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Aim To elucidate whether Raman spectroscopy aided by 
extensive spectral database and neural network analysis 
can be a fast and confident biomarking tool for the diag-
nosis of various types of cancer.

Methods Study included 27 patients with 11 different ma-
lignant tumors. Using Raman microscopy (RM) a total of 
540 Raman spectra were recorded from histology speci-
mens of both tumors and surrounding healthy tissues. 
Spectra were analyzed using the principal component 
analysis (PCA) and results, along with histopathology data, 
were used to train the neural network (NN) learning algo-
rithm. Independent sets of spectra were used to test the 
accuracy of PCA/NN tissue classification.

Results The confident tumor identification for the purpose 
of medical diagnosis has to be performed by taking into 
account the whole spectral shape, and not only particular 
spectral bands. The use of PCA/NN analysis showed overall 
sensitivity of 96% with 4% false negative tumor classifica-
tion. The specificity of distinguishing tumor types was 80%. 
These results are comparable to previously published data 
where tumors of only one tissue type were examined and 
can be regarded satisfactorily for a relatively small database 
of Raman spectra used here.

Conclusion In vitro RM combined with PCA/NN is an al-
most fully automated method for histopathology at the 
level of macromolecules. Supported by an extensive tu-
mor spectra database, it could become a customary histo-
logical analysis tool for fast and reliable diagnosis of differ-
ent types of cancer in clinical settings.
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Raman spectroscopy (RS) and infrared spectroscopy (IR) 
have been used extensively in studying biological mole-
cules. The potential of these techniques to become com-
plementary to standard histology has recently intensified 
the application of RS and IR in the analysis of biological tis-
sues (1,2). The advantage of these techniques over classical 
histology is that they do not require staining of samples 
(histology without chemicals) and that the acquisition of 
spectra can be implemented almost automatically and in-
terpreted by computer-based algorithms. RS is based on 
inelastic interaction between light and matter by which 
the molecule’s vibrational state is raised (3). When the mol-
ecule returns to its background level, a photon is emitted 
at a different wavelength from the incident light (Raman 
shift). All Raman shifts provide a Raman spectrum that is 
directly related to the molecular composition of the tissue 
creating a molecular fingerprint whereas the intensity of 
the Raman peaks is directly proportional to the concentra-
tion of specific molecules.

Promising results have been reported for in vitro, ex vivo, 
and in vivo assessments of various human tumors in a va-
riety of organs such as the skin, cervix, lungs, breasts, blad-
der, brain, liver, kidneys, nasopharynx, etc (1,4-11). RS stud-
ies are frequently performed as a comparison of spectra 
of healthy and affected tissues combined with histological 
analysis, which is then used to classify measured spectra 
as tumors or non-tumors and/or to distinguish between 
different tumors. However, there are inherent problems in-
volved in the analysis of spectra:

(i) Raman scattering from tissues is inherently weak and 
frequently overlapped by the undesirable endogenous 
fluorescence since the cross-section for a typical tissue 
fluorophore is an order of a million times larger than that 
of Raman scattering. Fluorescence removal techniques are 
widely exploited by using different background subtrac-
tion algorithms (11,12), but this method is not always pref-
erable since potentially significant background information 
could be overlooked (6). As a potential solution, Raman mi-
crospectroscopy (RM) has been recently introduced (13). 
This is a technique that uses a specially designed Raman 
spectrometer with an integrated optical microscope en-
abling the inspection of a sample and acquirement of Ra-
man spectra of selected microscopic areas of larger sam-
ples thus avoiding areas of unwanted fluorescence.

