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network models are often applied in project scheduling. Here a longest 

path problem has to be solved to get the project duration. There are many 

generalizations in this theme. One of these is applying time dependent 

process durations. This potential is very important because this is the 

key to use calendars in schedules. An other one is applying maximal con-

straints which result loops in the schedule. If these two potentials are 

allowed together, the prefix of length of the loops can change according 

the start time. An algorithm has been already presented for this prob-

lem. This study is an opportunity to accelerate it.
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INTRODUCTION
The first scheduling models were pre-

sented in the late of ’50-s (Bellmann and 

Ford, 1958; Dijkstra, 1959). The problem 

of these works is very simplified. There 

is not allowed negative or changeable 

process durations and loops. The so-

lutions based on linear programming. 

Scheduling is a longest path problem. 

Let this simple model be called the origi-

nal model. For applying a network model 

in civil engineering practice it has to be 

suitable for handling two features in 

consideration of scheduling. 

 X The first one is the possibility of 

changing process durations depend-

ing on their start times. This is the 

key to apply calendar. There is al-

ready a proper model for the problem 

(Franck et al., 2001). It is presented 

in detail later.

 X The second one is using maximal 

constraints for activities and connec-

tions. This is useful and important in 

practice. In the linear programming 

method it is possible to give only min-

imal constraints. For applying maxi-

mal constraint it must be converted 

by multiply the assumption with (-1). 

It effects negative process duration 

and turning back arc.

Example: There is an expensive machine 

used in two activities which take 4 and 

5 days and follow each other. There is 

an upper limit (10 days) to rent the ma-

chine. The problem can be modelled as 

it is shown in Fig. 1.

Remark: In schedules activities 

and connections are usually distin-

guished. Collectively they can be called 

processes.
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In construction practice there are already 

available some software which use Ac-

tivity-On-Node network models. Other-

wise in research works Activity-On-Arc 

models are general because this net-

work is appropriate for modelling more 

problems. The AOA network model with 

negative process durations and maxi-

mal constraints is more general than the 

AON model. 

Example: The two networks on Fig. 

2. show the same problem. The activity 

durations in AON mean a minimal and 

a maximal constraints together for the 

difference of their start and finish times. 

The connections also can be presented 

in AOA model. 

The difficulties of this problem are ana-

lyzed in detail (Csordas, 2008) and the 

conclusion is that maximal constraints 

create directed H={i=x0,x1,...,x0 } loops 

which can interlock and create new 

loops which are unregulated. The al-

gorithm based on an iteration method 

which finds the first finite solution of 

the scheduling. Further let it be called 

the traditional algorithm. As this paper 

deals with the acceleration of this al-

gorithm, the problem and the solution 

must be demonstrated briefly.

Denote [N,A] a directed graph where 

N is the set of nodes and A is the set 

of arcs. Let n and m be the number of 

nodes and the number of arcs respec-

tively. There is only one start node s 

and one end node r. Arcs are directed 

only outwards from s. Directed graph 

contains no parallel arcs. For all k≠s,r 

there is a directed path P(s,r)={s,x1,…,r} 

from s to r containing node k.

Let T be an arbitrary integer as the maxi-

mal acceptable project duration. De-

note τij, ∀ij∈A the number of necessary 

workdays to realize the object of the 

process. Let it be called the effective ac-

tivity duration. According to a previously 

defined resource it is constant. Denote 

dij, ∀ij∈A a T long vector as the work 

pattern of the resource assigned to it. 

 (1)

According to the definition dij(t)=0 in ev-

ery other case. Depending on a μi start 

time based on (1) the real (current) pro-

cess duration (denoted with θij(μi )) can 

be defined.

 

(2)

Corollary: The reading of the minimal 

constraints is: From a given start time 

what is the minimal processing time 

which contains exactly the necessary 

number of workdays.

The reading of the maximal con-

straints is: Back from a given finish time 

what is the maximal processing time 

which contains exactly the necessary 

number of workdays.

The aim is to find a μ system, where 

μi ∀i∈N is the earliest occurrence of i and

 

 

(3)

The algorithm is in Fig. 3. Start μ system 

is the same like in the original models. 

Remark: In practice the value -∞ is 

a properly large negative number. Be-

cause of the calendar the first value be-

fore the calendar (generally it is (-1)) is 

proper here. 

