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In this paper artificial neural network (ANN) models were developed to 

predict the mechanical properties and machinability of Cu–Sn–Pb–Si–Ni–

Fe–Zn–Al alloys on the basis of the chemical composition (wt%) of 

alloying elements. The multi-layer perceptron architecture was used for 

developing ANN models. Two ANN training approaches, namely, the 

classical gradient descent back propagation (BP) and genetic algorithm 

(GA), were applied and statistically compared. The statistical methods of 

root mean square error (RMSE), absolute fraction of variance (r2) and 

mean absolute percent error (MAPE) were used for evaluating the 

performance of the developed ANN models. The results showed that 

training with GA improved the prediction performance of ANN models. 

By taking the full potential of GA through fine tuning of the GA 

parameters, the effectiveness of the approach could be further improved 

allowing for a wide application in the area of material engineering for the 

prediction of mechanical properties. 

 

 
Ocjena karakteristika ANN-BP i ANN-GA modela u predviđanju 

mehaničkih svojstava i obradivosti ljevačkih legura bakra 

Izvornoznanstveni članak 

U ovom radu su razvijeni modeli umjetnih neuronskih mreža (UNM) za 

predviđanje mehaničkih svojstava i obradivost Cu-Sn-Pb-Si-Ni-Fe-Zn-Al 

legura na temelju kemijskog sastava (%) legirajućih elemenata. Za razvoj 

UNM modela korištena je arhitektura višeslojnog perceptrona. Dva 

pristupa u treniranju UNM, odnosno gradijentno opadajući algoritam 

širenja unatrag (BP) i genetski algoritam (GA), su primijenjena i statistički 

uspoređena. Za ocjenu karakteristika razvijenih modela UNM korištene su 

statističke metode korijen srednje kvadratne pogreške (RMSE), apsolutna 

frakcija varijance (r2) i prosječna apsolutna postotna pogreška (MAPE). 

Dobiveni rezultati pokazuju poboljšanje karakteristika predviđanja UNM 

modela primjenom GA. Koristeći u potpunosti potencijal GA finim 

podešavanjem GA parametara, učinkovitost pristupa se može dodatno 

poboljšati što omogućuje široku primjenu u području inženjerstva 

materijala za predviđanje mehaničkih svojstava. 

 

 

1. Introduction 
 

The investigation the effects of alloying elements on 

mechanical properties of metals has been the subject of 

considerable research. The prediction of mechanical 

properties of engineering alloys is important for 

scientists and engineers and it can save not only cost but 

also time [1]. Due to the complex interconnections 

among chemical compositions and materials properties, 

conventional mathematical models have limited range 

of use [1,2]. Artificial neural networks (ANNs), on the 

other hand, have been proven to be able to model very 

complex relationships among a large number of 

variables. Recent papers [1-4] confirm the validity and 

effectiveness of using ANNs for developing predictive 

models in material science and engineering. ANNs were 

successfully applied for prediction of mechanical 

properties of magnesium alloys [1], structural steels 

after normalization process [2], constructional steels 

after heat treatment [3], Cu–Sn–Pb–Zn–Ni cast alloys 

[4]. Jančiková et al. [3] and Ozerdem and Kolukisa [4] 

demonstrated ANNs effectiveness in modeling multi 

input/output relationships. Dobrzański and Krol [1] 

showed that the prediction accuracy of the ANN model 

could be improved by refining pre-processing variables 
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Symbols/Oznake
 

 

b 
- biases of hidden neurons 

- pragovi skrivenih neurona 
RMSE 

- root mean square error 

- korijen srednje kvadratne pogreške 

bok 
- bias of output neuron 

- prag izlaznog neurona 
v 

- input to hidden neurons weights 

- težine između ulaznih i skrivenih neurona 

d 
- the desired output 

- željeni izlaz 
w 

- hidden to output neuron weights 

- težine između skrivenih i izlaznog 

neurona 

E 
- global error 

- ukupna pogreška 
x 

- input variables 

- ulazne varijable 

f 
- transfer function in hidden layer 

- prijenosna funkcija u skrivenom sloju  
xmax 

- maximal value of variable 

- maksimalna vrijednost varijable 

g 
- transfer function in output layer 

- prijenosna funkcija u izlaznom sloju 
xmin 

- minimal value of variable 

- minimalna vrijednost varijable 

h 
- the input value of hidden neuron 

- vrijednost ulaza skrivenog neurona 
xn 

- variable normalized value 

- normalizirana vrednost varijable 

H 
- the output value of hidden neuron 

- vrijednost izlaza skrivenog neurona 
ŷ  

- neural network output 

- izlaz neuronske mreže  

MAPE 
- mean absolute percent error 

- prosječna apsolutna postotna pogreška 
  

N 
- number of data points 

- broj podataka 
 Greek letters/Grčka slova 

Ntr 

- number of training data 

- broj podataka za učenje 
α 

- learning coefficient 

- koeficijent učenja 

R 
- correlation coefficient 

- koeficijent korelacije 
µ 

- momentum 

- moment 

r2 
- absolute fraction of variance 

- apsolutna frakcija varijance 
  

 

and by using a more reasonable structure of hidden 

layers. 

