, with 

rotational responses of the subsystem A using a finite 

element method, it is possible to derive expressions for 

the rotational dynamic responses of the subsystem B 

using the MATLAB program system and its symbolic 

nonlinear analytical toolbox. According to [11] derived 

expressions for the rotational dynamic responses of the 

subsystem B are: 

cc cc

B rt rt A rtH B H ,  (7) 

cc cc

B rr rr A rrH B H ,  (8) 

where: 

rt

kfv kug kag kfb fdb cbg

ad ud cb cv
B , (9) 

2 2 2

2

2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2

1
2

2 2

2 2

2

rr kf v kagf bf d
ad ud cb cv

kugf ec g decf bkf bfcg v d efu

d efa g ka decga decgu g ku bdgfa

g kua bec g bdgfu bdefc bkugf b kf

bkagf bg cu b fcg b f d bg ca

B

, (10) 

where: ii

A tta H
, 

ic

A ttb H
,

ci

A ttc H
,

cc

A ttd H
, 

ic

A rte H
, 

ci

A rtf H
, 

cc

A rtg H
, 

cc cc

A tt B ttk H H
, 

11

ttu G
, 

12

ttv G
. 

Equations (7) and (8) define calculated RDOF responses 

of the subsystem B, or in this case the spindle – holder 

system (VD). To get response at the tip of the spindle, it 

is necessary to use inverse receptance coupling for 

substracting a part of the holder from the spindle – 

holder system. Returning to the notation, in which tags 

VD, V and D denote spindle – holder subsystems, the 

spindle and the holder, respectively, desired response is 

obtained at the top of the spindle: 

1 1

cc ci ii ii ic cc VDV D D VD D D K . (11) 

3. Identification of connection parameters 

for the spindle – holder – tool assembly 
 

Identification of the parameters has an increasing 

application in many areas of engineering, where 

mathematical models are used to describe natural 

phenomena and experiments that are performed to 

verify these models. The advantages of mathematical 

models include optimization of design and production, 

as well as the possibility to analyze and understand 

system behavior subject to conditions that cannot be 

easily obtained in the course of an experiment. 

Mathematical models very often contain a number of 

parameters that cannot be measured directly or 

calculated using the established laws of nature, and 

therefore must be identified from experimental data. 
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The basic concept is to determine these parameters in a 

way that the differences between the experimental data 

and the values predicted by the model are minimal. 

In most cases, synthesis of dynamic systems, as well as 

the spindle assembly, is considered with the rigid 

connection between subsystems, which is a 

simplification of the problem, because most of the 

relationship is characterized by elasticity and damping 

effects. In the synthesis of dynamical systems modeling 

of contact parameters plays a critical role, because of 

significant impact on response of the global system. 

Accordingly, neglecting the effects contact parameters 

between subsystems of the spindle assembly can make 

prediction of the entire system unreliable and 

inaccurate. Therefore, the accuracy of prediction of the 

dynamic response of the global system is largely 

conditioned by a lack of a reliable description of 

interactions between subsystems, i.e. types of 

connections and their behavior. For these reasons, it is 

important that the mathematical model of the spindle 

assembly incorporating the effects of connection 

between the subsystems.  

3.1. The mathematical formulation 

 

The assumption is that the mathematical model under 

consideration can be described by a system of 

differential equations: 

0 0, , , ,t y tDy f y θ θ y θ , (12) 

where: θ – vector of unknownparameters, y– 

statevectordepending on tand θ , f –generally, 

nonlinearfunctions, D –nxnconstantdiagonalmatrix. 

Applying the notation [12] eachmeasurementcan be 

characterizedbythreeparameters: 

, , , 1, 2,...,i i ic t y i m , (13) 

where: ci – component of the state vectory that has been 

measured, ti – the time of measurement, iy  – measured 

value, m – total number of measurements. The solution 

of the model equations (12), for the ci-th component at 

time ti, which corresponds to the i-th measurement is 

denoted by ,
ic iy t θ . 