Parameter k follows the number of itera-

tions. In every iterations every arcs are 

examined and the algorithm gives po-

tentials for every nodes in the network. 

The algorithm stops if every potential 

is ready or any of them become over 

T. The control of the right potentials is 

the last iteration when there is no more 

change in the values. It means it is only 

a check counting. 

The key issue of the problem is that the 

network contains loops. The length of 

a loop H is

 (4)

As it is known positive value for ρH is not 

allowed in the maximal path - minimal 

potential algorithm. If the processes in 

the loop have different work patterns it 

effects a new occurrence in the sched-

ule. By counting round the loop a new 

start time arises according to the length 

of the loop. This gives new potentials for 

the nodes in the loop in the new round. 

Because of the time dependent process 

durations the length of the loop can 

change during these iterations. It can 

be positive again or zero or alter sign. 

The two last cases give finite solution. 

According to the paper presented the 

traditional algorithm the solution can be

 X finite where there is at least one path 

P(s,r) where

  Figure 1 
Minimal and maximal constraints
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Figure 2 Matching of the AON and AOA models
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 X finite where there is at least one loop 

H where  

€ 

ρH = θij (µi)
ij∈H

∑ = 0

 X infinite which means that the project 

duration is larger than T

The second solution is not known in 

the problem with constant process du-

rations. It means a split in scheduling 

before the loop H. In this case let H be 

called critical loop. 

The number of counting round the 

loops is only depended on the set of the 

process durations in them and not on 

the structure of the network (number of 

nodes or arcs). Unfortunately it is not a 

good feature to appreciate the run-time 

of the algorithm but the corresponding 

is possible.

The paper has four further sections. 

In the next one the features of loops are 

shown and some definition are given, 

then there is the new algorithm. After the 

run-time of the two algorithms are com-

pared and finally there is an example.

Features of the loops  
in the network
The loops because of maximal con-

straints can be distinguished accord-

ing to their structures.

Definitions: 
 X Primary loop is a loop which has 

exactly two nodes and two arcs. So 

NH={i,j} NH∈N and AH={(i,j);(j,i)} AH∈A.

 X Maximal loop is a set of arcs which 

create a loop without repeating any 

arc and there is no further arcs to ex-

pand it larger.

 X Loops are independent if every of 

them contains such arcs which are 

disjointed. So H1 and H2 are inde-

pendent if AH₁∖(AH₁∩AH₂)≠∅ and 

AH₂∖(AH₁∩AH₂)≠∅.

 X Aggregated loop is a set of maximal 

loops which has at least one jointed 

arc. So H1 and H2 create an aggregated 

loop if (AH₁∩AH₂)≠∅ and it generates 

Q=(NH1∪NH2).

 X Nodes out of any loops generate acy-

clic sets denoted by W

Example: Every kind of loops can be 

found in the network in Fig. 4.

 X Primary loops: H1={1,6,1}, H2={2,7,2}, 

H3={4,9,4}, H4={5,r,5}, H5={6,7,6}, 

H6={9,r,9} signed by broken line.

 X Maximal loops: H7={1,2,7,6,1}, 

H8={1,6,7,2,7,6,1}, H9={4,5,r,9,4} and 

H10={4,9,r,5,r,9,4} signed by thick line.

 X Independent loops: H1, H2, H3, H4, H5, 

H6, H7 and H9 are independent. H8 is 

independent only of loops H3, H4, H6, 

H7, H8 and H10. H10 is independent only 

of loops H1, H2, H5, H7, H8 and H9.

 X Aggregated loops: Q1={1,2,6,7} 

(which contains H1, H2, H5, H7 and 

H8), Q2={4,5,9,r} (which contains H3, 

H4, H6, H9 and H10) signed by clouds 

with broken line.

 X Acyclic sets: W1={s}, W2={3,8} signed 

clouds with dotted line.

Loop finder algorithm
The traditional algorithm determines μi 

potentials for every i∈N nodes in every 

Figure 3 The traditional algorithm
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iteration. Because of the changeability 

of the length of the loops it effects a lot 

of redundant counting for nodes before 

and behind the loop of which finite solu-

tion is looked for over many iterations. 

This occurrence does not exist in the 

problem with constant process dura-

tions. Avoiding the redundant count-

ing the iterations should be localized 

to only one loop until finding the right 

potentials in it. As the interlocked loops 

can take effects to each other the lo-

calization have to be referred to the 

aggregated loops.

