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Abstract. Let R be a prime ring of characteristic different from 2,
U the Utumi quotient ring of R, C the extended centroid of R, F and G

non-zero generalized derivations of R. If the composition (FG) acts as a
Lie derivation on R, then (FG) is a derivation of R and one of the following

holds:

1. there exist α ∈ C and a ∈ U such that F (x) = [a, x] and G(x) =
αx, for all x ∈ R;

2. G is an usual derivation of R and there exists α ∈ C such that
F (x) = αx, for all x ∈ R;

3. there exist α, β ∈ C and a derivation h of R such that F (x) =
αx+h(x), G(x) = βx, for all x ∈ R, and αβ+h(β) = 0. Moreover
in this case h is not an inner derivation of R;

4. there exist a′, c′ ∈ U such that F (x) = a′x, G(x) = c′x, for all
x ∈ R, with a′c′ = 0;

5. there exist b′, q′ ∈ U such that F (x) = xb′, G(x) = xq′, for all
x ∈ R, with q′b′ = 0;

6. there exist c′, q′ ∈ U , η, γ ∈ C such that F (x) = η(xq′ − c′x)+ γx,
G(x) = c′x+ xq′, for all x ∈ R, with γc′ − ηc′2 = −γq′ − ηq′2.

1. Introduction

Throughout this paper, R always denotes a prime ring with center Z(R),
U the Utumi quotient ring of R and C = Z(U) the center of U . We refer the
reader to [1] for the definitions and the related properties of these objects.

Let F : R −→ R be an additive mapping of R into itself. It is said
to be a derivation of R if F (xy) = F (x)y + xF (y), for all x, y ∈ R. If
F (xy) = F (x)y + xd(y), for all x, y ∈ R and d a derivation of R, then the
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mapping F is called a generalized derivation on R. Obviously any derivation
of R is a generalized derivation of R.

A typical example of a generalized derivation is a map of the form x 7→
ax + xb, where a, b are fixed elements in R; such generalized derivations are
called inner.

The well known Posner’s first theorem states that if δ and d are two
non-zero derivations of R, then the composition (dδ) cannot be a non-zero
derivation of R if char(R) 6= 2 ([13], Theorem 1). An analogue of Posner’s
result for Lie derivations was proved by Lanski in [10]. More precisely Lanski
showed that if δ and d are two non-zero derivations of R and L is a Lie ideal
of R, then (dδ) cannot be a Lie derivation of L into R unless char(R) = 2 and
either R satisfies s4(x1, ..., x4), the standard identity of degree 4, or d = αδ,
for α ∈ C.

In [9] Hvala initiated the algebraic study of generalized derivations.
In particular, generalized derivations whose product is again a generalized
derivation was characterized. More precisely Hvala (Theorem 1 in [9]) proved
that:

Theorem 1.1. Let R be a prime ring of characteristic different from 2,
U the Utumi quotient ring of R, C the extended centroid of R, F and G non-
zero generalized derivations of R. If the composition FG acts as a generalized
derivation on R, then one of the following holds:

1. there exists α ∈ C such that F (x) = αx, for all x ∈ R;
2. there exists α ∈ C such that G(x) = αx, for all x ∈ R;
3. there exist a, b ∈ U such that F (x) = ax, G(x) = bx, for all x ∈ R;
4. there exist a, b ∈ U such that F (x) = xa, G(x) = xb, for all x ∈ R;
5. there exist a, b ∈ U , α, β ∈ C such that F (x) = ax + xb, G(x) =

αx+ β(ax− xb), for all x ∈ R.

Results concerning generalized derivations can also be found in [3], [7],
[15] and [16]. Moreover the results in [12] and [6] evidence the relationship
between the behaviour of generalized derivations in a prime (or semiprime)
ring and the structure of the ring. In light of the above cited Lanski’s result,
one might wonder if it is possible that the composition of two generalized
derivations with special forms may act like a Lie derivation on R. Under this
assumption, we give a description of the forms of the involved generalized
derivations F and G. The statement of our result is the following:

Theorem 1.2. Let R be a prime ring of characteristic different from 2, U
the Utumi quotient ring of R, C the extended centroid of R, F and G non-zero
generalized derivations of R. If the composition (FG) acts as a Lie derivation
on R, then (FG) is a derivation of R and one of the following holds:

1. there exist α ∈ C and a ∈ U such that F (x) = [a, x] and G(x) = αx,
for all x ∈ R;
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2. G is an usual derivation of R and there exists α ∈ C such that F (x) =
αx, for all x ∈ R;

3. there exist α, β ∈ C and a derivation h of R such that F (x) = αx +
h(x), G(x) = βx, for all x ∈ R, and αβ + h(β) = 0. Moreover in this
case h is not an inner derivation of R;

4. there exist a′, c′ ∈ U such that F (x) = a′x, G(x) = c′x, for all x ∈ R,
with a′c′ = 0;

5. there exist b′, q′ ∈ U such that F (x) = xb′, G(x) = xq′, for all x ∈ R,
with q′b′ = 0;

6. there exist c′, q′ ∈ U , η, γ ∈ C such that F (x) = η(xq′ − c′x) + γx,
G(x) = c′x+ xq′, for all x ∈ R, with γc′ − ηc′2 = −γq′ − ηq′2.

2. Preliminaries

In all the paper we will make implicit use of some well known results. We
would like to dedicate this first Section to state and prove them. We begin
with:

Remark 2.1. We would like to point out that in [11] Lee proves that every
generalized derivation can be uniquely extended to a generalized derivation
of U and thus all generalized derivations of R will be implicitly assumed to
be defined on the whole U . In particular Lee proves the following result:

Theorem 3 in [11]. Every generalized derivation g on a dense right ideal
of R can be uniquely extended to U and assumes the form g(x) = ax + d(x),
for some a ∈ U and a derivation d on U .

