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Energy dissipation and areas of process instability were investigated in two alloys. The fi rst one was brass, the sec-
ond one was the steel 9 Cr (P91). The tests were performed on torsion plastometer Setaram and on compression 
plastometer Gleeble. In the case of the steel 9 Cr identical heat was tested on both plastometers. The resulting 2D or 
3D process maps indicate suitable areas of forming temperatures, magnitudes of deformation and strain rates.
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INTRODUCTION

Material machinability and formability depends on 
its ability to deform plastically during forming process 
without its rupture. The work [1] presents a fi nding of 
the authors Prasad and Sasidhara who deal with process 
maps that formability consists of two independent com-
ponents: internal formability, which is infl uenced by 
evolution of micro-structure at specifi c conditions of 
the given process, and external formability, which is in-
fl uenced by geometry of the deformation zone and stress 
conditions at forming [2-4]. These maps are used at 
forming of steel, as well as of alloys made of non-fer-
rous metals (aluminium, magnesium, nickel, titanium 
alloys, etc.). Forming of some alloys may be very diffi -
cult and process maps make it possible to suggest the 
best possible solution of method for their processing 
[5-7].

ENERGY DISSIPATION, PROCESS MAPS

Energy dissipation at forming is characterised by di-
mensionless variable, energy dissipation effi ciency η. It 
is used as a crucial element by one of the most wide-
spread models, dynamic material model (DMM - Dy-
namic Material Modelling) [8]. The dependence of 
stress on the strain rate at given temperature is deter-
mined by the curve and the dependence of sensitivity of 
plastic fl ow to the strain rate is expressed as a function 
of strain rate [9]. The process map thus represents the 
areas, at which it is appropriate to form the material, 
and on the other hand the areas, in which forming can 

become already dangerous for the given material. Maps 
of energy dissipation are expressed in coordinates of de-
formation temperature and strain rate logarithm. Form-
ing is in this interpretation considered to be a energy 
system, where energy is dissipated in the deformation 
zone [10, 11]. Total energy absorbed by the body during 
deformation (P) consists in principle of two components 
and it may be expressed by the following equation:

  (1)
where:  P … total energy absorbed by the body during 

deformation / J
  G … energy dissipated in consequence of plas-

tic deformation / J
  J … energy dissipated in consequence of 

microstructural changes / J
Distribution of total energy between energy compo-

nents J and G is described by the coeffi cient of sensitiv-
ity of the material plastic fl ow to the strain rate [1]. 
Knowledge of this coeffi cient is indispensable for crea-
tion of process map, it can be expressed in the following 
manner:
  (2)

Coeffi cient m is function of the strain rate.
For creation of process map it is highly necessary to 

know also a dimensionless parameter η, i.e. effi ciency 
of energy dissipation. The following formula is valid 
for the parameter η:

  (3)

The results are multiplied by one hundred to obtain 
percentage values, which is usual way of expressing the 
effi ciency. The parameter of plastic instability is also of 
no less importance, as it makes it possible to determine, 
in which areas the material deformation is stable, and in 
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which areas material rupture may occur already during 
forming [12-15]. Parameter of plastic instability can be 
calculated by this formula:

  (4)

where: ξ parameter of plastic instability
 m strain rate sensitivity
  strain rate / s-1

EXPERIMENT TORSION TEST

Continuous test to rupture is the most frequently 
performed test on the plastometer SETARAM. Deter-
mination of the stress-strain curve is made by compara-
tively complicated calculation method [16]. Torsion 
tests were performed on various materials - steel and 
brass. In case of the steel P91 the samples were investi-
gated at the temperatures ranging from 1 223 K to 1 473 
K and at strain rates ranging from 0,0965 to 1,53 s-1 

[17].
Hot torsion tests of brass Ms70 (Cu + 30 wt.% Zn) 

were performed at 4 strain rates, namely 0,2; 1; 5; and 
10 s-1, corresponding to torsion revolutions = 16; 80; 
400 and 800 rpm, and at fi ve temperature levels t = 923, 
973, 1 023, 1 073 and 1123 K [18].

EXPERIMENT COMPRESSION TEST

Plane strain compression test was performed on the 
plastometer Gleeble 3800.

Altogether 12 tests were made at 3 strain rates = 0,1; 
1 and 10 s-1, and at temperatures ranging from 800 °C to 
1 260 °C on the material 9Cr (P91). For extrapolation of 
the courses also for lower and higher strain rates than 
the tested one, the activation energy Q was calculated 
and afterwards the value of stress was determined from 
it by the following equation.

  (5)

RESULTS AND EVALUATION OF THE BRASS 
MS70

Figure 1 shows the dissipation map for the magni-
tude of deformation of 0,5 brass with 30 % Zn. The map 
was calculated from the values published in [19, 20]. If 
we compare it directly with the map from the work [19], 
we may notice certain differences. First of all the area of 
high temperatures and low strain rates is different. In 
the original map the dissipation increases in this area. 
However, in the map re-calculated by us an area appears 
with a decrease and subsequent increase. This may be 
attributed to the algorithm of formation of a spatial map, 

when the method used by us prevents an excessive 
smoothing of curves of the dissipation coeffi cient, proc-
essed for individual temperature levels.