(ii) biological tissues are rich in various biomolecules (lip-
ids, proteins, nucleic acids) each having its correspond-

ing set of Raman peaks whose spectral band assign-

ments have been extensively reviewed and presented as 
the wide list of over 1000 chemical shifts (1). Although Ra-
man peaks are spectrally narrow, a vast number of spectral 
features that are frequently contained in an overall Raman 
signal of biological tissues results in signal overlapping cre-
ating broad signal envelopes. Hence, it is almost impossi-
ble to typify different tissues by the traditional procedure 
of finding some peaks that are specific for certain tissue, es-
pecially when attempting to differentiate cancerous from 
neighboring normal tissue. Consequently, a comprehen-
sive mathematical analysis of the whole spectrum has to 
be used, instead of analyzing individual peaks one-by-one 
and assigning certain peaks as a tissue fingerprint. One of 
the most widespread mathematical techniques is the prin-
cipal component analysis (PCA) of raw spectra, which has 
shown to be useful for data analysis of tumor samples by 
grouping Raman peaks (8,9,14,15). The other method com-
monly used is the application of the neural network (NN) 
algorithm for the Raman signal post-processing (16-19). 
Using this approach, a number of Raman spectra of vari-
ous histologically defined tissue samples was used for NN 
training in terms of learning the spectral patterns. The per-
formance of the NN is then evaluated on an independent 
set of spectra, by prediction of lesion type and comparing 
it to the true class. It is also possible to use PCA data for 
feeding NN (16,17).

In this study we applied both advanced developments 
of modern Raman spectroscopy described above. We ac-
quired Raman spectra from 11 different tumor types along 
with neighboring healthy tissue using RM to avoid areas 
with unwanted high fluorescence. The combined PCA and 
NN mathematical approach was applied to analyze and 
classify spectral data obtained by RM measurements. The 
majority of tumors were soft and bone tumors, the types 
that have not yet been investigated by RS. The more im-
portant aim of this study was to investigate the feasibility of 
creating a RS tissue database containing tumors of different 
origin which can be used for Raman spectroscopy based 
histology under circumstances that are likely to occur in 
clinical settings (eg, biopsies or ex tempora analysis).

Methods

Tissue samples

The study included 27 patients with 11 different pathohis-
tological diagnoses. All samples were obtained from the 
Faculty of Medicine, Institute of Pathology of the University 
of Belgrade. Fresh, non-fixed biological material was select-
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ed for frozen section analysis (fixation creates artifacts in 
RS) (20). Tissue samples were routinely cut in the cryostat at 
-20°C in 50-μm thick slices for routine histopathology anal-
ysis. All slides were stored at -20°C for 1 hour before RM re-
cordings were performed. Tissue samples included in this 
study were lung tumors (squamous carcinoma, adenocar-
cinoma, and small cell carcinoma), bone and soft tissue tu-
mors (chondrosarcoma, chondroblastoma, osteosarcoma, 
Ewing’s sarcoma, rhabdomyosarcoma, and synovial sarco-
ma), malignant peripheral nerve sheath tumor (MPNST), 
and hepatocellular carcinoma, all paired with surrounding 
healthy tissues on separate slides.

Experimental procedure

The Raman spectroscopy measurements were performed 
using a DXR Raman Microscope (Thermo Scientific Instru-
ments Group, Waltham, MA USA), applying the following 
parameters: exposition time 20-second, number of acqui-
sitions 10, laser wavelength 532 nm, laser power 10 mW, 
aperture 50 µm, magnification 50, average spot size 2.1 
μm. For spectra acquisition and background fluorescence 
correction, the software package OMNIC (Thermo Scien-
tific) was used. Each tissue sample was recorded more than 
10 times by focusing the laser at separate spots using a 

microscope. Dark spots in a sample were avoided since 
they usually gave unwanted fluorescence (probably from 
blood vessel areas containing hemosiderin). Signals ob-
tained from these locations are generally useless since the 
signal from the background fluorescence is dominant and 
is of an order of a million times larger than that of Raman 
scattering. Even pre-irradiation (or bleaching) of samples 
was not helpful for obtaining acceptable spectra (data not 
shown). Finally, 10 spectra of each tissue sample were se-
lected for further analysis. Altogether 540 spectra (270 for 
tumors and 270 for healthy tissues) were collected.

