
GLASNIK MATEMATIČKI
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GLOBAL SPACE-TIME Lp
-ESTIMATES FOR THE AIRY

OPERATOR ON L2(R2) AND SOME APPLICATIONS

Aicha Chaban and Mohammed Hichem Mortad

University of Oran, Algeria

Abstract. Let L be the Airy operator. The aim of this paper is to
prove some a priori estimates for L defined as an unbounded operator on
L
2(R2). Some applications and counterexamples are also given.

1. Introduction

Consider the following initial value problem

(1.1)

{ (

∂
∂t

+ ∂3

∂x3

)

u(x, t) = g(x, t),

u(x, α) = f(x)

where α ∈ R and f ∈ L2(R).
The main question asked in this paper is to what space does u belong to

whenever u ∈ L2(R2) such that ut+ux3 ∈ L2(R2)? This is a natural question

and it is important since it is about the L2-domain of ∂
∂t

+ ∂3

∂x3 . It has an
analog for other operators (see [4–7]).

Throughout this paper L denotes the operator ∂
∂t

+ ∂3

∂x3 , which is an
unbounded linear operator with domain

D(L) = {u ∈ L2(R2) : Lu, as a distribution, is an L2(R2)-function}.
Using the L2-Fourier transform, we see that iL (where i =

√
−1) is

unitarily equivalent to a multiplication operator by a real-valued function and
hence iL is self-adjoint. So one of the questions asked in this paper is what
”real potential” V can be added to iL without destroying the self-adjointness
of iL+ V .
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To this end, we first prove some a priori estimates of the type

(1.2) ‖u‖ ≤ a‖Lu‖L2(R2) + b‖u‖L2(R2)

for some norm (on the left hand side). The proof is based on a Duhamel’s
principle, which we give without proof in the case of the Airy equation, and on
Theorem 2.2 below. As an application, we use the Kato-Rellich perturbation
theorem to deduce sufficient conditions on V making iL+ V self-adjoint.

We also give a counterexample showing that estimate (1.2) with Lp-norm
(8 < p ≤ ∞) on R

2 (on the left hand-side) does not hold.
We note that throughout this paper, the value of the constant c may differ

from line to line.
Finally, any result or definition used in this paper will be assumed to be

known by the reader. The references needed are [1, 7].

2. Main Results

The following lemma is a Duhamel’s principle for the Airy equation. To
our best knowledge, this version of it does not exist for the Airy equation.
However, we omit the proof since the latter very similar to that of the case of
the heat equation (cf. [1]).

Lemma 2.1. Let us be a solution of
{

Lus = 0, t > s,

us(x, s) = g(x, s).

Then

u(x, t) =

∫ t

α

us(x, t)ds

is a solution of IVP 1.1 (with f = 0).

Before stating and proving the first main result in this article, we recall
the following result which will be a key one for the proof of Theorem 2.3.

Theorem 2.2 (Kenig-Ponce-Vega [2]). Let u be a solution of IVP 1.1
with g = 0. Then there exists a positive constant c such that

‖u‖L8(R2) ≤ c‖f‖L2(R).

Here is the first main result.

Theorem 2.3. For all a > 0, there exists a b > 0 such that

(2.1) ‖u‖L8(R2) ≤ a‖Lu‖L2(R2) + b‖u‖L2(R2)

for all u ∈ D(L).
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Proof. We first prove the theorem for u ∈ C∞

0 (R2) (the space of infin-
itely differentiable functions with compact support). In the end of this proof,
we will extend this to D(L)-functions. We use the fact that any such u is, for
any α ∈ R, the unique solution of IVP 1.1, where f(x) = u(x, α) and g = Lu.

Let k ∈ Z and let t and α be such that k ≤ t ≤ k + 1 and k ≤ α ≤ k + 1
(hence |t− α| ≤ 1).

Let u be a solution of IVP 1.1. Now we split u into two parts u = u1+u2

where u1, u2 are the solutions of
{

Lu1(x, t) = g(x, t),
u1(x, α) = 0,

and

{

Lu2(x, t) = 0,
u2(x, α) = f(x)

respectively.
The following estimate is deduced from Theorem 2.2

‖u2‖L8(R2) ≤ c‖f‖L2(R) = c‖u2(·, α)‖L2(R) = ‖u(·, α)‖L2(R).

Hence

‖u2‖L8(R×[k,k+1]) ≤ c‖u(·, α)‖L2(R).