Remark 2.2. Let R be a non-commutative prime ring and F : R → R a
generalized derivation of R. If F acts as a Lie derivation of R, then F is an
usual derivation of R. In particular if F is an inner generalized derivation of
R acting as a Lie derivation on R, then F is an inner derivation of R.

Proof. Since F acts as a Lie derivation, we have that R satisfies
F ([x1, x2]) − [F (x1), x2] − [x1, F (x2)], and using Remark 2.1, by easy
calculations it follows that R satisfies the generalized identity

(2.1) x1ax2 − x2ax1.

In particular, if replace x1 with x2t, for any t ∈ R, we have x2tax2−x2ax2t =
0, that is x2[t, ax2] = 0. Again pick t = rz, for any r, z ∈ R. Thus 0 =
x2[rz, ax2] = x2r[z, ax2] and by the primeness of R it follows [z, ax2] = 0.
This implies ax2 ∈ Z(R) (and this holds for all x2 ∈ R). Of course we
may suppose there exists at least one y0 ∈ R such that 0 6= ay0 ∈ Z(R)
(if not a = 0 and we are done). Hence for all t ∈ R, [a(ay0), t] = 0 which
implies [a, t]ay0 = 0. Since ay0 is a central element in R, we get [a, t] = 0
that is a ∈ Z(R). Finally by (2.1), R satisfies a[x1, x2] and since R is not
commutative we conclude that a = 0.
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Remark 2.3. Let R be a non-commutative prime ring of characteristic
different from 2, D1 and D2 be derivations of R such that D1(x)D2(x) = 0
for all X ∈ R. Then either D1 = 0 or D2 = 0.

Proof. It is a reduced version of Theorem 3 in [14].

Remark 2.4. Let R be a non-commutative prime ring and a, b ∈ R. If
a[r1, r2] + [r1, r2]b = 0 for all r1, r2 ∈ R then a = −b ∈ Z(R).

Proof. Since If a[r1, r2] + [r1, r2]b = 0 for all r1, r2 ∈ R, we have in
particular a[x, yx] + [x, yx]b = 0 for all x, y ∈ R and expanding this we get
[x, y][x, b] = 0. Thus b ∈ Z(R), by Remark 2.3. Hence (a + b)[r1, r2] = 0 for
all r1, r2 ∈ R, and since R is prime it follows a+ b = 0.

We also premit the following (Proposition 2.5 in [5]):

Theorem 2.5. Let R be a prime ring with char(R) 6= 2. Assume that
R does not embed in M2(L), the algebra of 2 × 2 matrices over a field L. If
there exist a, b, c, q, v, w ∈ R such that a(cx+ xq) + (cx+ xq)b = vx+ xw for
all x ∈ [R,R], then one of the following holds:

1. c and q are central elements of R;
2. a and b are central elements of R;
3. b, q and w are central elements of R;
4. a, c and v are central elements of R;
5. there exists α ∈ C such that a+ αc and b− αq are central elements of

R.

As a reduction we also have

Proposition 2.6. Let R be a prime ring with char(R) 6= 2. Assume
that R does not embed in M2(L), the algebra of 2× 2 matrices over a field L.
Let F,G be non-zero additive mapping on R defined as F (x) = ax + xb and
G(x) = cx + xq, for all x ∈ R and fixed suitable a, b, c, q elements of U . If
there exists p ∈ U such that F (G(x)) = px − xp for all x ∈ [R,R], then one
of the following holds:

1. c and q are central elements of R, and (c+ q)a = −(c+ q)b = p; that
is F (x) = [a, x] and G(x) = (c+ q)x;

2. a and b are central elements of R, and (a+ b)c = −(a+ b)q = p; that
is F (x) = (a+ b)x and G(x) = [c, x];

3. b, q and p are central elements of R, and (a + b)(c + q) = 0; that is
F (x) = (a+ b)x and G(x) = (c+ q)x;

4. a, c and p are central elements of R, and (c + q)(a + b) = 0; that is
F (x) = x(a+ b) and G(x) = x(c+ q);

5. there exist α, η ∈ C such that F (x) = α(xq − cx) + ηx, for all x ∈ R,
with ηc− αc2 = −ηq − αq2.
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Proof. Conclusions 1-4 follows directly from 1-4 in Theorem 2.5. Here
we would like just to show how conclusion 5 follows by an easy computation.
In fact, from conclusion (5) in Theorem 2.5 we have that there exists λ, µ ∈ C
such that a = λ−αc and b = µ+αq. Since a(cx+xq)+ (cx+xq)b = px−xp
for all x ∈ [R,R], we have that R satisfies

(λc− αc2 + µc)[x1, x2] + [x1, x2](λq + µq + αq2) = p[x1, x2]− [x1, x2]p

which implies (λ+ µ)c− αc2 = −(λ+ µ)q− αq2. If one denotes η = λ+ µ, it
follows ηc− αc2 = −ηq − αq2 and F (x) = ax+ xb = α(xq − cx) + ηx, for all
x ∈ R.