The general approach to the problem of identifying 

parameters is to minimize the differences between the 

results obtained by measuring and by the mathematical 

model, i.e.: 

,
ii c i ir y t yθ θ .  (14) 

Appropriate method of identification depends on the 

assumptions and knowledge about the errors of 

measurement. One of the most widely used method of 

identification is the method of least squares. In its 

simplest form, the parameters are identified such that 

the sum of squared residuals is minimal, i.e. the 

objective function is given as a sum of squared 

differences:  

2

1

1

2

m

i

i

f rθ θ    (15)

 
Differences between the results obtained in 

experimental tests and using the mathematical model 

can be represented as a vector r defined by: 

1 2

T

mr r rr θ θ θ θ , (16)
 

which is a basis to obtain an expression for the objective 

function of the form: 

21 1

2 2

T
f θ r θ r θ r θ . (17)

 

3.2. Optimization procedure 

 

Identification of the parameters can be formulated as 

follows: 

* argmin fθ θ ,  (18)
 

where: θ – vector of parameters, f – the objective 

function, θ* – vector that minimizes the objective 

function.  

If f is twice continuously differentiable, then the 

following Taylor expansion for f applies: 

2

3

1

2

T Tf f f f

O

θ h θ θ h h θ h

h

, (19) 

where the gradient g and the Hessian matrix H are 

defined as: 

1 2

T

n

f f f
fg θ , (20) 

2 2 2

2

1 2 11

2 2 2

2 2

2 1 22

2 2 2

2

1 2

n

n

n n n

f f f

f f f

f

f f f

θ θ θ

θ θ θ

H θ

θ θ θ

. (21) 

 

For the objective function the gradient and Hessian 

matrix are: 

1

m
T

i i

i

f r rg θ θ θ J θ r θ , (22) 

2

1

m
T

i i

i

r rH J θ J θ θ θ , (23) 

where J(θ) denotes the Jacobian matrix: 
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1 1 1

1 2

2 2 2

1 2

1 2

n

n

m m m

n

r r r

r r r

r r r

r r r

r r r

r r r

θ θ θ

θ θ θ

J θ

θ θ θ

. (24)

 
It is evident that the first part of the Hessian matrix 

consists of first order partial derivatives. This 

observation leads to an approximation forming the basis 

for the Gauss-Newton and Levenberg-Marquardt 

algorithms. Calculation of the first and second order 

derivatives of the objective function usually constitutes 

the most difficult part of the work required during the 

optimization. This is especially pronounced in the case 

of dynamical systems, where each gradient evaluation is 

a complex procedure requiring the solution of a set of 

differential equations. Therefore, in the context of 

parameter identification of dynamical systems, the 

incentive use of alternative methods that exploits the 

special structure in the least squares problem, is very 

important. 

Levenberg-Marquardt algorithm is based on the 

assumption that the error r(θ) around the point θ
(k)

 may, 

in a satisfactory manner, approximate well by the first 

two members of Taylor's order:  

* * * *k k k
r θ r θ r θ r θ θ θ . (25) 

Then, instead of minimizing the objective function, its 

approximation is minimized: 

* *1

2

Tf θ r θ r θ .  (26)

 
Equating previous equation to zero then, the following 

expression which minimizes the function (26) is 

obtained: 

*k k k kT T k
J θ J θ θ θ J θ r θ 0 . (27)

 

Substituting (22) in (27) and adding learning coefficient 

α
(k)

, with θ = θ
(k+1)

, the following equations is obtained: 

1
1

*

k k k k k kT T

k

θ θ J θ J θ J θ

r θ

. (28) 

In the literature, the expression (28) is calledGauss-

Newtonalgorithm for α
(k)

 = 1, that is, Gauss-

Newtondampedalgorithm for variableα
(k)

< 1,where the 

Hessianmatrixis replacedby a matrix: 

k k kT
H θ J θ J θ ,  (29) 