The map of energy dissipation from the data taken 
from [19] was constructed for verifi cation of the whole 
calculation procedure, as well as for its direct compari-
son with the map of energy dissipation at the torsion test 
(the map plotted by dashed lines in Figure 1). The range 
of strain rates and deformation temperatures is limited 
in comparison with the published results. The area of 
higher strain rates cannot be covered by the torsion 
plastometer SETRAM due to physical limitations of the 
torsion test [16]. Lower strain rates are achievable with 
use of additional gear box. They were, however, not re-
alised due to orientation of the original experiment on 

Figure 1  Superposition of the maps of energy dissipation of 
brass Ms70 for deformation of 0,5. Solid lines are 
plotted on the basis of data from literature [19] that 
were measured by compression plastometer; dashed 
lines were plotted on the basis of torsion tests

Figure 2  Energy dissipation [percentage] for brass Ms70 at the 
deformation of 0,9
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the area of occurrence of dynamic recrystallisation as 
the controlling softening process. If we compare the 
shape with the adapted dissipation map, we can see its 
conformity with the shape for brass with 30 % of Zn. It 
is, nevertheless, necessary to admit that point of the 
limit strain rates were signifi cantly infl uenced, since de-
termination of the parameter m is highly sensitive to the 
algorithm used for calculation of cubic splines and for 
exact determination of the value of resistances to defor-
mation. They were then used for calculation of the strain 
rate sensitivity coeffi cient m.

Advantage of the torsion test consists on realisation 
of big deformations, which cannot be made on com-
pression plastometers. It was thus possible to construct 
the dissipation maps also for bigger values of deforma-
tion. Evaluation for the deformation of 0,9 in Figure 2 
may serve as an example. The fi nal map shows higher 
effi ciency of energy dissipation into micro-structural 
state at lower strain rates – for all deformation tempera-
tures.

RESULTS AND EVALUATION 
OF THE STEEL 9Cr

The principles of Dynamic Material Modelling were 
used for construction of maps of energy dissipation. The 
following steps were taken for obtaining of the coeffi -
cient of energy dissipation η. The value of resistance to 
deformation for individual tested temperature levels and 
strain rates was read from the dependence of the defor-
mation stress for a constant deformation (Figure 3).

Thus obtained dependences of stress - strain rate 
were recalculated to the dependence stress logarithm – 
strain rate logarithm. If we compare the course of the 
strain rate coeffi cient m on the logarithm of strain rate, 

the values are comparable for the steel 9Cr regardless of 
the type of testing machine. The course of m and η is in 
dependence on the strain rate logarithm identical, only 
the values of both quantities differ. These calculations 
were fi nally performed for the deformations of 0,3; 0,5 
and 0,9 in order to enable comparison with the same 
steel 9Cr, which was investigated on the plastometer 
Gleeble [21].

Figure 4 represents an example of a 2D diagram of 
energy dissipation, in this case for deformation e = 0,5 
performed on the plastometer Gleeble. For comparison 
the same steel and the same deformation was analysed 
with use of the torsion plastometer SETARAM (Figure 
5). Nevertheless, at evaluation a magnifi cation of the 
range of strain rates by the formula 5 was not used and 
instead directly determined values of stress were used for 
calculation of dissipation effi ciency.

Figure 3  Procedure used for processing of the results of 
plastometric tests for the temperature of 1050˝°C 
from the stresses measured at the deformation of 0,5 
to the coeffi  cient of sensitivity to the strain rate m 
and effi  ciency of dissipation η.

Figure 5  Energy dissipation [percentage] for 9 Cr at the 
deformation of 0,5 on the basis of torsion tests

Figure 4  Energy dissipation [percentage] for 9 Cr at the 
deformation of 0,5 on the basis of compression tests
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CONCLUSIONS

Procedure of evaluation of results of plastometric 
tests was fi rst tested on data from literature for the brass 
with 30 % of Zn. The map of energy dissipation created 
on the basis of results measured by the plastometer SE-
TARAM was compared with the already published map. 
Very good agreement was obtained in the area of lower 
strain rates.

In case of the steel 9Cr we have compared the results 
obtained on the plastometers Gleeble and SETARAM. 
Different chosen procedures led to somewhat different 
results of the course of energy dissipation. It appears 
from the images of the process maps for the steel 9Cr 
that forming in the area below approx. 975 °C and at 
higher strain rates is unsuitable, and that the tempera-
ture range between 1 050 and 1 100 °C is also less suit-
able. We assume that we will be able to determine the 
dissipation by this method at analyses of data obtained 
also from other materials, as well as another parameter 
ξ, which are the possible areas of deformation insta-
bility.
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