The mechanical properties of cast alloys mainly depend 

on the weight fractions of alloying elements, applied 

heat treatments, microstructures, morphologies of the 

various phases constituting [4]. Similarly, it has been 

widely reported that the machinability of a selected 

material, besides cutting conditions, depends on the 

chemical composition of the workpiece material. An 

approach based on genetic programming for the 

prediction of machinability of steels can be found in [5]. 

The aim of this paper is to develop ANN models for 

predicting mechanical properties, namely, tensile 

strength and yield strength, and machinability of Cu–

Sn–Pb–Si–Ni–Fe–Zn–Al cast copper alloys on the basis 

of the chemical composition (wt%) of alloying 

elements. Two approaches were employed and 

statistically evaluated for ANN training. The first one 

uses a gradient descent with momentum back-

propagation (BP) algorithm for ANN training, which is 

one of the most used training algorithm for ANNs 

because it is stable and easy to implement. Although 

this algorithm has proved efficient, its convergence 

tends to be very slow, and there is a possibility to get 

trapped in some undesired local minimum [6]. 

Therefore, in the second approach, real coded genetic 

algorithm (GA) was used for ANN training.  

2. Artificial neural networks 
 

Artificial neural networks (ANNs) are massive parallel 

systems made up of numerous simple processing units 

called neurons that are linked with weighted 

connections. ANNs are characterized by their 

architecture, weight vectors and biases, and activation 

functions that are used in hidden and output layers. 

Among various types of ANNs, multi-layer perceptron 

(MLP) with BP training algorithm, is the most 

commonly used. The BP MLP is designed to operate as 

a multilayer fully-connected feed-forward network, with 

a particular BP training algorithm for supervised 

learning. 

The feed-forward ANN is composed of many 

interconnected neurons which are grouped into input, 

hidden, and output layer (Figure 1). The number of 

input neurons of the ANN is equal to the number of 

independent variables, while the number of output 

neurons is equal to the number of functions being 

approximated by the ANN. The number of hidden 

layers and the number of neurons in each of them is not 

defined in advance. The number of hidden neurons can 
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change during the ANN training until the optimum 

topology is defined, namely, the one that produces the 

best performances of ANN. 

 

Figure 1. Three-layer feed forward ANN 

Slika 1. Troslojna umjetna neuronska mreža 

 

Each neuron in the ANN is interconnected with all 

neurons in the preceding and following layers. The 

input neurons are used to introduce the data in the ANN. 

Through neurons interconnections each input data is 

processed with weights to be used in the hidden layer. 

The j-th hidden neuron receives an activation signal 

which is the weighted sum from the neurons in input 

layer: 

m,...,j;bxvh j

n

i

ijij 1
1

 , (1) 

where vji is the weight between j-th hidden neuron and i-

th neuron in input layer, and bj is the bias (threshold) of 

the j-th hidden neuron. This sum is then passed through 

an activation (transfer) function (f) to produce the 

neurons output (Hj). Transfer function in hidden layer is 

most commonly sigmoid function whose general form 

is: 

m,...,j;
e

hfH
jhjj 1

1

1
 , (2) 

Finally, the output neuron receives the following signals 

from the hidden neurons: 

ko

m

j

jj bHwŷ
1

,  (3) 

where wj is the weight between j-th hidden neuron and 

output neuron, and bok is the bias of output neuron. 

These activation signals can be transformed again, using 

the sigmoid transfer function to give the outputs of the 

ANN. However, for prediction, it is sufficient to use 

linear activation function (g) for output neuron. The 

ANN output is then as in equation (3) which are 

predicted values of the ANN. 

Once the ANN architecture is developed, the ANN must 

be trained in order to learn the relationships between 

inputs and output(s). Essentially, training is the process 

of determining weights of connections and bias adjoined 

to every neuron which are initially assigned to random 

continuous (real) values. During the process of training 

the aim is to reduce global error given by: 

2

2

1
ii ŷdE ,  (4) 

where di is i-th desired output (target). To minimize this 

error, an iterative error reduction of the gradient-descent 

method with momentum is often used because it is 

stable and easy to implement. An alternative to classical 

training algorithms are GA where the problem of 

determining weights and biases is formulated as an 

optimization problem. 