Levenberg [13] introduced the approximate matrix of 

the Hessian matrix: 

k k kT
H θ J θ J θ I . (30) 

By replacing the Hessian matrix with Levenberg matrix 

(30), the final expression for calculation of the 

parameters is obtained: 

1 1 *k k k k kT
θ θ H θ J θ r θ . (31)

 

Marquardt [14] is developed most commonly used 

method of determining the coefficient μ, so the 

algorithm in the literature often called the Levenberg-

Marquardt algorithm. Marquardt proposes the following 

coefficient values: μ0 = 0,001, μd = 0,1 and μi = 10. 

Based on the presented mathematical model, a program 

for identification of unknown parameters was written in 

the MATLAB software package. 

4. Numerical simulation and verification 

of the proposed model 
 

Geometry of the spindle – holder – tool assembly used 

for numerical simulation is shown in Figure 4, while 

dimensions of the subsystems, bearings and interface 

dynamics properties are given in [15]. The material is 

steel with Young’s modulus E = 2,1e
11

 N/m
2
, mass 

density ρ = 7800 kg/m
3
 and Poisson’s ratio μ = 0,3. The 

assembly analysis was carried out using finite element 

software ANSYS. Beam element BEAM188, which is 

based on Timoshenko beam theory, was used for 

modeling of the assembly components. In addition to 

geometric characteristics, transverse oscillations in the 

xy plane are under consideration in this case. Additional 

restrictions are given through the stiffness of bearings. 

Finite elements with spring and damping (COMBIN14) 

are used to represent dynamics of bearings and the 

spindle – holder and holder – tool interfaces.   

 

Figure 4. The spindle – holder – tool assembly for numerical 

simulation 

Slika 4. Sustav glavno vreteno – držač alata – alat korišten 

u numeričkoj simulaciji 

All responses AHtt, AHtr, AHrt and AHrrof the subsystem A 

are obtained through FEM simulation, while the 

response of subsystem B cc

B ttH is„measured”(more 

accurately simulated). In a similar way, 11

ttG and 12

ttG are 

„measured” in the global system. When the responses 

above were collected, RDOF response of the spindle –

holder system ii

rtVD and ii

rrVD  can be calculated using 

equations (7) and (8). In order to verify accuracy of the 

proposed method for identifying RDOF, Figure 5 shows 
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the calculated rotational responses of the spindle–holder 

system with simulated responses.  

 

 

Figure 5. Comparsion between substructured and simulated 

responses
ii

rtVD  (above) and 
ii

rrVD  (bellow) 

Slika 5. Usporedba računskih i simuliranih odziva
ii

rtVD

(gore) i 
ii

rrVD (dolje) 

As it can be seen in Figure 5, the simulated and sub 

structured FRF are identical.  Error between simulated 

and sub structured values ranges up to a maximum of 

10
-5

 (Figure 6). There are no significant differences 

between the predicted and obtained responses of FEM 

simulation, which lead us to conclude that the proposed 

method is accurate and can therefore be used to identify 

RDOF.  

 

Figure 6. Error of calculated response
ii

rrVD  

Slika 6. Pogreška računskog odziva
ii

rrVD  

To create conditions that will lead to a successful 

experiment, it is desirable to analyze the possibility of 

identifying unknown parameters of the given system 

prior to the measuring of FRF of the spindle assembly. 

