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ABSTRACT

In the present paper, we study a set T = {T(r,d) : d ∈ R}
of the certain one-parameter families of triangles. The

traces of some triangle points within the set are analyzed

and described.
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O nekim familijama trokuta

SAŽETAK

U ovom radu proučava se skup T = {T(r,d) : d∈R} specijal-

nih jednoparametarskih familija trokuta. Analizirat će se i

opisati krivulje mjesta nekih točaka trokuta unutar danog

skupa.

Ključne riječi: tangencijalni trokut, hiperoskulacijska

kružnica, pramen konika

1 Introduction

The study of triangles and their families even nowadays at-
tracts many geometers. Various problems in connection to
the triangles and their families are studied in [1], [2], [3].
Nowadays, the use of modern geometry softwares (GeoGe-
bra, Cinderella, The Geometer’s Sketchpad. . .) enables the
dynamic geometric constructions which, in general, facili-
tate the analysis of the movement of the triangles, or some
triangle points, within the specified system.

When it comes to the families of triangles, there are many
ways to associate triangles with each other. One such is
defined in this paper generalizing the concept of the tan-
gential triangles.

Generally, given a triangle∆A1A2A3, the triangle∆T1T2T3
is said to be the tangential triangle if it is formed by the
lines tangent to the circumcircle of∆A1A2A3 at its vertices.
Hereafter, we will use the term a tangential triangle in con-
nection to a circle. Hence, a triangle will be called a tan-

gential triangle to a given circleC iff it is formed by the
lines tangent toC . Naturally, given the circle, there are
∞3 such triangles. By adding some more elements into the
specified family, a one–parameter family of triangles is de-
fined in this paper. Furthermore, the connection between
the added elements and the given circle–tangent configura-
tion is studied.

Denoting byPG(2,R) the projective closure ofR2, we al-
ways assume thatPG(2,R) is embedded into its complex-
ification PG(2,R ⊂ C). Choosing the line at infinityf as
x3 = 0, the interchange between homogeneous and Carte-
sian coordinates inR2 is realized.

1.1 The family of triangles T(r,d)

Let a circleΦ(S, r) with radiusr and one of its tangentst be
given. Ford∈ R a one–parameter family of trianglesT(r,d)

is defined such that a triangle∆ABC∈ T(r,d) iff it satisfies
the following two properties:

F1) a triangle∆ABC is tangential to the given circle
Φ(S, r),

F2) A,B∈ t andd = ±|−→AB|.
Hence, as a segment of the fixed lengthd moves along the
tangentt, a triangle∆ABCtraversers a one–parameter fam-
ily T(r,d). This motion is continuous, but not rigid for the
remaining two triangle sides which are therefore continu-
ously changing.
Furthermore, by varyingd a setT = {T(r,d) : d ∈ R} of
the triangle families is obtained in connection to the given
circle and its fixed tangent.
Fig. 1 shows two triangles∆ABC and∆BDE of the fam-
ily T(r,d) obtained for somed. The circleΦ is its ex– and
incircle, and they share the side and one vertex lying on
it. Altohough not necessary, it is convenient to introduce
an orientation onto the tangentt to ensure that the position
of only one vertex uniquely determines the remaining two
vertices.
Obviously, given a configuration of a circleΦ and tan-
gentt, the loci of many triangle points within two families
T(r,d),T(r,−d) ∈ T will coincide. This follows directly from
the geometric construction, since the loci of the triangle
centers withinT(r,d) are symmetric with respect to the cir-
cle diameter perpendicular to the given tangentt, as it will
be shown later.
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Figure 1

Before we continue with the traces of some points within
triangle, let us focus onto some special triangles within a
family T(r,d) ∈ T. Following the similar approach as in [1],
the position of those triangles with respect toΦ andt will
play an important role in the determination of the traces of
the triangle points within the family. The special triangles
are degenerated triangle with one of the vertices lying on
the given circleΦ or at the infinity. Hereafter, letQ be the
contact point ofΦ andt, and lett1 be the tangent ofΦ par-
allel to t. We distinguish the following three types of the
special triangles within each familyT(r,d):

S1) If one of the vertices lying ont coincides withQ, the
triangle degenerates into the segment of the length
d. In each family there are two such triangles.