3. The Results.

In light of Remark 2.1, we recall that every generalized derivation H of
R can be uniquely extended to U and assumes the form H(x) = ax + d(x),
for some a ∈ U and a derivation d on U Thus we can write F (x) = ux+h(x),
G(x) = vx + g(x), for suitable u, v ∈ U and h, g derivations of U . Usually h
and g are called derivation associated respectively with F and G. Firstly we
analyse the case when h and g are not simultaneously inner derivations of U :

Theorem 3.1. Let R be a prime ring of characteristic different from 2, U
the Utumi quotient ring of R, C the extended centroid of R, F and G non-zero
generalized derivations of R. Assume that the derivations h and g associated
respectively with F and G are not simultaneously inner. If the composition
(FG) acts as a Lie derivation on R, then (FG) is a derivation of R and one
of the following holds:

1. there exist α ∈ C and a ∈ U such that F (x) = [a, x] and G(x) = αx,
for all x ∈ R;

2. G is an usual derivation of R and there exists α ∈ C such that F (x) =
αx, for all x ∈ R;

3. there exist α, β ∈ C and a derivation h of R such that F (x) = αx +
h(x), G(x) = βx, for all x ∈ R, and αβ + h(β) = 0. Moreover in this
case h is not an inner derivation of R;

4. there exist a′, c′ ∈ U such that F (x) = a′x, G(x) = c′x, for all x ∈ R,
with a′c′ = 0;

5. there exist b′, q′ ∈ U such that F (x) = xb′, G(x) = xq′, for all x ∈ R,
with q′b′ = 0;

6. there exist c′, q′ ∈ U , η, γ ∈ C such that F (x) = η(xq′ − c′x) + γx,
G(x) = c′x+ xq′, for all x ∈ R, with γc′ − ηc′2 = −γq′ − ηq′2.

Proof. Since FG acts as a Lie derivation on R, then R satisfies

(3.1) (FG)[x1, x2] = [(FG)(x1), x2] + [x1, (FG)(x2)].
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As we said above F (x) = ux + h(x), G(x) = vx + g(x), for suitable u, v ∈ U
and h, g derivations of U . Therefore R satisfies the differential identity

(3.2)

u (v[x1, x2] + [g(x1), x2] + [x1, g(x2)]) + h(v)[x1, x2]

+ v[h(x1), x2] + v[x1, h(x2)] + [(hg)(x1), x2]

+ [g(x1), h(x2)] + [h(x1), g(x2)] + [x1, (hg)(x2)]

− [uvx1 + ug(x1) + h(v)x1 + vh(x1) + (hg)(x1), x2]

− [x1, uvx2 + ug(x2) + h(v)x2 + vh(x2) + (hg)(x2)].

First consider the case when {h, g} is a set of linearly C-independent
derivations modulo X-inner derivations (i.e., modulo the space of inner de-
rivations of R). In light of Kharchenko’s theory (see [8]) and starting from
(3.2), R satisfies:

u (v[x1, x2] + [z1, x2] + [x1, z2]) + h(v)[x1, x2] + v[t1, x2]

+ v[x1, t2] + [u1, x2] + [z1, t2] + [z1, t2] + [x1, u2]

− [uvx1 + uz1 + h(v)x1 + vt1 + u1, x2]

− [x1, uvx2 + uz2 + h(v)x2 + vt2 + u2]

and in particular R satisfies the blended component [z1, t2] + [t1, z2] which
implies the contradiction that R is commutative.

Hence we suppose that {h, g} is linearly C-dependent modulo X-inner
derivations. Then here we may assume that there exist α, β ∈ C such that

αh+ βg = ad(q)

the inner derivation induced by some element q ∈ U , moreover at least one of
{h, g} is not an inner derivation.

We divide the proof into three cases:

The case α = 0. For α = 0, we have β 6= 0 and g = ad(c), the inner
derivation induced by c = β−1q. It follows that h is not an inner derivation
of U . By (3.2) and Kharchenko’s result in [8], U satisfies

(3.3)

u (v[x1, x2] + [[c, x1], x2] + [x1, [c, x2]])

+ h(v)[x1, x2] + v[z1, x2] + v[x1, z2] +
[

[h(c), x1] + [c, z1], x2

]

+
[

[c, x1], z2

]

+
[

z1, [c, x2]
]

+
[

x1, [h(c), x2] + [c, z2]
]

−
[

abx1 + u[c, x1] + h(v)x1 + vz1 + [h(c), x1] + [c, z1], x2

]

−
[

x1, abx2 + u[c, x2] + h(v)x2 + vz2 + [h(c), x2] + [c, z2]
]

and in particular U satisfies the component

(3.4)
[

z1, [c, x2]
]

− [v, x2]z1
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and for z1 = [c, x2] we have [v, x2][c, x2] = 0 in U . Therefore by Remark 2.3
either v ∈ C or c ∈ C. If v ∈ C, by (3.4) U satisfies [z1, [c, x2]] and this
implies c ∈ C (for example see the well known result of Posner in [13]). On
the other hand if we assume c ∈ C, again by (3.4), [v, x2]z1 = 0 in U and we
get v ∈ C, since U is prime.

Therefore in any case both v ∈ C and c ∈ C, which implies G(x) = vx for
all x ∈ R. Hence (FG)(x) = u(vx) + h(vx) = (uv + h(v))x + (vh)(x), where
vh : U → U is the derivation of U defined as (vh)(x) = v · h(x). Therefore
(FG) is a generalized derivation. Since by hypothesis (FG) acts as a Lie
derivation, then by Remark 2.2, we have uv + h(v) = 0 and (FG) = (vh),
with v ∈ C. Moreover notice that in this case also u ∈ C.

