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ABSTRACT

We introduce the new notion of sydpoints into projec-

tive triangle geometry with respect to a general bilinear

form. These are analogs of midpoints, and allow us to ex-

tend hyperbolic triangle geometry to non-classical triangles

with points inside and outside of the null conic. Surprising

analogs of circumcircles may be defined, involving the ap-

pearance of pairs of twin circles, yielding in general eight

circles with interesting intersection properties.

Key words: universal hyperbolic geometry, triangle geo-

metry, projective geometry, bilinear form, sydpoints, twin

circumcircles

MSC 2000: 51M10, 14N99, 51E99

Univerzalna hiperbolǐcka geometrija IV: sidtočke

i kružnice blizanke

SAŽETAK

Uvodimo novi pojam sidtočaka u projektivnu geometriju

trokuta s obzirom na opću bilinearnu formu. One su anal-

ogoni polovǐsta i dopuštaju nam proširiti hiperboličku ge-

ometriju trokuta ka neklasičnim trokutima s točkama un-

utar i van apsolutne konike. Mogu se definirati neočekivani

analogoni opisanih kružnica koji uključuju pojavljivanje

kružnica blizanki što vodi ka osam kružnica sa zanimljivim

svojstvima presjeka.

Ključne riječi: univerzalna hiperbolička geometrija, geo-

metrija trokuta, projektivna geometrija, bilinearna forma,

sidtočka, kružnice blizanke

1 Introduction

In this paper we continue a study of hyperbolic triangle
geometry, parallel to, but with different features to the Eu-
clidean case laid out in [5] and [6], and in a related but
different direction from [9], [10] and [11], using the frame-
work of Universal hyperbolic geometry (UHG), developed
by Wildberger in [13], [14], [15] and [16]. We study the
new notion ofsydpoints sof a sideab—this is analogous
and somewhat complementary to the more familiar notion
of midpoints m; the related idea oftwin circumcirclesof a
triangle; and introducecircumlinear coordinatesto build
up the Circumcenter hierarchy of a triangle, treating mid-
points and sydpoints uniformly.
In [16] we saw that if each of the three sides of a triangle
(in UHG) has midpointsm, then these six points lie three
at a time on four circumlinesC, whose duals are the four
circumcenters c. These are the centers of the fourcircum-
circleswhich pass through the three points of the triangle.
This is shown for a classical triangle in Figure 1, where
the larger blue circle is thenull circle defining the metri-
cal structure, together with themidlines M—traditionally
called perpendicular bisectors. While the red circumcircle

is a classical circle in the Cayley Beltrami Klein model of
hyperbolic geometry, the other three are usually described
as curves of constant width, but for us they areall just
circles. This is the start of the Circumcenter hierarchy in
UHG.

Figure 1: Midpoints, Midlines, Circumlines, Circumcen-
ters and Circumcircles

Remarkably, much of this extends also to triangles with
points both interior and exterior to the null circle, but we
also find new phenomenon relating to circumcircles, that
suggest a reconsideration of the classical case above.
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The fundamental metrical notion between points in UHG
is thequadrance q, and a midpoint ofab is a pointmonab
satisfyingq(a,m) = q(b,m). Our key new concept is the
following: a sydpoint of ab is a pointsonabsatisfying

q(a,s) = −q(b,s) .

While the existence of midpoints is equivalent to 1−
q(a,b) being a square in the field, the existence of syd-
points is equivalent toq(a,b)−1 being a square. As with
midpoints, if sydpoints exist there are generally two of
them.

Figure 2: A non-classical triangle with both midpoints
and sydpoints

In Figure 2, the non-classical trianglea1a2a3 has one side
a1a2 with midpointsm whose duals aremidlines M, and
two sidesa1a3 anda2a3 with sydpointss whose duals are
sydlines S. The six midpoints and sydpoints lie three at a
time on fourcircumlines C, whose duals are the fourcir-
cumcenters c. The connection between these new circum-
centers and the idea of circumcircles is particularly inter-
esting, since in this case it is impossible to findanycircles
which pass through all three points of the trianglea1a2a3.