Data analysis

The mathematical method for analysis and classification of 
raw spectra was applied using the Raman processing (RP) 
program for the MATLAB environment, developed at the 
SSIM/CARES Research Laboratory at Wayne State Univer-
sity (21). In the first step, PCA was executed and in the sec-
ond NN training was performed resulting in the creation of 
a tumor spectra database.

PCA. The idea of this method is to decompose the whole 
spectra into factors, or principal components (PC), which 
represent the most common variations of the original data 

Figure 1. Examples of the mean Raman spectra of different types of diseased (gray line) and surrounding healthy (black line) tissues: 
(A) chondrosarcoma, (B) malignant peripheral nerve sheath tumor, (C) lung squamous carcinoma, (D) lung adenocarcinoma, (E) 
rhabdomyosarcoma, and (F) hepatocellular carcinoma.
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(22). Each PC is related to the spectrum with a variable 
called the score, representing the weight of that exclusive 
component in the basis spectrum. All 540 spectra were 
used for PCA and as a result the dimension of spectra was 
reduced to 8 most significant principal components.

NN analysis. A neural network is a computer program re-
sembling a chain of neural cells, which could be trained 
to recognize even small changes in spectra not matching 
the standard spectrum (23). Neural networks are applied for 
solving problems where the relationships are complex or 
unknown. Half of all PCA data (randomly selected), linked 
with results of histological analysis were used as a NN train-
ing set, while the other half was used for testing the perfor-
mance of the NN trained database. It has to be noted that 
the evaluation of successful classification of tumors, ie, tu-
mors vs normal tissue (sensitivity) and differentiation among 
tumor types (specificity) was performed against the com-
plete database including all tissues and all tumor types.

Results

The mean Raman spectra of selected tissue samples (nor-
mal and tumor) were obtained by simple averaging of 10 
spectra (Figure 1). Individual spectral shapes of particular 
tissue, obtained by using microscope guided area selec-
tion, had essentially the same spectral bands, but with the 
slightly different signal intensities of some spectral bands. 
Nevertheless, even visual inspection of mean spectra 
showed differences in spectral shapes and band intensi-
ties between tumors and corresponding healthy tissues. 
The same was true for different tumors within the same 
tissue (compare tumor spectra on C and D); all of these in-
dicating structural alterations of macromolecules.

Obtained spectra clearly showed that Raman shifts of both 
tumor and healthy tissues were densely compacted, mak-
ing the tissue specific assignation of peaks a difficult process 
using the traditional interpretation of the spectra by peak 
assignment analysis (Figure 1). An alternative approach to 
explore the Raman spectra shape variations between nor-
mal and tumor was to perform signal subtraction of normal-
ized values of mean spectra (10,24). Typical spectral shapes 
obtained by using this method are presented in Figure 2. 
Raman spectra obtained from the lung adenocarcinoma 
and MPNST showed that the most significant differences 
between normal and tumor tissues in each case appear to 
be at the 748 cm-1 band, which denotes the DNA chain, 

and in the spectral ranges of 1000-1100, 1200-1400, and 
1500-1700 cm-1

, which contain signals related to the 

protein and lipid conformations and nucleic acid CH stretch-
ing modes. Overlapping of specific vibrational modes of 
complex biological molecules means that only a few narrow 
spectral bands can be conclusively assigned (eg, the band at 
748 cm-1, Figure 2). Assigning the exact wavenumber of the 
Raman shift for a number of other spectral bands (eg, the 
band at 1223 cm-1, Figure 2A or the band at 909 cm-1, Figure 
2B) was rather unreliable as these bands were broad and any 
assignment had the uncertainty up to at least ±2 cm-1.