The case β = 0. In this case we have α 6= 0 and h(x) = [p, x] for all
x ∈ U , where p = α−1q. Moreover g is not an inner derivation. By (3.2) and
Kharchenko’s result in [8], U satisfies
(3.5)
u (v[x1, x2] + [t1, x2] + [x1, t2])

+ h(v)[x1, x2] + v[[p, x1], x2] + v[x1, [p, x2]] + [[p, t1], x2] + [t1, [p, x2]]

−
[

[p, x1], t2] + [x1, [p, t2]]− [uvx1 + ut1 + [p, v]x1 + v[p, x1] + [p, t1], x2

]

−
[

x1, uvx2 + ut2 + [p, v]x2 + v[p, x2] + [p, t2]
]

and in particular U satisfies

(3.6)
[

t1, [p, x2]
]

− [u, x2]t1

and for t1 = [p, x2] we have [u, x2][p, x2] = 0 in U . As above this implies both
u ∈ C and p ∈ C. Therefore F (x) = αx with α = u ∈ C and (FG)(x) =
(αG)(x) = αvx+ (αg)(x), for all x ∈ R. Since (FG) acts as a Lie derivation,
by Remark 2.2 it follows αv = 0, that is v = 0, because we may assume α 6= 0
(if not F = 0). Hence G is an usual derivation of U .

The case α 6= 0 and β 6= 0. In this case we may write g(x) = [c, x] +
γh(x), with c = β−1q and γ = −αβ−1 6= 0. Notice that if h is inner then also
g is inner, and analogously in case g is inner then also h is inner. Therefore
we may assume both h and g are not inner derivation of U . This means in
particular that c ∈ C and g = γh. Again by (3.2) and since g and h are both
outer derivations of U , we have that U satisfies

(3.7)

u (v[x1, x2] + γ[t1, x2] + γ[x1, t2])

+ h(v)[x1, x2] + v[t1, x2] + b[x1, t2] + γ[z1, x2] + 2γ[t1, t2]

+ γ[x1, z2]−
[

uvx1 + γut1 + h(v)x1 + bt1 + γz1, x2

]

−
[

x1, uvx2 + γut2 + h(v)x2 + vt2 + γz2

]
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and in particular U satisfies 2γ[t1, t2], which gives the contradiction that U is
commutative.

Remark 3.2. In light of previous Theorem, in all that follows we’ll always
assume that h and g are inner derivations of U , that is there exist p1, p2
elements of U such that h(x) = [p1, x] and g(x) = [p2, x] for all x ∈ R. Thus
F (x) = (u + p1)x − xp1 and G(x) = (v + p2)x − xp2, for all x ∈ R. For sake
of clearness we denote (u + p1) = a, −p1 = b, (v + p2) = c and −p2 = q, so
that F (x) = ax+ xb and G(x) = cx+ xq.

Now we consider the case when R does not satisfy the standard identity
of degree 4, that is dimC(RC) > 4:

Theorem 3.3. Let R be a prime ring of characteristic different from 2,
U the Utumi quotient ring of R, C the extended centroid of R, F and G
non-zero inner generalized derivations of R defined as F (x) = ax + xb and
G(x) = cx+xq, for suitable a, b, c, q,∈ U . Assume that dimC(RC) > 4. If the
composition (FG) acts as a Lie derivation on R, then (FG) is a derivation
of R and one of the following holds:

1. there exist α ∈ C and a ∈ U such that F (x) = [a, x] and G(x) = αx,
for all x ∈ R;

2. G is an inner usual derivation of R and there exists α ∈ C such that
F (x) = αx, for all x ∈ R;

3. there exist a′, c′ ∈ U such that F (x) = a′x, G(x) = c′x, for all x ∈ R,
with a′c′ = 0;

4. there exist b′, q′ ∈ U such that F (x) = xb′, G(x) = xq′, for all x ∈ R,
with q′b′ = 0;

5. there exist c′, q′ ∈ U , η, γ ∈ C such that F (x) = η(xq′ − c′x) + γx,
G(x) = c′x+ xq′, for all x ∈ R, with γc′ − ηc′2 = −γq′ − ηq′2.

Proof. Here we denote H(x) = FG(x), for all x ∈ R. By the main
hypothesis we have that H acts as a Lie derivation of R. Since char(R) 6= 2
and dimC(RC) > 4, by Theorem 3 in [2], there exist a derivation D from R
into its central closure RC and f an additive mapping of R into C sending
commutators in zero, such that H = D + f . We also recall that derivations,
Lie derivations and generalized derivations of R can be extended to RC in a
natural way, for instance as pointed out in [1]. Therefore H([x, y]) = D([x, y])
for all x, y ∈ R. In this situation the result follows from Proposition 2.6.

Thanks to the results contained in Theorem 3.1 and Theorem 3.3, we have
to prove our main result just in the case F (x) = ax+ xb and G(x) = cx+ xq
and dimC(RC) ≤ 4. In particular this last means that U ∼= M2(C), the
ring of all 2 × 2 matrices over C. In other words R satisfies the generalized
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polynomial identity

(3.8)

a(c[x1, x2] + [x1, x2]q) + (c[x1, x2] + [x1, x2]q)b

− [a(cx1 + x1q) + (cx1 + x1q)b, x2]

− [x1, a(cx2 + x2q) + (cx2 + x2q)b]

for a, b, c, q ∈ U . Since U and R satisfy the same generalized polynomial
identities with coefficients in U (see [4]), then all r1, r2 ∈ R. If q ∈ Z(R),
then (3.8) is an identity also for U . Thus, without loss of generality we may
replace R by U and consider the case R ∼= M2(C).

We dedicate the last Section of the paper to analyse this case.

4. The 2× 2 Matrix Case.

Although we need to prove our result only in the caseR ∼= M2(C), the ring
of 2× 2 matrices over C, we would like to point out that the same techniques
and results also hold in the case R ∼= Mm(C), for m ≥ 3.