Finding aggregated loops
Finding the nodes belonged to the same 

aggregated loop is possible by applying 

a path finding method (Warshall, 1962) 

(Vattai, 1993). In the solution at first it 

has to be defined an n×n sized adja-

cency matrix M. Connectivity matrix V 

can be derived from M by the next logi-

cal evaluation 

 (5)

Example: The matrices M and V for the 

network in the previous example are in 

Fig. 4.

Matrix V shows the next information:

 X In the main diagonal the nodes of loops 

can be distinguished. Vii>0 means that 

there exists P(i,i)={i=x0,x
1
,...,x

0
} path 

which is a loop.

 X The nodes of loops of which columns 

have Vij>0 values at the same positions 

belong to the same aggregated loops. 

The different loops are signed under 

the matrix V.

 X In case of the rest nodes the number 

of Vij>0 values sign the order of nodes 

and the position among the aggre-

gated loops. This is also signed under 

the matrix V.

The result of the counting is the same 

like in the previous example. If the nodes 

belonged to the same set W or Q are not 

in order, it can be rearranged simply. 

The topological order
The topological order of the nodes 

generally makes the algorithm simple 

(Ahuja et al., 1993). Of course it is pos-

sible only in case of acyclic graphs. If 

the aggregated loops are constricted 

into nodes, the network will be acyclic 

and the topological order can be de-

termined. The order of nodes inside an 

aggregated loop is indifferent.

Standardization the model let N be 

defined as the alternate queue of sets 

W and Q like W
1
, Q

1
, W

2
,...,W

q
, Q

q
, W

q+1
, 

where q is the number of aggregated 

loops in the network. Let every set be 

marked even if it is empty.

The algorithm
The method for determining potentials 

is the same like in the traditional algo-

rithm. Otherwise the iterative counting 

to find the solution is localized to the 

current set W or Q which are in topologi-

cal order. It is very efficient because the 

sets of nodes do not effect backwards to 

the others. So after finding the solution 

in one of them, it does not change any 

more in the course of counting further. 

The algorithm is in Fig. 6.

At first it has to set the start μ sys-

tem and determine the topological order 

as the traditional algorithm. Parameter 

x follows the sets from 1 to q, k the num-

ber of iterations. In case of counting in a 

set W it is unnecessary more iteration, 

so it does not need a loop. In case of a 

set Q the loop can be seen. The end of 

the iteration in the loop is when there is 

not any changes in the values of poten-

tials in the current set. So the last itera-

tion is the check counting. The count-

ing step on the next set W or Q if every 

potentials in the current set are ready. 

The algorithm stops if every potential 

is ready or any of them become over T.

Comparing run-times
Up to this point it is presumed that the 

more aggregated loops are in the network 

which need more iterations for finding 

Figure 4 Loops in the network
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the right potentials, the more efficient 

the loop finder algorithm is. Assume that 

the potentials have been determined in 

sets Wi and Qi, i=1...k and Wk. In set Qk 

potentials can be determined for all 

nodes according to (3) and get the check 

potential. If the length of this loop is posi-

tive, all potentials have to be counted in 

set Qk again according to the check po-

tentials. Denote Ik, k=1...q the necessary 

number of iterative counting in set Qk. 

The algorithms can be compared based 

on performed actions detailed in Fig. 7.

The rows contains the parts of the 

network, the columns the necessary 

number of iteration of these parts ac-

cordingly. Obviously in sets W it needs 

only one counting without any iteration. 

Signed by “X” the position (i,j) if count-

ing happens on part i by j times. The 

check counting is also has to be done 

once distinguished by “+” in the table. 

The traditional algorithm counts and 

checks potentials for all nodes in set A 

until finding the solution in the whole 

network. Every potential is determined 

again and again in every iteration. Thus 

potentials for nodes in Wk are also de-

termined in the iteration belonged to 

the nodes in Qk so it is unnecessary that 

single counting belonged to them except 

the first and the last ones as the first 

and the check counting for the poten-

tials. Based on these considerations the 

claim for actions of the first algorithm is

 (6)

The loop finder algorithm handles aggre-

gated loops one at a time and look for the 

solution in only the current set of nodes. 

In this case it has to be taken that single 

counting in every set Wk. The counting loop 

of the set Qk stops with the check count-

ing for the aggregated loop. So the claim 

for actions of the accelerated algorithm is

 (7)
Figure 6 The loop finder algorithm
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Where mWk
 and mQk

 are the number 

of arcs belonged to the denoted set. 