S2) Furthermore, it is possible that two triangle sides,
having only one of the vertices ont, are parallel.
Then their intersection point lies at infinity and de-
termines the third vertex. The number of such tri-
angles within each family depends on the relation
between the given lengthd and the circle diameter
2r.
For if |d| > 2r, we have two such triangles, if|d| =
2r only one such triangle is possible, and for|d|< 2r
there are no real triangles satisfying this condition.

S3) If one of the points lying ont converges to the point
at infinityT∞ of the linet, then the intersection points
of the tangents drawn toΦ converges to the pointV,
the contact point of the circleΦ and its tangentt1
parallel tot.

Hence, in the first two cases we have the classes of special
triangles obtained by varyingd within the setT. Interest-
ingly, in the case S3 only one such triangle remains fixed
within all familiesT(r,d).

The aim of this paper is to examine the traces of some tri-
angle points within the specified tangential families of tri-
angles. The results will be presented analytically and their
analysis will be provided by the use of the three classes
of degenerated triangles. Furthermore, the connection be-
tween the given elements and obtained curves is studied.

The constructions in this work are done byThe Geome-
ter’s Sketchpadand the computations withMathematica.

In the section 2 it will be shown that the specified tangen-
tial families, which are subject to the present paper, belong
to the special poristic families of triangles, [2]. The third
triangle vertex lies on the conic which hyperosculates the
given cirlceΦ at the pointV. Since the triangle vertices
are running on a singular cubic curve while the three lines
spanned by the respective vertices envelope a circle, the tri-
angles within a familyT(r,d) are triangles with a certain cir-
cumscribed degenerated cubic curve (a conic section and
line t) tangential to the given circleΦ.

2 The locus of C

Naturally, we will start with the locus of the third triangle
vertex, not lying on the tangentt. Ford ∈ R, let a familiy
T(r,d) ∈ T be given.

Without loss of generality we can assume that the circleΦ
and the tangentt are given by the equations

Φ : x2 +y2 = r2, t : y = −r. (1)

Let ∆ABC∈ T(r,d). Aiming at parametrization of the third
vertexC, not lying on the given tangentt, let us denote the
vertexA of ∆ABCby Aλ given byAλ(λ,−r), λ ∈ R.

The third vertexCλ is uniquely determined as the inter-
section point of the tangents drawn fromAλ and Bλ =
(λ + d,−r) to the given circleΦ. Its homogeneous co-
ordinates depend on the the parameterλ and reads

Cλ =
(

r2(2λ +d) : r
(

λ(λ +d)− r2) : λ(λ +d)+ r2
)

. (2)

Thus, the one–parameter family of trianglesT(r,d) is de-
scribed withλ as well, i.e.T(r,d) = {∆λABC: λ ∈ R}.

Our first goal is to describe the locus curveΓd of the vertex
C which obviously lies on some conic. Note thatΓd is sym-
metric with respect to the circle diameter perpendicular to
t. For verifying that, let(T∞) be the pencil of lines with ver-
texT∞, T∞ ∈ t. Every line lineqi ∈ (T∞) carries at most two
triangle vertices of the familyT(r,d). For, if Cλ ∈ qi , such
that∆λABC∈ T(r,d), then the triangle∆−λ−dABCalso lies
in T(r,d) havingC−λ−d ∈ qi. Namely, if αi := ∠AλCλBλ,
then the locus of points where the circleΦ is seen un-
der the same angleαi is the concentric circleΦi(S, |SC|).
The intersection points ofqi and Φi are the verticesCλ
andC−λ−d. Furthermore,∆λABC∼= ∆−λ−dBCA and they
are symmetric with respect to the axisot 3 S, ot ⊥ t (see
Fig. 2).
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Figure 2

For λ = − d
2 the vertexCλ lies onot , the both intersection

points of the lineqi ∈ (T∞) andΦi coincide and the lineqi
is the tangent to the conicΓd with the vertexC− d

2
. The as-

sociated triangle∆− d
2
ABC∈ T(r,d) is an isosceles triangle.