Firstly we fix the following:

Remark 4.1. Since both F and G are inner generalized derivations,
namely F (x) = ax + xb and G(x) = cx + xq for all x ∈ R, then we have
that

a(c[r1, r2] + [r1, r2]q) + (c[r1, r2] + [r1, r2]q)b

− [a(cr1 + r1q) + (cr1 + r1q)b, r2]− [r1, a(cr2 + r2q) + (cr2 + r2q)b] = 0

for all r1, r2 ∈ R. Moreover, for any inner automorphism ϕ of Mm(K), we
have that

ϕ(a)(ϕ(c)[r1 , r2] + [r1, r2]ϕ(q)) + (ϕ(c)[r1, r2] + [r1, r2]ϕ(q))ϕ(b)

− [ϕ(a)(ϕ(c)r1 + r1ϕ(q)) + (ϕ(c)r1 + r1ϕ(q))ϕ(b), r2]

− [r1, ϕ(a)(ϕ(c)r2 + r2ϕ(q)) + (ϕ(c)r2 + r2ϕ(q))ϕ(b)] = 0

for all r1, r2 ∈ R. Notice that, for any authomorphism ϕ of R, a matrix X is
central iff ϕ(X) is central. Hence, to prove our result, we may replace a, b, c, q
respectively with ϕ(a), ϕ(b), ϕ(c), ϕ(q).

In order to prove the main Theorem, we also need the following lemma:

Lemma 4.2. Let F be a infinite field and n ≥ 2. If A1, . . . , Ak are not
scalar matrices in Mn(F ) then there exists some invertible matrix Q ∈ Mn(F )
such that each matrix QA1Q

−1, . . . , QAkQ
−1 has all non-zero entries (for the

proof see [5, Lemma 1.5])

We begin with:

Lemma 4.3. Let K be an infinite field, let R = M2(K) be the algebra
of 2 × 2 matrices over K, Z(R) the center of R. Assume that there exist
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a, b, c, q ∈ R such that

a(c[r1, r2] + [r1, r2]q) + (c[r1, r2] + [r1, r2]q)b

− [a(cr1 + r1q) + (cr1 + r1q)b, r2]− [r1, a(cr2 + r2q) + (cr2 + r2q)b] = 0

for all r1, r2 ∈ R. If q ∈ Z(R), then one of the following holds:

1. c is a central matrix and c+ q = 0;
2. c is a central matrix and a = −b;
3. b is a central matrix and (a+ b)(c+ q) = 0.

Proof. Since q ∈ Z(R), by the assumption we have that

(4.1)
a(c+ q)[r1, r2] + (c+ q)[r1, r2]b− [a(c+ q)r1 + (c+ q)r1b, r2]

− [r1, a(c+ q)r2 + (c+ q)r2b] = 0

for all r1, r2 ∈ R. Since in case c + q = 0 we are done, we assume 0 6= c+ q.
Notice that if 0 6= c+ q ∈ Z(R), then c ∈ Z(R) and by (4.1) it follows that

a[r1, r2] + [r1, r2]b− [ar1 + r1b, r2]− [r1, ar2 + r2b] = 0

for all r1, r2 ∈ R. Thus by Remark 2.2 we get a = −b and the proof is finished.
Analogously, in case b ∈ Z(R), again by (4.1)

(a+ b)(c+ q)[r1, r2]− [(a+ b)(c+ q)r1, r2]− [r1, (a+ b)(c+ q)r2] = 0

for all r1, r2 ∈ R. In particular for r1 = eii, r2 = eij with i 6= j, we have
eij(a+b)(c+q)eii−eii(a+b)(c+q)eij = 0, which implies easily (a+b)(c+q) = 0,
and we are done again. Therefore we may assume c+ q and b both non-scalar
matrices. We will prove that in this case we get a contradiction.

By Remark 4.1 and Lemma 4.2, we can assume that c+ q and b have all
non-zero entries, say c + q =

∑

kl tklekl and b =
∑

kl bklekl, for 0 6= tkl, 0 6=
bkl ∈ K.

Starting again from (4.1), for any i 6= j and r1 = eii, r2 = eij , we get

(c+ q)eijb− (c+ q)eiibeij + eija(c+ q)eii + eij(c+ q)eiib

− eiia(c+ q)eij − eii(c+ q)eijb+ (c+ q)eijbeii = 0

moreover left multiplying by ejj and right multiplying by eii it follows
2tjibji = 0, a contradiction.

Analogously one may prove the following (we omit the proof for brevity):

Lemma 4.4. Let K be an infinite field, let R = M2(K) be the algebra
of 2 × 2 matrices over K, Z(R) the center of R. Assume that there exist
a, b, c, q ∈ R such that

a(c[r1, r2] + [r1, r2]q) + (c[r1, r2] + [r1, r2]q)b

− [a(cr1 + r1q) + (cr1 + r1q)b, r2]− [r1, a(cr2 + r2q) + (cr2 + r2q)b] = 0

for all r1, r2 ∈ R. If c ∈ Z(R), then one of the following holds:

1. q is a central matrix and c+ q = 0;
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2. q is a central matrix and a = −b;
3. a is a central matrix and (c+ q)(a+ b) = 0.

Lemma 4.5. Let K be an infinite field, let R = M2(K) be the algebra
of 2 × 2 matrices over K, Z(R) the center of R. Assume that there exist
a, b, c, q ∈ R such that

a(c[r1, r2] + [r1, r2]q) + (c[r1, r2] + [r1, r2]q)b

− [a(cr1 + r1q) + (cr1 + r1q)b, r2]− [r1, a(cr2 + r2q) + (cr2 + r2q)b] = 0

for all r1, r2 ∈ R. If b ∈ Z(R), then one of the following holds:

1. a is a central matrix and a+ b = 0;
2. a is a central matrix and c = −q;
3. q is a central matrix and (a+ b)(c+ q) = 0.