(∀ij∈AQk if i,j∈Qk) So 

 

Generally the difference of the ac-

tions of the algorithms is

 (8)

The difference is significant and propor-

tional to the number of set Q and the 

necessary number of iterations in them.

Example
The problem
Let look at Fig. 8. The structure of the 

network is the same like in Fig. 4. The 

ordering of the nodes is changed ac-

cording to the result of loop finding.

The vertical arcs represent the ac-

tivities and the horizontal ones the con-

nections between them. Activity dura-

tions mean the necessary number of 

workdays (τij, ∀ij∈A). T=17. Look at a 

simple work pattern, a week with five 

workdays. The first day is Wednesday. 

 

d1,2=d3,4=d7,8=d9,r=[111001111100111110]

This calendar is applied only for vertical 

arcs as the activities of the project. The 

real (current) activity durations are in 

Table 1. depending on their start times.

Remark: For example in the first row 

there is a 3-day activity. This is its effec-

tive activity duration. If it starts on the 

1st day it takes 3 calendar days, but if it 

starts on the 3rd day it takes already 5 

calendar days because there is a 2-day 

period when work is not allowed and it 

can be finished only on the 7th day. As 

the work pattern is defined only in the 

period T, it means that for the other days 

d
ij
(t)=0. This effects the ∞ values which 

may be T in practice. 

This algorithm is useful if different cal-

endars are in the model. Let the work 

pattern of the connections be constant 

1. Thus their real process durations are 

also constant.

Presenting the algorithm is practical on 

the adjacency matrix. The weighted ad-

jacency matrix of the network is in Fig. 9.

The sets W1, Q1, W2 and Q2 are visible 

thanks to the ordering. The sets of the 

nodes create blocks which are separated 

by double lines. The results of the iterations 

can be placed behind the adjacency matrix.

Tr 1 I1 1 I2 ... 1 Ik ... 1 Iq 1 L-f 1 I1 1 I2 ... 1 Ik ... 1 Iq 1

W1 X X X ... X ... X + W1 X

Q1 X X X ... X ... X + Q1 X X +

W2 X X X ... X ... X + W2 X

Q2 X X X ... X ... X + Q2 X X

... ... ... ... ...

... ...

... ... ... ... ...

Wk X X X ... X ... X + Wk X

Qk X X X ... X ... X + Qk X X

... ... ... ... ...

... ...

... ... ... ... ...

Wq X X X ... X ... X + Wq X

Qq X X X ... X ... X + Qq X X +

Wq+1 X X X ... X ... X + Wq+1 X

Figure 7 Number of actions in case of the traditional and the loop finder algorithms

Figure 8 Example–the problem
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Table 1 Real activity durations for every start time

start times 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

arc id        dij   τij 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0

1,3 3 3 5 5 5 4 3 3 3 5 5 5 4 3 3 3 ∞ ∞ ∞

3,1 -3 -∞ -∞ -∞ -∞ -∞ -∞ -5 -5 -5 -3 -3 -4 -5 -5 -5 -5 -3 -3

2,4 4 6 6 6 6 5 4 4 6 6 6 6 5 4 4 ∞ ∞ ∞ ∞

4,2 -4 -∞ -∞ -∞ -∞ -∞ -∞ -∞ -6 -6 -6 -4 -5 -6 -6 -6 -6 -6 -4

7,9 5 7 7 7 7 6 5 7 7 7 7 7 6 5 ∞ ∞ ∞ ∞ ∞

9,7 -5 -∞ -∞ -∞ -∞ -∞ -∞ -∞ -∞ -7 -7 -7 -8 -9 -7 -7 -7 -7 -7

8,r 4 6 6 6 6 5 4 4 6 6 6 6 5 4 4 ∞ ∞ ∞ ∞

r,8 -4 -∞ -∞ -∞ -∞ -∞ -∞ -∞ -6 -6 -6 -4 -5 -6 -6 -6 -6 -6 -4

s 1 2 3 4 5 6 7 8 9 r

s 0

1 2 3

2 4 1

3 -3 0

4 -4 -1 2

5 1

6 2

7 2 5

8 4

9 -5 0

r -4 0

Figure 9 Weighted adjacency matrix
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The traditional method
In case of the traditional algorithm the 

counting is in Fig. 10.