Results of PCA/NN analysis are presented in Figure 3 and 
Table 1. While inspecting these results, it has to be remem-
bered that classification was performed on the basis of 
an individual spectrum from tumors, which was blindly 
checked against all normal tissues and all other tumors re-
gardless of the specific tissue or tumor. This is a more strin-

Figure 2. Raman spectral bands obtained by the subtraction 
of normalized spectra of tumor and surrounding healthy tis-
sues for: (A) lung adenocarcinoma and (B) malignant periph-
eral nerve sheath tumor. Wavenumbers were obtained by the 
automatic find peak procedure.
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gent test for the performance of the PCA/NN analysis than 
the previously published analysis where the performances 
have been tested only for a certain tissue and a few select-
ed tumors characteristic for that tissue (16,17).

Overall sensitivity, defined as differentiation between nor-
mal and tumorous tissue (regardless of the type of malig-
nancy), is around 96% (Figure 3.) ie, PCA/NN analysis cor-
rectly identified 96% of individual spectra as tumors. Only 
around 4% of all tumor spectra were incorrectly classified 
as normal tissue (false negative).

Specificity is usually defined as the ability of the diagnostic 
procedure to distinguish malignant from benign tumors 
and/or between different malignant (or benign) tumors. 
Here, specificity was calculated as a number of spectra that 
are correctly classified as a particular tumor type vs total num-
ber of spectra classified as tumors (96% of all tumor spectra). 
Our study gave the overall specificity of around 82%. Table 1 
summarizes results obtained for individual tumor types.

Discussion

Obtained results for main and subtracted spectra were 
mainly in accordance with the previously published data 
for tumors (1,10,24) using the same procedures. The main 
problem in differentiating tumors from normal tissue us-
ing such data are the presence of numerous broad bands, 
which makes using the automatic peak assignment proce-
dure unreliable. Some rather subjective procedures have 
been previously performed to establish the fingerprint 
wavenumber of these bands (4,7,10,24), but it is obvious 
that the entire shape of such bands has to be considered 
when analyzing Raman spectra.

Consequently, full individual Raman spectra were analyzed 
using combined PCA/NN analysis since it has been demon-
strated that NN analysis of Raman spectra showed a supe-
rior performance compared with traditional linear models 
such as multiple linear regressions, spectral library search-
ing, and partial least squares and cluster analysis methods 
(21,25,26). Successfulness of any method used for tumor 
diagnosis is characterized by its sensitivity and specificity. 
Here we achieved sensitivity of 96% in distinguishing tu-
mors from normal tissue and specificity of 80% in distin-
guishing between various tumor types.

The comparison with other studies might not be straight-
forward since different authors employed different def-
initions of sensitivity, nevertheless here are some ex-

Table 1. Classification success for different types of tumors. 
Percentage denotes the number of correctly classified tumors, 
false negative, or false tumor classification
Tumor type 
(No. of patients) Classified as: (%)
Lung squamous 
carcinoma (3)

Lung squamous carcinoma   83.3
False negative diagnosis   16.7

Lung 
adenocarcinoma (3)

Lung adenocarcinoma   91.7
False tumor classification     8.3

Lung small cell 
carcinoma (4)

Lung small cell carcinoma   81.3
False tumor classification   18.8

Chondrosarcoma (3) Chondrosarcoma   91.7
False tumor classification     8.3

Osteosarcoma (2) Osteosarcoma   62.5
False negative diagnosis   12.5
False tumor classification   25.0

Ewing’s sarcoma (2) Ewing’s sarcoma   75.0
False tumor classification   25.0

Chondroblastoma (2) Chondroblastoma   62.5
False negative diagnosis   12.5
False tumor classification   25.0

Rhabdomyosarcoma (2) Rhabdomyosarcoma   75.0
False tumor classification   25.0

Synovial sarcoma (2) Synovial sarcoma   62.5
False tumor classification   37.5

Malignant peripheral 
nerve sheath tumor (2)

Malignant peripheral nerve 
sheath tumor

  62.5

False tumor classification   37.5
Hepatocellular 
carcinoma (2)

Hepatocellular carcinoma 100

Figure 3. Success score chart of trained neural network for 
detection of different types of tumors for all recorded spectra.
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amples. Skin cancers: 85% (16), 96% (17); bladder cancer: 
78.5% (8), and 94% (7); renal tumors 82% (6), lungs 94% 
(24). Consequently our results are comparable to other 
studies despite the fact that they were obtained for a wide 
range of tumors. An exceptionally high sensitivity of 99.5% 
has been reported for human uterine cervix (9), but this 
study analyzed cancer at a very advanced stage.