In UHG circles can often be paired: two circles aretwins if
they share the same center and their quadrances sum to 2.
The circumcentersc are the centers oftwin circumcircles
passing through collectively the three points of the triangle.
This notion extends our understanding even in the classical
case. The four pairs of twin circumcircles give eightgener-
alized circumcircles(even for the classical case), and these
meet in a surprising way in theCircumMeet points, some
of which pleasantly depend only the side of the triangle on
which they lie.

Figure 3: Four twin circumcircles of a non-classical tri-
angle

In Figure 3 we see the twin circumcircles of the triangle
of the previous Figure; some of these appear in this model
as hyperbolas tangent to the null circle—these are invisible
in classical hyperbolic geometry, but have a natural inter-
pretation in terms of hyperboloids of one sheet in three-
dimensional space (DeSitter space).
The other main contribution of this paper is in setting up
circumlinear coordinates. UHG is more algebraic than the
classical theory ([2], [1], [3], [4], [8]), emphasizing a pro-
jective metrical formulation without transcendental func-
tions for Cayley-Klein geometries, valid both inside and
outside the usual null circle (or absolute), and working
over a general field, generally not of characteristic two. In
[16], triangle geometry was studied in the more general
setting of a projective plane over a field, with a metrical
structure induced by a symmetric bilinear form on the as-
sociated three-dimensional vector space, or equivalentlya
general conic playing the role of the null circle or absolute.
That paper focussed onortholinear coordinates, and gave
derivations for many initial constructions in the Incenter
hierarchy, and only dual statements for the corresponding
results for the Circumcenter hierarchy.
In this paper we introduce the complementarycircumlin-
ear coordinates, which are well suited for studying mid-
points and sydpoints simultaneously. Finding formulas for
key points and lines is, as always, a main aim. If the tri-
anglea1a2a3 has either midpoints or sydpoints for each
of its sides, a change of coordinates allows us to write
a1 = [1 : 0 : 0], a2 = [0 : 1 : 0] anda3 = [0 : 0 : 1], with the
bilinear form given by a matrix

C =




1 a b
a 1 c
b c ε


 (1)

whereε2 = ±1. We reformulate formulas of the Ortho-
center hierarchy of ([16]) using circumlinear coordinates,
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including theOrthoaxis Awith the five important points
h,s,b,x andz, and then turn to the Circumcenter hierarchy,
studyingMedians, Centroids, CircumCentroids, CircumD-
ual points, Tangent lines, Jay lines, Wren lines, Circum-
Meet pointsand some new associated points and lines, and
finish with a nice correspondence between the Circumcen-
ters and fourSound conicspassing two at a time through
the twelveSound points. Note that when we study a par-
ticular triangle, we adopt the convention of Capitalizing
major points and lines of that Triangle. Although the paper
is one of a series, we have tried to make it largely self-
contained.

1.1 Projective duality and midpoint constructions

One can approach Universal Hyperbolic Geometry from
either a synthetic projective geometry or an analytic linear
algebra point of view; both are useful, and they shed light
on each other. In this section we give a synthetic introduc-
tion useful for dynamic geometry packages such as GSP,
C.a.R., Cabri, GeoGebra and Cinderella. We work in the
projective plane over a field, which in our pictures will be
the rational numbers, with a distinguished conic, called the
null circle , but elsewhere also theabsolute. In our pic-
tures, this will be the familiar unit circle, always in blue,
with points lying on it callednull points.

Figure 4: Duals and perpendicularity

The key duality, or polarity, between points and lines in-
duced by the null circle allows a notion of perpendicular-
ity: two pointsa andb areperpendicular, written a⊥ b,
precisely whenb lies on the dual ofa, or converselya
lies on the dual ofb (these are equivalent), and similarly
two linesL andM areperpendicular, writtenL ⊥ M, pre-
cisely whenL passes through the dual ofM, or conversely
M passes through the dual ofL.
In Figure 4 we see a construction for thedualof a pointd;
this is the lineD formed by the other two diagonalsn and
m of any null quadrangle for whichd is a diagonal point.
Thend is perpendicular to any point onD ≡ nm, and any
line throughd is perpendicular toD. To construct the dual
of a lineL, take the meet of the duals of any two points on
it.