Especially, ford = 2r such an isosceles triangle degener-
ates and one vertex coincides with the ideal point of the
axis of symmetryot .

Before we derive an implicit equation of this curve let us
determine the coordinates of the vertices of the special tri-
angles given with S1–S3. Hence, we get forλ ∈ {0,−d}
the verticesC0 = (d,−r) andC−d = (−d,−r) lying on the
tangentt. From (2) the coordinates of the verticesCλ lying
at infinity are given withλ = λ1 or λ = λ2 , where

λ1,2 :=
−d∓ τ

2
, τ :=

√

d2−4r2. (3)

Thus, one distinguishes three cases depending on the num-
ber of triangles∆ABC∈ T(r,d) with the vertexC at infinity.
They all depend on the relation between the circle diame-
ter and given lengthd. Therefore, for the vertexC of the
triangle∆ABC∈ T(r,d), we have:

i) if d ≥ 2r, the two verticesCλ1,2
=
(

τ : ∓2r : 0
)

are
lying on f andΓd is a hyperbola;

ii) if d = 2r, only one such vertexCλ1
=Cλ2

= (0 : 1 : 0)
lies on f andΓd is a parabola;

iii) if d < 2r there are no real vertices onf andΓd is an
ellipse.

Whenλ →±∞, as a limiting point of (2) we getC→C∞ =
V = (0, r) ∈ Φ∩ t1, and the circle tangentt1 is given with

t1 : y = r, t1||t. (4)

The third case S3 determines one of the verticesV of the
conic Γd lying on the axisot . The linet1 given by (4) is
then the common tangent of the conicΓd and given circle
Φ. It remains fixed for all tangential families of triangles
within the setT. Ford 6= 0, the pointV is the only common
point of the conicsΦ andΓd. A one–parameter family of
conicsP = {Γd : d∈R}, obtained by varyingd, belongs to
the pencil of hyperosculating conics. We can see that this
pencil is uniquely determined with two of its conics, the
given circleΦ and the only degenerated conic within the
pencil, two coinciding linest1.

Similar observations can be obtained by deriving the im-
plicit equation of the required locus of the vertexC(x,y)
of the triangle∆ABC∈ T(r,d) from (2). It turns out to be a
conicΓd given by

Γd : d2(y− r)2−4r2(x2 +y2− r2) = 0. (5)

For a given circleΦ and tangentt, all three types of hy-
perosculating conicsΓd within the one–parameter family
P obtained by varyingd are shown in Fig. 3.

Thus we have:

Theorem 1 Assume we are given a circleΦ(S, r), one of
its tangents t, and a segment AB of length d∈ R lying on t.

The locusΓd of the vertex C such that∆ABC∈ T(r,d) is
contained in the pencil of conics hyperosculatingΦ at V ,
where V/∈ t and ot := VS⊥ t is the focal axis ofΓd. The
length d serves as a parameter within the pencil.
The conicΓd is an ellipse, a parabola, or a hyperbola iff
|d| < 2r, |d| = 2r, or |d| > 2r.

Let us conclude this section with another formulation of
Theorem 1 which shows an interesting loci property of
conic:

Proposition 1 For given circleΦ the set of all points X
such that the tangents drawn toΦ cut at one of its fixed
tangent segments of equal length is a conicC that hyper-
osculatesΦ.

3 Some locus curves

As a result of the similarity of the triangles∆λABC and
∆−λ−dABCwithin the familyT(r,d) = {∆ABC: λ∈R} ∈ T,
the traces of the triangle centers lie on the symmetric
curves with respect to the axis of symmetryot perpendic-
ular tot. Many triangle points lie on the symmetric curves
as well but their axis of symmetry may not coincide with
ot .