Individually, the sensitivity in the group of lung carcino-
mas was 95%, where only lung squamous cell carcinoma 
(SCC) showed false negative classification. This is in accor-
dance with 94% reported in a previous study (24), where 
just two types of tumors were analyzed (adenocarcinoma 
and SCC). Again, only SCC showed false negative findings. 
These findings can be explained by the fact that SCC is 
formed through squamous metaplasia of normal cylindric 
epithelium, while other analyzed lung carcinomas have 
diffusive and infiltrative growth. As a consequence, SCC 
has a pronounced stromal component so that spectra clas-
sified as normal tissue could have been recorded in such 
areas. Sensitivity for the group of the bone and soft tissue 
tumors was 96%. We were unable to find any RS study ex-
amining these tumors, but high sensitivity obtained here 
clearly shows the potential of RS in histopathology of these 
tumors. Sensitivity for both MPNST and hepatocellular car-
cinomas is 100%, but such a high score may be the conse-
quence of a small number of patients or high-grade malig-
nancy of analyzed tumors.

Reported specificities were 99% for differentiating malignant 
melanoma (18) or 100% basal cell carcinoma (15) from other 
benign skin lesions; 87% for different malignant renal tumors 
(6); 78.9% (8) and 92% (7) for bladder cancers; and 92% for 
lung cancers (24). Specificity of our study might appear low 
when compared to other studies, but this is the consequence 
of our specific approach. For example, some MPNST spectra 
were incorrectly classified as Ewing’s sarcoma and vice versa. 
This can be a consequence of the presence of Homer-Wright 
rosettes, which are usually present in both tissues. Some lung 
adenocarcinoma spectra were classified as chondrosarcoma, 
while some lung small cell carcinoma spectra were classified 
as chondroblastoma, which can be a consequence of the 
presence of cartilaginous bronchial tissue within the sample. 
All these problems in differential diagnosis can be easily over-
come in a real clinical setting where some misclassifications 
can be easily eliminated based on the frequency of occur-
rence of various tumors in a given tissue.

This work, as well as other reports, clearly shows that 
straightforward inspection of Raman spectra in at-

tempting to differentiate tissues is virtually impossible 
due to the complexity of tumors and surrounding tissues 
(16,17). The molecular origin of almost all Raman peaks is 
reasonably well known; however spectra from tissues are 
too complex due to the overlap of peaks and simple fin-
ger-printing of tissues based on a certain band or a part of 
spectrum is uncertain. The PCA takes into account all spec-
tral shapes and extracted PCA scores represent the weight 
of characteristic spectral components of the source spec-
tra. Coupled with the NN classification, such an approach 
provides an automated diagnostic procedure and is es-
sentially different from the “silver-bullet” approach. Also, 
diagnosis based on RS is different from standard histopa-
thology since it is done on a molecular level by taking into 
account virtually all macromolecules within certain tissue.

The use of Raman microscopy has several advantages 
over the standard RS. First, areas of unwanted, high fluo-
rescence can be easily identified prior to acquiring spectra 
which significantly reduces the time needed for collecting 
the amount of spectra necessary for tissue characteriza-
tion. Second, samples on the millimeter scale are sufficient 
for RS which enables analysis of samples obtained by fine-
needle biopsy.

Our results show that sensitivity and specificity of analysis 
of spectra obtained from numerous different tumors and 
tissues is at least comparable to data where only one tis-
sue containing one or a few types of tumors were investi-
gated. The implication of this result is that it seems feasible 
to start to create an extensive Raman spectra database en-
compassing a wide variety of tumors and healthy tissues. 
This can greatly improve differential diagnostic capabili-
ties of Raman spectroscopy based histopathology in clini-
cal settings.
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