For this reason, described principles of identification of 

unknown parameters are tested on the numerical spindle 

– holder – tool system, as to identify unknown contact 

parameters within the specified system. First, the 

„unknown” contact parameters between the spindle and 

holder are identified (Table 1). In order to ensure 

convergence of the algorithm and reduce duration of the 

procedure to minimize the objective function, it is very 

important to determine the upper and lower bounds for 

the unknown variable during the process of 

identification. In this sense, the fact that damping does 

not affect the value of frequency of oscillation, but only 

the size of the amplitude are used. So, parameters which 

are first identified are translational and rotational 

stiffness, which are the order of 10
6
 – 10

7
. As initial 

values are set: VDkt = 4,1·10
7
 N/m, VDkr = 2,1·10

6
 

Nm/rad, and bottom (dd) and upper bound (dg) have the 

following values: dd = 5·10
5
, dg = 5·10

8
. The following 

parameter values were the result of 36 iterations: VDkt = 

6,45644·10
7
 N/m and VDkr= 3,73931·10

6
 Nm/rad. After 

that, the identified values and the initial values of VDct = 

100 Ns/m and VDcr = 30 Nms/rad for the translational 

and rotational damping, were used for damping 

identification, with dd = 1, dg = 700. After 15 iterations, 

the following values were obtained: VDct = 43,4 Ns/m 

and VDcr = 3,7 Nms/rad. Finally, identification of all 

parameters was performed in the end, with initial values 

for stiffness and damping identified in the previous 

steps. Values of identified parameters are shown in 

Table 1, together with errors of identification. Figure 7 

shows the comparison of FRF at the tip of the tool 

holder with the identified and real values. 
 

Table 1. Identified contact parameters of the spindle – 

holder system 

Tablica 1. Identificirani parametri veze sustava glavno 

vreteno – držač alata 

 
Exact value / 

Točna 

vrijednost 

Identified 

value / 

Identificirana 

vrijednost 

Relative error 

/ 

Relativna 

pogreška [%] 

VDkt, Nm 6,5·107 6,47984·107 0,310 

VDkr, Nm/rad 3,5·106 3,73930·106 6,837 

VDct, Ns/m 50 44,88 10,24 

VDcr, 

Nms/rad 
7 3,80 45,714 
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Figure 7. FRF of the spindle – holder system with identified 

contact parameters 

Slika 7. FRF sustava glavno vreteno – držač alata s 
identificiranim parametrima veze 

As shown in Figure 7, the accuracy of the identified 

parameters is more than satisfactory. Somewhat larger 

errors are encountered in the identification of the 

rotational stiffness, but this parameter has no significant 

impact in the synthesis of dynamic subsystems. The 

most dominant factor in the synthesis of dynamic 

subsystems VDkt is translational stiffness, and this value 

is most accurately identified.  

Similar procedures were performed for identification 

of„unknown” contact parameters between the tool and 

holder, i.e. spindle – holder – tool system, its respective 

values are shown in Table 2. 

 
Table 2. Identified contact parameters of the spindle – 

holder –tool system  

Tablica 2. Identificirani parametri veze sustava glavno 

vreteno – držač alata – alat 

 Exact value / 

Točna 

vrijednost 

Identified 

value / 

Identificirana 

vrijednost 

Relative error 

/ 

Relativna 

pogreška [%] 

VDkt, Nm 2,1·107 2,10254·107 0,121 

VDkr, Nm/rad 1,4·106 1,26983·106 9,298 

VDct, Ns/m 15 12,24 18,4 

VDcr, 

Nms/rad 
3 2,11 29,667 

 

Figure 8.shows the FRF of tool tip with the identified 

and realvalues of the contact parameters of the spindle – 

holder – tool system. 

 

Figure 8. FRF of the spindle – holder – tool system with 

identified contact parameters 

Slika 8. FRF sustava glavno vreteno – držač alata – alat s 
identificiranim parametrima veze  

5. Experimental tests 
 

In this chapter, an evaluation of the method described 

above will be done, combining experimental and FEM 

data. The spindle – holder – tool assembly shown in 

Figure 9 is suspended to obtain free‐free end conditions 

for performing an impact test. In order to verify the 

presented mathematical model of the spindle – holder – 

tool system, FRF is measured or obtained with FEM 

simulation for each of these subsystems. First, FRF of 

the spindle (with and without holder part in its cone) is 

measured, and then FRF of the spindle – holder system 

is measured. Finally, measurement of the spindle – 

holder – tool assembly was performed. Modeling 

dynamics of the tool subsystem was performed by using 

finite element software ANSYS.   

