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Heavy machinery industry is characterized by a number of specifi c features that cause signifi cant variations in the 
processing time of products in the individual workplaces and frequent occurrence of fl oating bottlenecks, which 
change their positions. Depending on the product range being processed, a given workplace is the bottleneck only 
for some period of time. When the bottleneck moves to another workplace, it leads to unnecessary loss of capacity 
of the fl oating bottleneck. To maximize the utilization, it is necessary to protect those bottlenecks by creating spe-
cial buff ers. The objective of this article is to design a methodology used for the determination and control of buff ers 
that are going to protect the fl oating bottlenecks from operating capacity losses caused by transfer of the constrain 
to another workplace. These buff ers are referred to as „power buff ers“. The designed methodology has been verifi ed 
in the process of forged pieces machining.
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INTRODUCTION

Heavy-machinery industry is characterized by a 
number of specifi c featuresthat make production plan-
ning and control signifi cantly more diffi cult:

–  It is mostly unit and small-batch production;
–  Both special dedicated devices and universal mul-

tipurpose machines are used, while the operating 
capacities of the devices are highly dependent on 
the type of product being worked on;

–  There are alternative technological processes and 
production paths, the number and sequence of per-
formed operations frequently change;

–  Material fl ows are multidirectional, with multiple 
product passages through selected workplace.

Next specifi cs can be found e.g. in [1,2]. All of these 
features cause signifi cant fl uctuations of the product 
processing time in each workplace (from minutes to 
hours) and frequent occurrence of fl oating bottlenecks. 
To maximize the capacity utilization, it is necessary to 
protect those bottlenecks by creating buffers. In manu-
facturing processes with the presence of stable bottle-
necks, the buffers eliminate bottleneck stoppage due to 
failure in workplaces before the bottleneck (e.g. because 
of their breakdowns). However, fl oating bottlenecks are 
characterized by changing their position. Depending on 
the product range being processed, a given workplace is 
the bottleneck only for some period of time. When the 
bottleneck moves to another workplace, it leads to un-

necessary loss of operating capacity at the fl oating bot-
tleneck (e.g. if a workplace is a bottleneck during 90 % 
of the production time, the remaining 10 % face an un-
necessary operating capacity decrease in other work-
places). The objective of this article is to design a meth-
odology used for the determination and control of buff-
ers that are going to protect the fl oating bottlenecks 
from operating capacity losses caused by transfer of the 
constrain to another workplace. These buffers are re-
ferred to as “power buffers”.

THEORETICAL BASIS

The Theory of Constraints (TOC), which was de-
signed by Goldratt [3], deals with the issue of bottle-
necks. The basic idea of the TOC is the assumption that 
no production system will be so well balanced as not to 
contain a bottleneck [4]. The bottleneck is the weakest 
element that determines the production system output. 
A bottleneck usually indicates the available capacity of 
a resource that limits or confi nes the outputs of a system 
or an organization. In a manufacturing system, a bot-
tleneck might be defi ned as the resource with the long-
est processing time, or the highest average utilization 
rate or loading or by reducing processing time of the 
workstation, it will reduce the entire average fl ow time 
of processes [5, 6]. In certain types of productions, we 
can come across fl oating bottlenecks that change their 
position and character over time [7]. 

One of the main principles of control of bottlenecks 
is their protection by means of buffers. A buffer is de-
fi ned as a stock that is created before a bottleneck, thus 
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protecting the bottleneck from work starvation, guaran-
teeing continuous operation of the entire process [8]. 
The control of bottlenecks searches for optimal buffer 
size, based on compensations for the losses arising from 
unused capacities of the production system and the costs 
of holding inventory used as a buffer.

The basic approaches to setting the buffer size include 
an expert estimate, analytical calculations using model 
situations, and computer simulations. Analytical calcula-
tions typically focus on stable bottlenecks (see e.g. [5]). 
Betterton and Cox III [9], Wu et al. [10],Battini et al. [11] 
or Malindzak et al. [12] deal with the suggestions and 
verifi cations of the simulation methods.

DESIGNED METHODOLOGY

The methodology used to determine and control the 
power buffers includes the following steps (see Figure 
1):

1 Identifi cation of critical fl oating bottlenecks
In the fi rst step, it is necessary to identify the critical 

fl oating bottlenecks. A critical fl oating bottleneck is a 
workplace with the highest potential occurrence of a 
bottleneck (most commonly restricting other workplac-
es). The analysis and identifi cation of fl oating bottle-
necks can take advantage of the procedure designed by 
Lenort and Samolejova[13].