Squaring both sides of the previous inequality, integrating with respect to α

on [k, k + 1] and taking square roots yield

‖u2‖L8(R×[k,k+1]) ≤ c‖u‖L2(R×[k,k+1]).

For u1, we cannot apply directly Theorem 2.2 and here is where Lemma 2.1
intervenes. Adopting the notations of Lemma 2.1, we see that Theorem 2.2
can be applied to us where

u1(x, t) =

∫ t

α

us(x, t)ds.

The Hölder inequality then gives

|u1(x, t)| ≤ c|t− α| 78
(
∫ t

α

|us(x, t)|8ds
)

1
8

≤ c

(
∫ t

α

|us(x, t)|8ds
)

1
8

and hence
∫

R

|u1(x, t)|8dx ≤ c

∫

R

∫ t

α

|us(x, t)|8dsdx

and since [α, t] ⊂ [k, k + 1], one is led to
∫

R

|u1(x, t)|8dx ≤ c

∫

R

∫ k+1

k

|us(x, t)|8dsdx.

Integrating against t over [k, k + 1] yields

‖u1‖8L8(R×[k,k+1]) =

∫ k+1

k

∫

R

|u1(x, t)|8dxdt

≤ c

∫ k+1

k

∫

R

∫ k+1

k

|us(x, t)|8dsdxdt
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or

‖u1‖8L8(R×[k,k+1]) ≤ c

∫ k+1

k

‖us‖8L8(R×[k,k+1])ds

and Theorem 2.2 implies

‖u1‖8L8(R×[k,k+1]) ≤ c

∫ k+1

k

‖Lu‖8L2(R×[k,k+1])ds = c‖Lu‖8L2(R×[k,k+1]).

Therefore, one has in the end

‖u‖L8(R×[k,k+1]) ≤ ‖u1‖L8(R×[k,k+1]) + ‖u2‖L(R×[k,k+1])

≤ c‖Lu‖L2(R×[k,k+1]) + c‖u‖L2(R×[k,k+1]).

Summing in k over Z gives us

‖u‖L8(R2) ≤ a‖Lu‖L2(R2) + b‖u‖L2(R2),

establishing the result. Making the constant a in front of ‖Lu‖L2(R2) arbitrary
follows easily from the change of variables

ur(x, t) = u(rx, r3t), r > 0.

To finish off the proof, we now show the validity of the theorem for functions
u in D(L). Since C∞

0 (R2) is dense in D(L) with respect to the graph norm
of L (the proof is similar to the density of C∞

0 (Rn) in Sobolev spaces, cf [3]),
for each u ∈ D(L), there is un ∈ C∞

0 (R2) such that

‖un − u‖2 −→ 0 and ‖Lun − Lu‖2 −→ 0

and hence

‖un‖2 −→ ‖u‖2 and ‖Lun‖2 −→ ‖Lu‖2.
We also know there is un(k) such that un(k)(x, t) → u(x, t) a.e. Applying (2.1)
to un(k) and using Fatou’s lemma yield
∫

R2

|u(x, t)|8dxdt =
∫

R2

lim inf
k→∞

|un(k)(x, t)|8dxdt ≤ lim inf
k→∞

∫

R2

|un(k)(x, t)|8dxdt

≤ lim inf
k→∞

(a‖Lun(k)‖2 + b‖un(k)‖2)8 = (a‖Lu‖2 + b‖u‖2)8.

Thus, for all u ∈ D(L) one has

‖u‖L8(R2) ≤ a‖Lu‖L2(R2) + b‖u‖L2(R2)

and the proof is over.

Using a simple interpolation argument, we see that the inequality in the
previous theorem holds for any Lp(R2)-norm on the left hand side where
2 ≤ p ≤ 8 and hence we have
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Corollary 2.4. Let 2 ≤ p ≤ 8. For all a > 0, there exists a b > 0 such
that

(2.2) ‖u‖Lp(R2) ≤ a‖Lu‖L2(R2) + b‖u‖L2(R2)

for all u ∈ D(L).

An application of the previous result is based on the following famous
theorem of Kato and Rellich (for convenience of the reader, a proof may be
found in [7]).

Theorem 2.5. Let A and B be two densely defined operators and B is
A-bounded with relative bound a < 1. If B is also symmetric and if A is
self-adjoint, then A+B is self-adjoint on D(A).

Corollary 2.6. Let 8
3 ≤ q ≤ ∞. Let V be a real-valued function

belonging to Lq(R2). Then iL+ V is a self-adjoint operator on D(L).