Prior to training process, all the weights and biases are 

initialized to small random numbers (e.g., between -0.5 

and 0.5 or between -1 and 1). Weights initialization 

according to Nguyen-Widrow method is also one of the 

most popular methods. 

In order to improve the converge speed of training 

process, the input and output data is usually normalized 

(scaled). The normalization range depends largely on 

the activation functions used. Normalizing to [-1, 1] 

range for the hyperbolic tangent transfer function and to 

[0, 1] for the sigmoid transfer function is often applied. 

3. ANN predictive models for mechanical 

properties and machinability 

3.1. Data collection 

 

Chemical compositions, mechanical properties and 

machinability ratings of cast copper alloys were 

collected from were collected from the referential 

literature [8-10]. Cast copper alloys are classified into 

alloy groups according to chemical composition [9]. In 

the present study, 63 data were collected for Cu–Sn–

Pb–Si–Ni–Fe–Zn–Al cast alloys. 

Although the properties of copper materials are mainly 

determined by the composition of the alloy, categorizing 

materials machinability according to their composition 

is unsuitable, because alloys in the same alloy group 

often exhibit different machinability properties [10]. In 

order to provide practitioners with a basic overview of 

the machinability of the copper alloys, a machinability 

rating was proposed in the literature [8, 10]. The 

machinability rating of copper alloys goes from 20 (hard 

to machine) to 100 (excellent machinability), with step 

10. According to [10], copper and copper alloys are 

classified into three main machinability groups: 

 Machinability group I, with 70 < machinability 

rating < 100, 

 Machinability group II, with 40 < machinability 

rating < 60, 

 Machinability group III, with 20 < machinability 

rating < 30. 

 (          ) 

(   ) 



172                                 M. MADIĆ et. al., Evaluation of ANN-BP and ANN-GA Models...                                Strojarstvo 54 (2) 169-174 (2012)  

3.2. ANN training using BP 

 

The ANN models were aimed to predict the mechanical 

properties (yield and tensile strength) and machinability. 

To this aim, three ANN models were developed: 

 Model 1 – which relates Cu–Sn–Pb–Si–Ni–Fe–

Zn–Al (wt%) content and tensile strength, 

 Model 2 – which relates Cu–Sn–Pb–Si–Ni–Fe–

Zn–Al (wt%) content and yield strength, 

 Model 3 – which relates Cu–Sn–Pb–Si–Ni–Fe–

Zn–Al (wt%) content and machinability rating. 

In developing ANN models, the available data set is 

divided into two sets, one to be used for training of the 

ANN model, and the remaining to be used to evaluate 

the generalization capability of the ANN model. 

Therefore, 51 data patterns were used for ANN model 

training, and 12 data patterns for ANN model testing. 

The selection of training and testing data was done by 

random method.  

The upper limit of number of hidden neurons was 

determined knowing that the number of weights does 

not exceed the number of data for training. Though the 

ANN can still be trained, the case is mathematically 

undetermined [11]. Considering the available data for 

training, the number of hidden neurons was set to four. 

Linear transfer function and hyperbolic tangent transfer 

function were used in the output and hidden layer, 

respectively. The entire data was normalized between 

0.1 and 0.9 using the following equation: 

n,...,i;.
xx

xx
.x

minmax

minin

i 11080  , (5) 

where 
n

ix is the normalized value for the variable, and 

xmin and xmax are the minimum and maximum of each 

variable xi. Normalizing to this range also allows the 

representation of an alloy that does not contain a given 

chemical element.  

Prior to ANN training, the initial values of weights were 

set according to Nguyen-Widrow method. The 

MATLAB software package was used for training and 

testing ANN models. Gradient descent with momentum 

BP algorithm was used for ANN training with a zero as 

a target error value. In order to ensure stable training, 

small value of learning coefficient (α=0.01) [7] was 

used in combination with momentum value of µ=0.9. 

The ANN training was stopped when no further 

improvement in ANN performance was achieved and by 

considering the well known bias-variance trade-off in 

model development [12]. 

3.3. ANN training using GA 

 

GAs are probabilistic heuristic algorithms based on 

biological genetics and natural selection which is 

primarily Darwin’s theory of survival of the fittest [13]. 

The solution of an optimization problem by GAs starts 

with a set of chromosomes (strings, individuals), 

encoding a potential solution in a given problem 

(search) space. GAs are well suited techniques that can 

find the global optimum solution by searching the space 

with a high probability [14]. By considering several 

points in the search space simultaneously, GA has a 

reduced chance of converging to local optimum. Further 

details of GA can be found elsewhere [13, 14]. 