Proof. By Lemma 4.3 we may suppose q /∈ Z(R), moreover here we
assume a + b is a non-scalar matrix and prove that a contradiction follows.
Denote q =

∑

kl qklekl and a+ b =
∑

kl tklekl for qkl, tkl ∈ K.
By Remark 4.1 and Lemma 4.2, we may assume that q and a have all

non-zero entries. Since b ∈ Z(R), we have that

(4.2)
(a+ b)(c[r1, r2] + [r1, r2]q)− [(a+ b)(cr1 + r1q), r2]

− [r1, (a+ b)(cr2 + r2q)] = 0

for all r1, r2 ∈ R. Once again for any i 6= j and r1 = eii, r2 = eij , we get

(a+ b)eijq − (a+ b)eiiqeij + eij(a+ b)ceii + eij(a+ b)eiiq

− eii(a+ b)ceij − eii(a+ b)eijq + (a+ b)eijqeii = 0.

As in previous Lemma, left multiplying by ejj and right multiplying by eii it
follows 2tjiqji = 0, a contradiction.

Therefore a + b must be a central matrix, that is a, b ∈ Z(R). In case
a+ b = 0 we are done, in the other case by (4.2) we have

(c[r1, r2] + [r1, r2]q)− [(cr1 + r1q), r2]− [r1, (cr2 + r2q)] = 0

for all r1, r2 ∈ R and by Remark 2.2 it follows c = −q

Analogously:

Lemma 4.6. Let K be an infinite field, let R = M2(K) be the algebra
of 2 × 2 matrices over K, Z(R) the center of R. Assume that there exist
a, b, c, q ∈ R such that

a(c[r1, r2] + [r1, r2]q) + (c[r1, r2] + [r1, r2]q)b

− [a(cr1 + r1q) + (cr1 + r1q)b, r2]− [r1, a(cr2 + r2q) + (cr2 + r2q)b] = 0

for all r1, r2 ∈ R. If a ∈ Z(R), then one of the following holds:

1. b is a central matrix and a+ b = 0;
2. b is a central matrix and c = −q;
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3. c is a central matrix and (c+ q)(a+ b) = 0.

Lemma 4.7. Let K be an infinite field, let R = M2(K) be the algebra
of 2 × 2 matrices over K, Z(R) the center of R. Assume that there exist
a, b, c, q ∈ R such that

a(c[r1, r2] + [r1, r2]q) + (c[r1, r2] + [r1, r2]q)b

− [a(cr1 + r1q) + (cr1 + r1q)b, r2]− [r1, a(cr2 + r2q) + (cr2 + r2q)b] = 0

for all r1, r2 ∈ R. Denote a =
∑

kl aklekl, b =
∑

kl bklekl, c =
∑

kl cklekl,
q =

∑

kl qklekl, for suitable akl, bkl, ckl and qkl elements of K. If there are
i 6= j such that qji 6= 0, cji 6= 0 and bji = 0, then ari = 0 and brk = 0 for all
r 6= i and k 6= r (that is the only non-zero off-diagonal elements of b fall in
the i-th row).

Proof. By our hypothesis, for r1 = eii and r2 = eij we have:

X =a(ceij + eijq) + (ceij + eijq)b

− [a(ceii + eiiq) + (ceii + eiiq)b, eij ]

− [eii, a(ceij + eijq) + (ceij + eijq)b] = 0

and in particular, for all r 6= i, the (r, i)-entry of the matrix X is 2ariqji = 0,
that is ari = 0. Notice that since m = 2, the proof of Lemma is complete.
Thus in the following we assume m ≥ 3. Moreover, for all s 6= i, j, the (j, s)-
entry of X is ajiqjs + cjibjs = 0, and in light of previous argument, it follows
bjs = 0. Analogously for for r1 = eii and r2 = eit, with t 6= i, j, we also have

Y =a(ceit + eitq) + (ceit + eitq)b

− [a(ceii + eiiq) + (ceii + eiiq)b, eit]

− [eii, a(ceit + eitq) + (ceit + eitq)b] = 0.

Notice that the (j, i)-entry of Y is 2cjibti = 0 and the (j, k)-one is cjibtk = 0,
for all k 6= i, t. These imply that bti = 0 and btk = 0. From all the previous
equalities it follows that btr = 0, for all t 6= i and for all r 6= t.

Lemma 4.8. Let K be an infinite field, let R = M2(K) be the algebra
of 2 × 2 matrices over K, Z(R) the center of R. Assume that there exist
a, b, c, q ∈ R such that

(∗)

a(c[r1, r2] + [r1, r2]q) + (c[r1, r2] + [r1, r2]q)b

− [a(cr1 + r1q) + (cr1 + r1q)b, r2]

− [r1, a(cr2 + r2q) + (cr2 + r2q)b] = 0

for all r1, r2 ∈ R. Denote

a =
∑

kl

aklekl, b =
∑

kl

bklekl, c =
∑

kl

cklekl, q =
∑

kl

qklekl,
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for suitable akl, bkl, ckl and qkl elements of K. If there are i 6= j such that
bji = 0 and qrs 6= 0, crs 6= 0 for all r 6= s, then b is central in R.