 

Figure 9. Measuring chain for the identification of dynamic 

behavior of the spindle - tool holder – tool system  

Slika 9. Mjerni lanac za identifikaciju dinamičkog 

ponašanja sustava glavno vreteno – držač alata – 
alat 
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According to the presented mathematical model of the 

spindle –holder – tool assembly, accurate knowledge of 

complex stiffness of spindle – holder and holder – tool 

interface dynamics is necessary for accurate prediction 

of the dynamic response. First, using Levenberg-

Marquardt method, for complex stiffness matrix of the 

spindle – holder dynamics the following parameters 

were identified: VDkt = 2,971·10
8
 N/m, VDkr = 5,811·10

6
 

Nm/rad, VDct = 135 Ns/m, VDcr = 35 Nms/rad. Figure 10 

shows the result of receptance coupling of spindle and 

holder with identified spindle – holder interface 

dynamics. It can be concluded that the accuracy of 

identified parameters is satisfactory. 

 

Figure 10. Comparison between measured FRF and FRF with 

identified spindle – holder interface dynamics 

Slika 10. Usporedba izmjerene FRF i FRF s identificiranim 

parametrima veze između glavnog vretena i držača 

alata  

Afterwards, the identification of holder – tool interface 

dynamics was carried out. For a system combination 

including the spindle – holder – tool with a diameter of 

tool D = 20 mm and tool overhang L = 40 mm, the 

following parameters were identified: DAkt = 3,337·10
7
 

N/m, DAkr = 1,571·10
6
 Nm/rad, DAct = 63 Ns/m, DAcr = 10 

Nms/rad. Figure 11 shows the receptance coupling 

results of the spindle – holder system with tool. And in 

this case, it can be concluded that the accuracy of 

identified holder – tool interface dynamics is 

satisfactory. 

 

Figure 11. Comparison between measured FRF and the FRF 

with the identified holder – tool interface 

dynamics   

Slika 11. Usporedba izmjerene FRF i FRF s identificiranim 

parametrima veze između držača alata i alata  

6. CONCLUSION 
 

The research of static and dynamic behavior of the 

spindle assembly poses a constant challenge for many 

researchers and designers of modern machine tools. One 

of the most important requirements in exploitation of 

the spindle assembly is its dynamic behavior, so the 

main aim of this study was to develop a mathematical 

model for modeling dynamic behavior of the spindle – 

holder – tool assembly that would take into 

consideration the RDOF. Based on the presented 

mathematical model of the spindle – holder – tool 

system for accurate prediction of the response system, it 

is necessary to know the exact stiffness matrix between 

the spindle and holder, and between the holder and tool. 

The matrix elements are stiffness and damping between 

these subsystems, and as the specified values cannot be 

experimentally measured, they need to be defined in 

other way. For this reason, special attention was paid to 

identification of the contact parameters between 

subsystems of the spindle assembly. 

In order to verify the proposed mathematical model, 

numerical simulations and experimental tests of the 

system spindle –holder – tool were carried out. 

Numerical simulation confirmed that the proposed 

method for determining the rotational response is 

correct, since the difference between the results 

obtained by the proposed model and the results obtained 

by ANSYS is of the order maximum 10
-5

. Furthermore, 

analysis of the identification results on unknown 

parameters showed that the dominant factor in the 

subsystems synthesis of the spindle assembly is 

translational stiffness, and this value was most 

accurately identified. It was observed that slightly larger 

deviations occur during identification of rotational 

parameters, but they do not have a significant impact on 

the synthesis of dynamic subsystems. The proposed 

mathematical model was experimentally verified on a 

free-free spindle – holder – tool system. Based on the 

results with identified rotational responses and contact 

parameters of the spindle – holder – tool system, 

satisfactory accuracy of the identified parameters was 

concluded.  
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