In what follows the traces of one such triangle point (the
side midpoint) is analyzed, as well as the trace of one tri-
angle center, the triangle circumcenter.
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3.1 The midpoint MAC

Let d ∈ R and a tangential familyT(r,d) ∈ T be given. For
∆ABC∈ T(r,d), let the verticesA and B lie onto t. The
midpoints of the variable sidesAC andBC trace the cor-
responding curvesΨAC

d and ΨBC
d . SinceΓd ≡ Γ−d and

ΨAC
d ≡ ΨBC

−d , the curvesΨAC
d andΨBC

d are symmetric with
respect to the axisot . Thus, in what follows only the the
locus of the midpoints of the side variable sideAC of the
triangle∆ABC is given.

If the circle Φ and tangentt are given with (1), start-
ing with the special triangles within the familyT(r,d) we
can easily calculate the midpointsMAC

−d = (−d,−r) and
MAC

0 = (d/2,−r) in the case S1, the midpointsMλ1,2
=

Cλ1,2
= (τ : ∓2r : 0) in the case S2, and the midpoint

M∞ = T∞ = (1 : 0 : 0) lying at infinity and obtained as the
limiting point in the case S3.

Obviously,ΨAC
d is a symmetric cubic. For each lineqi ∈

(T∞) let an involution in the pencil of lines(T∞) having the
linest andqi for its double lines be given. Then there is the
line si ∈ (T∞) associated to the linef at infinity such that
the lines(t,qi ; f ,si) are harmonically related (see Fig. 2).
Furthemore, in the previous section to the lineqi of the
pencil (T∞) two triangles∆λABC and∆−λ−dABC are as-
sociated, if the verticesCλ,C−λ−d are lying on it. Since
the midpointsMAC

λ andMAC
−λ−d are also symmetric with re-

spect to the axisot , the midpointsMAC
−λ−d andMBC

−λ−d lying

on si ∈ (T∞) are at the distanced2 , the midsegment length
of all tangential triangles withinT(r,d). Thus, the midpoints
MAC

λ andMAC
−λ−d are symmetric with respect to the axisoM

parallel toot andd(ot ,oM) = d
4 .

The obtained curve has a vertex lying on axisoM associ-
ated to the isosceles triangle whenλ = − d

2 and it coor-

diantes are given withM− d
2

=
(

− d
4 , 4r3

τ2

)

∈ oM. The other

intersection point with the axisoM determines the double

point of the midpoint trace and readsMλ3,4
=
(

− d
4, r

2

)

for λ3,4 =
−d±

√
d2−12r2

2 . Therefore, the cubicΨAC has a
cusp atMλ3,4

exactly ifd2 = 12r2. If d2 < 12r2, Mλ3,4
is an

isolated double point.

Furthermore, since the midpointM∞ is the limiting point
in S3 for all d ∈ R as λ → ±∞, the linet0 ∈ (T∞) pass-
ing throughM∞ is the common asymptote for the curves
ΨAC

d of the one–parameter familyGAC = {ΨAC
d : d ∈ R}

obtained by varyingd. Since(t, t1; f , t0) are harmonically
related, it follows thatt0 passes through the circle centerS.

Thus, we have shown:

Theorem 2 The midpoint of the variable triangle side AC
such that∆ABC∈ T(r,d) lies on a rational symmetric cubic
ΨAC

d asymptotic to a line to which is parallel to the given
tangent t and passes through the circle center S.
It has a cusp at the double point if d2 = 12r2, a node if
d2 > 12r2 and an isolated double point if d2 < 12r2.