The GA training of ANN can be formulated as an 

optimization problem aimed at determining weights (V, 

W) and biases (B, bok). Since the 8-4-1 ANN 

architecture for all ANN models was used (m=8, n=4, 

Figure 1), the optimization problem was reduced to 

determining 41 ANN parameter values, that is: 

,  (6) 

 

To determine the unknown values in equation (6), the 

code for the 8-4-1 ANN model was created using 

MATLAB and the fitness (objective) function to be 

minimized was formulated as: 

trN

i

ii ŷdE
1

,  (7) 

where Ntr is the number of training data. Using the 

MATLAB optimization toolbox and by taking the 

default parameter settings for GA operators, the weights 

and biases for all three ANN models were determined. 

Figure 2 shows the plot functions of the best fitness 

obtained for the ANN models. 
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c) 

Figure 2. Objective function values with the number of 

generations for: a) Model 1, b) Model 2, and c) 
Model 3 

Slika 2. Vrijednosti funkcije cilja (prikladnosti) s brojem 

generacija za: a) Model 1, b) Model 2, i c) Model 

3 

 

After an iterative calculus, GA provided the (near) 

optimal values for weights (V, W) and biases (B, bok) for 

all three ANN models. With these values, the ANN 

models were able to calculate yield strength, tensile 

strength and machinability of the Cu–Sn–Pb–Si–Ni–Fe–

Zn–Al cast copper alloys. 

3.4. Evaluation of the results 

 

In order to evaluate the performance of both training 

approaches, statistical methods of root mean square 

error (RMSE), absolute fraction of variance (r
2
) and 

mean absolute percent error (MAPE) were used on both 

training and testing data. These values are 

mathematically defined by the following equation: 

N

i

ii ŷd
N

RMSE
1

21
,  (8) 

,  (9) 

%
d

ŷd

N
MAPE

N

i i

ii 100
1

1

, (10) 

where N is the number of data points.  

Table 1 shows the comparison results between ANN-BP 

and ANN-GA training approaches in terms of these 

three statistical measures. The statistical RMSE, r
2
 and 

MAPE values indicate that the predication of the ANN-

BP models appears satisfactory. On the other hand, the 

GA based approach gave better results than the BP 

method for training the ANN models. The GA based 

approach was proved able to improve the ANN 

modeling performance. 

The comparisons of the predicted yield strength, tensile 

strength and machinability against the target values 

using GA trained ANN model are shown in Figure 3. 

 
Table 1. Evaluation of the ANN models performance 

Tablica 1. Ocjena karakteristika modela UNM 

 ANN-BP ANN-GA 

 

training 

data / 

podaci 

za 

učenje 

testing 

data / 

podaci 

za 

testiranje 

training 

data / 

podaci 

za 

učenje 

testing 

data / 

podaci za 

testiranje 

Model 1 

RMSE 40.42 46.93 25.39 30.30 

r
2
 0.987 0.984 0.995 0.993 

MAPE 10.44 10.15 6.43 7.04 

Model 2 

RMSE 24.89 34.28 22.03 31.50 

r
2
 0.977 0.968 0.982 0.954 

MAPE 12.78 13.21 9.61 12.95 

Model 3 

RMSE 8.41 16.23 9.46 9.25 

r
2
 0.980 0.929 0.975 0.977 

MAPE 16.16 26.63 15.28 18.73 

 

 

a) 

 

b) 

 (          ) 

(           ) 

N

i

i

N

i

ii
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 (          ) 

(    ) 
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c) 

Figure 3. Comparison of target and predicted for entire data 

Slika 3. Usporedba ciljanih i predviđenih vrijednosti na 

svim podacima 

 

The results from Fig. 3 and Table 1 demonstrate that 

training ANN using GA is suitable for developing ANN 

prediction models for mechanical properties and 

machinability. 

4. Conclusion 
 

In this paper, ANN approach for predicting the 

mechanical properties (namely, yield strength and 

tensile strength) and machinability as a function of the 

chemical composition of Cu–Sn–Pb–Si–Ni–Fe–Zn–Al 

cast alloys was presented. The use of gradient descent 

with momentum BP and genetic algorithm for ANN 

training was employed. Although BP is by far the most 

popular method, the results showed that the GA is 

superior to BP for ANN training. The prediction 

accuracy of the ANN models was found to be quite 

satisfactory in terms of RMSE, r
2
, and MAPE statistical 

values. Obtained results confirm the adequacy of using 

GA for ANN training for the application in the area of 

material engineering because of its ease-of-use and 

accurate results. The effectiveness of the approach could 

be increased by exploiting the full potential of GA 

through fine tuning of the GA parameters. 
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