The real activity durations are under 

their effective activity durations in order 

to their coming out in the line of the po-

tential belonged to it. The columns behind 

the matrix show the iterations numbered 

on the top. The start μ system is in the col-

umn number 0. If there are more values in 

a column at a node, it means higher po-

tentials for the node in the same iteration.

The problem is solved in ten iter-

ations. According to the columns it is 

seemed that the potentials of the first 

aggregated loop (Q1={1,2,3,4}) are 

ready in the fifth iteration. It needs some 

iterations in the aggregated loop and 

create a split between the sets W1={s} 

and Q1 as μs-μs=3-0>0=θs,1(μs).

From the sixth iteration the poten-

tials of the second aggregated loop 

(Q2={7,8,9,r}) are looked for. There is 

also a split between the sets W2={5,6} 

and Q2 as μ7-μ5=9-6>1=θ5,7(μ5 ) and 

μ8-μ6=16-11>2=θ6,8(μ6 ).

So there are two critical loops which 

get nonpositive lengths before T. They 

are H6={1,2,3,4,1} with the length 

ρH6=2+4+(-1)+(-5)=0 and H7={7,8,9,r,7} 

with the length ρH7=2+5+0+(-7)=0.

The loop finder method
In case of the loop finder algorithm the 

counting is shown in Fig. 11. 

It is visible very good which sets 

are counted in the iterations. In case of 

the acyclic sets W it needs only one it-

eration while the first potentials of the 

next set Q can be determined. Until the 

right values of the nodes in set Q the al-

gorithm takes loops and examines only 

the current aggregated loop. With the 

check counting for the set Q the next set 

W can be examined. The counting items 

are separated by double lines.

Of course the result is the same like 

at the traditional algorithm.

Comparing the run-times
The traditional algorithm takes ten it-

erations. Every arc is checked in every it-

erations. m=19, so the amount of count-

ing is o1=19⋅10=190.

Check: The first aggregated loop 

(Q1={1,2,3,4}) needs four more counting 

round in the loop for finding the right poten-

tials after the iteration number 1. So I1=4.

After that, from the iteration num-

ber 6, the second aggregated loop 

(Q2={5,6,7,8}) needs also four more 

counting round. So I2=4.

Checking the potentials is in the it-

eration number 10.

According to (6) o1=19⋅[2+(4+4)]=190.

The loop finder algorithm takes eleven 

iterations. Here it is need to know the 

number of arcs belonged to the sets. 
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Figure 10 Counting in case of the traditional method
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It can be read out from the blocks of 

the adjacency matrix. mW1=1, mQ1=7, 

mW2=4, mQ2=7 and mW3=0. Check: 

1+7+4+7+0=19=m. Summarize the 

actions:

 X In the iteration number 1 the count-

ing of the potential of the set W1={s} 

and the first counting in the set 

Q1={1,2,3,4} happen. It means 

mW1+mQ1=1+7=8 actions.

 X In the iterations number 2 – 5 the right 

potentials in the set Q1 are looked for. 

So I1=4 as in the traditional method 

and it means I₁⋅mQ1=4⋅7=28 actions.

 X In the iteration number 6 the check 

counting in the set Q1, the counting in 

the set W2={5,6} and the first count-

ing in the set Q2={7,8,9,r} happen. 

It means mQ1+mW2+mQ2=7+4+7=18 

actions.

 X In the iterations number 7 – 10 

the right potentials in the set Q1 

are looked for. So I2=4 as in the 

traditional method and it means 

I2⋅mQ2=4⋅7=28 actions.

 X In the iteration number 11 the check 

counting in the set Q2 and the count-

ing for the set W3={∅} happen. It 

means mQ2+mW3=7+0=7 actions.

Summary there are 

o2=8+28+18+28+7=89 actions here.

Check: According to (7)

o2=(1+4)+(7⋅(2+4)+7⋅(2+4))=89.

According to (8) the differ-
ence between the amount of ac-

tions in case of the two algo-

rithms is o1-o2=(1+4+0)⋅[(4+4)+1] + 

(7⋅[(4+4)-4]+7⋅[(4+4)-4])=101=190-89.

It points out the efficient of the loop 

finder algorithm.

Discussion
The paper presents a new theoretical 

algorithm by combining two algorithms 

for different known problems. The result 

is very efficient and suitable for con-

vert into practice as it can handle the 

features of the models used in apply-

ing software.
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