Proof. Without loss of generality we may assume b21 = 0. In case a is a
central matrix and since c is not central, by Lemma 4.6 we have the required
conclusion b ∈ Z(R). Therefore we assume that a /∈ Z(R) and prove that a
contradiction follows. Firstly we notice that by Lemma 4.7 we have a21 = 0.

In (*) consider r1 = e22 and r2 = e12, thus we have

X = − ae12q − ce12b− ae22qe12 − ce22be12 − e22qbe12 + e12ace22

+ e12ae22q + e12ce22b− e22ace12 − e22ae12q − e22ce12b

+ ae12qe22 + ce12be22 + e12qbe22 = 0

in particular the (1, 1)-entry of X is q21(a11 − a22) = 0, that is

(4.3) a11 = a22

and in light of this the (1, 2)-entry of X is

(4.4) (a11 + b22)(c22 + q22) + q21(b12 − a12) = 0.

Choose now r1 = e11 and r2 = e12, thus by (*) we have

Y = ae12q + ce12b− ae11qe12 − ce11be12 − e11qbe12 + e12ace11

+ e12ae11q + e12ce11b − e11ace12 − e11ae12q − e11ce12b

+ ae12qe11 + ce12be11 + e12qbe11 = 0.

The (2, 2)-entry of the matrix Y is c21(b22 − b11) = 0, that is

(4.5) b11 = b22

and by (4.4) we have

(4.6) (a11 + b11)(c22 + q22) + q21(b12 − a12) = 0.

Finally in (*) let r1 = e12 and r2 = e21, then by calculations we have that

T = ae11q − ae22q + ce11b− ce22b− ae12qe21 − ce12be21 − e12qbe21

− e21ace12 + e21ae12q + e21ce12b− e12ace21 − e12ae21q − e12ce21b

+ ae21qe12 + ce21be12 + e21qbe12 = 0.

In particular the (1, 1)-entry of T is

(4.7) (a11 + b11)(c22 + q22) + q21(b12 + a12) = 0.

Hence, by comparing (4.6) with (4.7), we get q21a12 = 0, that is a12 = 0 and
the contradiction a ∈ Z(R) follows.

For sake of clearness, if we replace the element ac with u and the element
qb with p, we may write the previous Lemma as follows.
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Remark 4.9. Let K be an infinite field, let R = M2(K) be the algebra
of 2 × 2 matrices over K, Z(R) the center of R. Assume that there exist
a, b, c, q, p, u ∈ R such that

u[r1, r2] + a[r1, r2]q + c[r1, r2]b+ [r1, r2]p

− [ur1 + ar1q + cr1b+ r1p, r2]− [r1, ur2 + ar2q + cr2b+ r2p] = 0

for all r1, r2 ∈ R. Denote

b =
∑

kl

bklekl, c =
∑

kl

cklekl, q =
∑

kl

qklekl,

for suitable bkl, ckl and qkl elements of K. If there are i 6= j such that bji = 0
and qrs 6= 0, crs 6= 0 for all r 6= s, then b is central in R.

Proposition 4.10. Let K be an infinite field, let R = M2(K) be the
algebra of 2 × 2 matrices over K, Z(R) the center of R. Assume that there
exist a, b, c, q ∈ R such that

a(c[r1, r2] + [r1, r2]q) + (c[r1, r2] + [r1, r2]q)b

− [a(cr1 + r1q) + (cr1 + r1q)b, r2]− [r1, a(cr2 + r2q) + (cr2 + r2q)b] = 0

for all r1, r2 ∈ R. Then one of the following holds:

1. b, q ∈ Z(R) and (a+ b)(c+ q) = 0;
2. a, c ∈ Z(R) and (c+ q)(a+ b) = 0;
3. c, q ∈ Z(R) and a+ b = 0;
4. a, b ∈ Z(R) and c+ q = 0;
5. there exist λ, µ ∈ C such that b + µq = β ∈ C, a − µc = α ∈ C and

µc2 + λc = µq2 − λq.

Proof. Let

a =
∑

kl

aklekl, b =
∑

kl

bklekl, c =
∑

kl

cklekl, q =
∑

kl

qklekl,

for suitable akl, bkl, ckl and qkl elements of K.
Clearly if one of q, c, b or a is a scalar matrix we are done by Lemmas

4.3, 4.4, 4.5 or 4.6 respectively. In order to prove the Proposition, we may
assume that q, c, b and a are non-central matrices.

By Remark 4.1 and Lemma 4.2, there exists some invertible matrix Q ∈
M2(K) such that QqQ−1 = q′, QcQ−1 = c′, QbQ−1 = b′ and QaQ−1 = a′

have all non-zero entries. By this conjugation we denote

a′ =
∑

kl

a′klekl, b′ =
∑

kl

b′klekl, c′ =
∑

kl

c′klekl, q′ =
∑

kl

q′klekl,
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for suitable a′kl, b
′

kl, c
′

kl and q′kl elements of K, the conjugates of elements
a, b, c, q. Of course

a′(c′[r1, r2] + [r1, r2]q
′) + (c′[r1, r2] + [r1, r2]q

′)b′

− [a′(c′r1 + r1q
′) + (c′r1 + r1q

′)b′, r2]

− [r1, a
′(c′r2 + r2q

′) + (c′r2 + r2q
′)b′] = 0

for all r1, r2 ∈ R.
Since q′rs 6= 0 and c′rs 6= 0 for all r 6= s, then the following holds: if for

some i 6= j there is some b′ji = 0 then by Lemma 4.8 b′ is a central matrix,
that is also b is a central matrix, a contradiction.

Hence assume that b′rs 6= 0 for all r 6= s. Let η =
b′ji
q′
ji

6= 0 and a′′ = a′+ηc′.