2 Setting the size of failure buffers
The size of the failure buffer is calculated for critical 

bottlenecks. Failure buffers protect the bottleneck 
against downtime of workplaces before the bottleneck. 
The largest workplace downtimes in heavy machinery 
production are usually caused by equipment failures. 
The size of a failure buffer that provides 100% protec-
tion of the bottleneck can be determined using the rela-
tion:
  (1)

 – maximum size of a failure buffer (pcs)

–  maximum time necessary to remove a breakdown 
before the fl oating bottleneck (hour)

 –  maximum operating capacity of a fl oating bot-
tleneck (pcs·hour-1)

The individual workplaces in heavy machinery pro-
duction usually include several substitutable devices. In 
such a case, the maximum operating capacity of a fl oat-
ing bottleneck is determined using the relation:

  (2)

 –  maximum operating capacity of a single device 
of a fl oating bottleneck (pcs·hour-1)

 –  minimum feasible number of occupied devices in 
a fl oating bottleneck

In production practice, however, it is unrealistic to 
choose the maximum level of bottleneck assurance due 
to excessive stock buffer and costs associated with its 
holding. For practical purposes, the following heuristic 
formula can be recommended:

  (3)

 – size of a failure buffer (pcs)
 –  average time necessary to remove a breakdown 

before the fl oating bottleneck (hour)
 –  average number of occupied devices in a fl oating 

bottleneck

3 Setting the size of power buffers
The size of power buffers is also set for critical fl oat-

ing bottlenecks in addition to failure buffers. Power 
buffers should protect fl oating bottlenecks during the 
time when the constraint is transferred to another work-
place. The maximum level of assurance is provided by 
the relation:

  (4)

 –  maximum size of a power buffer (pcs)
 –  maximum time of transferring the constraint be-

fore the fl oating bottleneck (hour)
 –  maximum operating capacity of a fl oating bot-

tleneck (pcs·hour-1)
 –  minimum operating capacity of the workplaces 

before the bottleneck (pcs·hour-1)
In the event that the workplaces consist of a higher 

number of mutually substitutable devices, the maximum 
operating capacity of a fl oating bottleneck is determined 
using the formula (2) and the minimum operating ca-
pacity of the workplaces before the bottleneck is deter-
mined using the formula:

  (5)
 –  minimum operating capacity of a single device 

before a fl oating bottleneck (pcs·hour-1)
 –  minimum feasible number of occupied devices in 

a workplace before a fl oating bottleneck
The following heuristic formula can be recommend-

ed for practical use:
  (6)

Figure 1 Scheme of the designed methodology
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 –  power buffer size (pcs)
 –  average time of transferring the constraint be-

fore the fl oating bottleneck (hour)
 –  maximum operating capacity of a single device 

of a fl oating bottleneck (pcs·hour-1)
 –  average number of occupied devices in a fl oating 

bottleneck
 –  average number of occupied devices in a workplace 

before a fl oating bottleneck

4 The fi nal selection of buffer size
If the failure buffer is larger than the power buffer, 

the fi nal buffer size equals the failure buffer and vice 
versa.

5 Control of buffers
In the course of production, the buffers are continu-

ously monitored and controlled before the critical fl oat-
ing bottlenecks in order to prevent their depletion or 
overfl ow. The control of buffer repletion is performed 
by the operational intervention of line management (e.g. 
change of manning of the individual workplaces or 
change of the production schedule).

CASE STUDY

The designed methodology used to determine and 
control power buffers has been verifi ed in the process of 
forged pieces machining.

The product mix consists of different types of prod-
ucts manufactured in small and medium-sized produc-
tion batches (from a piece to hundreds of pieces). There 
are multiple passages of forged pieces through the same 
workplace in case of complicated products, which caus-
es multidirectional material fl ows and fl uctuations in 
the workload of the individual workplaces. The process-
ing time of different types of products varies (depend-
ing on the complexity of the processing) within the 
scope of minutes up to hours. All the devices are not 
occupied continuously, due to fl uctuating load of the 
workplaces.

The manufacturing process includes eight workplac-
es with twenty six devices (see Figure 2). The original 
system of production planning and control was based 
on the creation of buffers before all devices. The size of 
the buffers were set and controlled intuitively by the 
production workers.

Once the designed methodology has been applied, 
their numbers were limited only to the critical fl oating 
bottlenecks, which included the workplaces dealing 
with roughing, face-part machining, fi nishing lathe 
work, andgrinding (see Figure 2). Other workplaces 
(drilling, rolling, non-destructive testing and release of 
products) do not pose risk of restricting the overall op-
erating capacity of the process. 

The work in progress stock of the monitored process 
and the costs associated with this process have been re-
duced by almost 15 %, as a result of that.

CONCLUSION

Thanks to the case study, the designed methodology 
for the determination and control of power buffers has 
been verifi ed. The recommended heuristic formulas 
used to calculate the failure and power buffers are only 
the basis for determining their fi nal number. It will al-
ways depend on the specifi c conditions of the manufac-
turing process. The more complex the processed prod-
ucts and the manufacturing process are, the larger the 
buffers are and vice versa. Further research work will be 
devoted to the incorporation of the methodology in the 
newly developed production planning and control con-
cept based on “production paths” (see more [14]).
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