An elementary computation using the equations of the tri-
angle sides yields the homogenous coordinates of the tri-
angle midpointsMAC

λ as

MAC
λ

(

λ2(d+ λ)+ (d+3λ)r2 : −2r3 : 2
(

λ(λ +d)+ r2)
)

(6)

if the circleΦ and the tangentt are given by (1). The equa-
tion of the cubic parameterized by (6) in terms of Cartesian
coordinates reads

ΨAC
d : y3(d2−4r2)= r

(

d2y2+r
(

2x(d+2x)−3r2
)

y+r4

)

.

(7)

The triangle family can be used for the parametrization
of the locus and also for solving some complex prob-
lems whose computation cannot be done in an acceptable
amount of time using computers. For example, the deter-
mination of the intersection points of the cubicΨd and a
circle Φ follows easily using the properties of the isosce-
les triangles. The midpointMAC

λ lies on the given circleΦ
precisely when it coincides with one of the point of tan-
gency of the inscribed (or escribed) circleΦ of the tri-
angle∆ABC lying on the lineAC. This is the case when
det(S,MAC

λ ,Bλ) = 0 whereS is the center ofΦ, i.e. when
λ satisfies the following equalityλ3 · r + λ2 · dr + λ · r3−
dr3 = 0. Hence, the cubicΨAC

d touches the given circleΦ
once, or three times (see Fig. 3).

3.2 The circumcenter O

Again, for d ∈ R, let a family T(r,d) ∈ T be given. Fur-
thermore, letϒd be the locus of the circumcenterOd

λ of a
triangle∆λABC∈ T(r,d). Since the circumcenterOd

λ can be
calculated as the intersection point of the perpendicular bi-
sectors of the sidesAC andAB, if the circleΦ and tangent
t are given with (1), it yields

Oλ =
(

2r(d+2λ)
(

λ(λ +d)+ r2) : λ2(λ +d)2−

− r2
(

(λ +d)2+ λ2
)

−3r4 : 4rλ
(

(λ +d)+ r2) (8)

which parameterizes the rational symmetric quarticϒd
with equation

ϒd :
(

4x2−8r ·y−(d2+4r2)
)2

= 16r2(d2+4(r +y)2) (9)

Similar observations can be provided by the use of the tan-
gential familyT(r,d) as well as the further analysis of the
obtained curve.

Using the special triangles within the family we get the fol-
lowing. To the degenerated triangles∆−dABCand∆0ABC
in S1 the circumcentersO0 =

(

d
2 ,− 1

4r (d
2 + 3r2)

)

and
O−d =

(

− d
2,− 1

4r (d
2 + 3r2)

)

are associated lying at the
perpendicular bisectors of the segmentAB. They are sym-
metric with respect to the axis of symmetryot .
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Figure 3

In S2, we get the circumcentersOλ1
= Oλ2

= O∞ = (0 : 1 :
0), whereλ1 andλ2 are given with (3), coinciding with the
ideal pointO∞ of ot . It is the cuspidal point of a quartic if
d2 = 4r2, the nodal point ifd2 > 4r2 and the isolated point
if d2 < 4r2. In the case S3, asλ converges to the infinity,
the circumcenter converges to the pointO∞ as well. Thus,
it is actually the triple point ofϒd belonging also to the cir-
cumcenter of the special triangle∆∞ABCat which the line
f touches the obtained symmetric quartic.

We can state:

Theorem 3 The circumcenter Od of the triangle∆ABC∈
T(r,d) lies on a rational symmetric quarticϒd with a triple

point at infinity. It is the cuspidal point if d2 = 4r2, the
nodal point if d2 > 4r2 and the isolated point if d2 < 4r2.
One of the tangents at the quartic triple point is the infin-
ity line, while the other two are perpendicular to the given
tangent t.

Fig. 4 displays some conicsΓd of the one–parameter fam-
ily P = {Γd : d ∈ R} and associated quarticsϒd belong-
ing to the one–parameter familyO = {ϒd : d ∈ R}. Those
curve appear as traces of a circumcenter and vertex of a
tangential triangle∆ABC within the family T(r,d) associ-
ated to the given circleΦ and its tangentt for some real
numberd.
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Figure 4
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