By replacing a′ with a′′ − ηc′ in the main equation we get

(a′′ − ηc′)(c′[r1, r2] + [r1, r2]q
′) + (c′[r1, r2] + [r1, r2]q

′)b′

− [(a′′ − ηc′)(c′r1 + r1q
′) + (c′r1 + r1q

′)b′, r2]

− [r1, (a
′′ − ηc′)(c′r2 + r2q

′) + (c′r2 + r2q
′)b′] = 0

for all r1, r2 ∈ R, that is

(a′′ − ηc′)c′[r1, r2] + a′′[r1, r2]q
′ + c′[r1, r2](b

′ − ηq′) + [r1, r2]q
′b′

− [(a′′ − ηc′)c′r1 + a′′r1q
′ + c′r1(b

′ − ηq′) + r1q
′b′, r2]

− [r1, (a
′′ − ηc′)c′r2 + a′′r2q

′ + c′r2(b
′ − ηq′) + r2q

′b′] = 0

for all r1, r2 ∈ R, where the (j, i) entry of the matrix b′ − ηq′ is zero and
q′rs 6= 0 and c′rs 6= 0 for all r 6= s. Thus by Remark 4.9 it follows that b′ − ηq′

is a central matrix, that is b− ηq = β ∈ Z(R).
Thus, by replacing b with ηq + β in the main assumption, we get

a(c[r1, r2] + [r1, r2]q) + (c[r1, r2] + [r1, r2]q)(ηq + β)

− [a(cr1 + r1q) + (cr1 + r1q)(ηq + β), r2]

− [r1, a(cr2 + r2q) + (cr2 + r2q)(ηq + β)] = 0

for all r1, r2 ∈ R.
Suppose here that a + ηc is not a scalar matrix. Since q and c are not

a scalar matrices, then there exists some invertible matrix P ∈ Mm(K) such
that PqP−1 = q′′′, PcP−1 = c′′′ and P (a + ηc)P−1 = p′′′ have all non-zero
entries. As above, by this conjugation we denote

a′′′ =
∑

kl

a′′′klekl, c′′′ =
∑

kl

c′′′klekl, q′′′ =
∑

kl

q′′′klekl, p′′′ =
∑

kl

p′′′klekl
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for suitable a′′′kl, c
′′′

kl, q
′′′

kl and p′′′kl elements of K, the conjugates of elements
a, c, q, (a+ ηc). Then

a′′′(c′′′[r1, r2] + [r1, r2]q
′′′) + (c′′′[r1, r2] + [r1, r2]q

′′′)(ηq′′′ + β)

− [a′′′(c′′′r1 + r1q
′′′) + (c′′′r1 + r1q

′′′)(ηq′′′ + β), r2]

− [r1, a
′′′(c′′′r2 + r2q

′′′) + (c′′′r2 + r2q
′′′)(ηq′′′ + β)] = 0

for all r1, r2 ∈ R. Choosing r1 = eii and r2 = eij , with i 6= j, right multiplying
by eii and left multiplying by ejj it follows (a

′′′

ji +ηc′′′ji)q
′′′

ji = 0, a contradiction
again.

Therefore a+ ηc must be a central matrix, say a+ ηc = α ∈ Z(R). Thus
by calculations we notice that

a(c[r1, r2] + [r1, r2]q) + (c[r1, r2] + [r1, r2]q)b

=
(

(α+ β)c− ηc2
)

[r1, r2] + [r1, r2]
(

(α+ β)q + ηq2
)

and by the main assumption

(

(α+ β)c− ηc2
)

[r1, r2] + [r1, r2]
(

(α+ β)q + ηq2
)

= [a(cr1 + r1q) + (cr1 + r1q)b, r2] + [r1, a(cr2 + r2q) + (cr2 + r2q)b]

for all r1, r2 ∈ R. Hence by Remark 2.2 we conclude (α + β)c − ηc2 =
−(α+ β)q − ηq2.

Finally we may prove:

Theorem 4.11. Let R = M2(C) be the algebra of 2× 2 matrices over the
field C. Assume that there exist a, b, c, q ∈ R such that

a(c[r1, r2] + [r1, r2]q) + (c[r1, r2] + [r1, r2]q)b

− [a(cr1 + r1q) + (cr1 + r1q)b, r2]− [r1, a(cr2 + r2q) + (cr2 + r2q)b] = 0

for all r1, r2 ∈ R. Then one of the following holds:

1. b, q ∈ C and (a+ b)(c+ q) = 0;
2. a, c ∈ C and (c+ q)(a+ b) = 0;
3. c, q ∈ C and a+ b = 0;
4. a, b ∈ C and c+ q = 0;
5. there exist λ, µ ∈ C such that b + µq = β ∈ C, a − µc = α ∈ C and

µc2 + λc = µq2 − λq.

Proof. If one assumes that C is infinite, the conclusion follows from
Proposition 4.10.



COMPOSITION OF GENERALIZED DERIVATIONS 323

Now let K be an infinite field which is an extension of the field C and let
R = Mm(K) ∼= R⊗C K. Consider the generalized polynomial

P (x1, x2) = a(c[x1, x2] + [x1, x2]q) + (c[x1, x2] + [x1, x2]q)b

− [a(cx1 + x1q) + (cx1 + x1q)b, x2]

− [x1, a(cx2 + x2q) + (cx2 + x2q)b]

which is a generalized polynomial identity for R. Since P (x1, x2) is a
multilinear generalized polynomial in the indeterminates x1, x2, then it is
a generalized polynomial identity for R and the conclusion follows from
Proposition 4.10.
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