Proof. Let 2 ≤ p ≤ 8. Using the generalized Hölder inequality (and
(2.2)) we can write

‖V f‖2 ≤ ‖V ‖q‖f‖p ≤ a‖V ‖q‖iLu‖2 + b‖V ‖q‖u‖2
where q = 2p

p−2 . Since a may be made arbitrary, we deduce that V is iL-

bounded with relative bound a‖V ‖q < 1. Thus iL+V is self-adjoint on D(L)
by the Kato-Rellich theorem.

The next theorem settles the question of global space-time Lp estimates
of the Airy operator on R

2. We have

Theorem 2.7. Let p > 8 (this includes the case p = ∞). There do not
exist positive constants a and b such that

‖u‖Lp(R2) ≤ a‖Lu‖L2(R2) + b‖u‖L2(R2)

for all u ∈ D(L).

Proof. We will show the existence of such a function u. Let δ > 0.
Consider

uδ(x, t) = F−1(gδ(η, ξ)) where gδ(η, ξ) = ϕ(δη)V (η3 + ξ)

and where F−1 is the inverse L2-Fourier transform, ϕ is a smooth function
with compact support whereas V is a nonnegative smooth function of one
variable with compact support (yet to be determined).

We want to show that uδ ∈ D(L) which is equivalent (by means of the
Fourier transform and the Plancherel theorem) to ûδ and |ξ + η3|ûδ both
belonging to L2(R2) which implies (1 + |ξ + η3|)ûδ ∈ L2(R2). To get this
condition we need an appropriate choice for support of V since ûδ ∈ L2(R2)
(see below). We take the support of V to be {y : |y| ≤ 1

2} so that

supp ûδ ⊂ {(η, ξ) ∈ R
2 : |ξ + η3| < 1}
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and hence (1 + |ξ + η3|)ûδ ∈ L2(R2). Thus we have uδ ∈ D(L).
The next step is to show that uδ does not belong to Lp(R2) for any p > 8.

We are going to show that the ratio of the Lp-norm of uδ and the L2-norm of
uδ goes to infinity in a suitable limit.

We first compute the L2-norm of uδ. We have by the Plancherel theorem

‖uδ‖22 = ‖ûδ‖22 = ‖gδ‖22 =

∫∫

R2

|ϕ(δη)V (η3 + ξ)|2dηdξ.

Then by the change of variables η = s and ξ = z − s3 we obtain

‖uδ‖2 = δ−
1
2 ‖ϕ‖L2(R)‖V ‖L2(R).

As for the Lp-norm we get

uδ(x, t) = F−1(gδ(η, ξ)) =

∫∫

R2

ϕ(δη)V (η3 + ξ)eiηx+itξdηdξ.

By the same change of variables used for the 2-norm one gets

uδ(x, t) =

∫

R

∫ 1
2

−
1
2

ϕ(δs)V (z)eisx−is3t+iztdzds.

Setting δs = r gives us

uδ(x, t) = δ−1V̌ (t)

∫

R

ϕ(r)eir
x
δ
−ir3 t

δ3 dr

which is equal to

uδ(x, t) = δ−1V̌ (t)H

(

x

δ
,
t

δ3

)

where H is some function of two variables. Thus

‖uδ‖pp = δ4−p

∫∫

R2

|H(µ, τ)V̌ (δ3τ)|pdµdτ.

We need to investigate how the integral on the right hand side of the last
equation behaves as δ → 0.

Since V̌ is continuous, limδ→0V̌ (δ3τ) = V̌ (0) = ‖V ‖L1(R) (as V is
nonnegative). So

lim
δ→0

|H(µ, τ)V̌ (δ3τ)|p = |H(µ, τ)|p‖V ‖p
L1(R).

Using the Fatou lemma gives us

lim inf
δ→0

∫∫

R2

|H(µ, τ)V̌ (δ3τ)|pdµdτ ≥ ‖H‖p
Lp(R2)‖V ‖p

L1(R).
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In the end, since

‖uδ‖p
‖uδ‖2

= δ
4
p
−

1
2

p

√

∫∫

R2

|H(µ, τ)V̌ (δ3τ)|pdµdτ

‖ϕ‖L2(R)‖V ‖L2(R)
,

using the argument above and sending δ → 0 yield

‖uδ‖p
‖uδ‖2

−→ +∞ for p > 8.

Finally, the last expression allows us to say that no inequality of the form

‖u‖p ≤ a‖Lu‖2 + b‖u‖2
can hold unless p ≤ 8 and hence establishing the theorem.
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