The basic isometries in such a geometry are reflections in
points (or reflections in lines—these two notions turn out
to be the same). Ifm is not a null point, the reflectionrm

in m interchanges the two null points on any line through
m, should there be such. In Figure 5 for example,rm in-
terchangesx andw, and interchangesy andz. It is then a
remarkable and fundamental fact thatrm extends to a pro-
jective transformation: to find the image of a pointa, con-
struct any line througha which meets the null circle at two
points, sayx andy, then find the images ofx andy under
rm, namelyw andz, and then definerm(a) = b≡ (am)(wz)
as shown. Perpendicularity of both points and lines is pre-
served byrm.

Figure 5: Reflection rm in m sends a to b

The notion of reflection allows us to define midpoints with-
out metrical measurements: ifrm(a) = b then we may say
thatm is amidpoint of the sideab. To construct the mid-
points of a sideab, when they exist (this is essentially a
quadratic condition), we essentially invert the above con-
struction.

Figure 6: Constructing midpoints m and n of the sideab
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Figure 6 shows two situations where we can construct mid-
pointsm andn of the sideab, at least approximately over
the rational numbers, which is the orientation of Geome-
ter’s Sketchpad and other dynamic geometry packages. In
the top diagram, we take the dualc of the lineab, and if
the linesac andbc meet the null circle we take the other
two diagonal points of this null quadrangle. This is also the
case in Figure 4. In the bottom diagram, the linesac and
bcdo not meet the null circle, but the dual linesA andB of
a andb, which necessarily pass throughc, do meet the null
circle in a quadrangle, whose other diagonal points are the
required midpointsm andn.
To define a circleC in this projective setting, suppose that
c and p are points; then the locus of the reflectionsrx (p)
asx runs along the dual line ofc is thecircle with center
c throughp. This projective definition immediately gives
a correspondence between a circle and a line. Of course
there is also a metrical definition, once we have set up
quadrance and spread.

2 Metrical projective linear algebra

While the synthetic framework is attractive, for explicit
computations and formulas it is useful to work with ana-
lytic geometry in the context of (projective) linear algebra.
Our strategy, as in [16], will be to set up coordinates so
that our basic triangle is as simple as possible, and all the
complexity resides in the bilinear form. We begin with
establishing some notation and basic results in the affine
setting, although the projective setting is the main interest.
The three-dimensional vector spaceV over a fieldF, of
characteristic not two, consists of row vectorsv = (x,y,z)
or equivalently 1×3 matrices

(
x y z

)
. A metrical struc-

ture is determined by asymmetric bilinear form

v ·u = vu≡ vCuT

whereC is an invertible symmetric 3× 3 matrix. Note
in particular our use of the algebraic notationvu. The
dual vector spaceV∗ may be viewed as column vectors
f = (l ,m,n)T or equivalently 3×1 matrices.
Vectorsv, u areperpendicular precisely whenv·u = vu=
0. Thequadranceof a vectorv is the numberQv ≡ v ·v=
v2. A vectorv is null precisely whenQv = v2 = 0.
A variant of the following also appears in [7].

Theorem 1 (Parallel vectors) If vectors v and u are par-
allel then

QvQu = (vu)2 . (2)

Conversely if (2) holds then either v and u are parallel, or
the bilinear form restricted to the span of u and v is degen-
erate.

Proof. Consider a two-dimensional space containingv and
u and the bilinear form restricted to it, given by a matrix

C̃ =

(
a b
b c

)
with respect to some basis. If in this basis

v = (x,y) andu = (u,v), then we may calculate that

QvQu−(vu)2 =−
(xv−yu)4(

ac−b2
)2

(au2+2buv+cv2)2 (ax2 +2bxy+cy2)2 .

So if vandu are parallel, the left hand side is zero, and con-
versely if the left hand side is zero, then eitherac−b2 6= 0
in which case the bilinear form restricted to the span ofv
andu is degenerate, orxv−yu= 0, meaning that the vec-
torsv andu are parallel. �

The previous result motivates the following measure of the
non-parallelism of two vectors. The(affine) spreadbe-
tween non-null vectorsv andu is the number

s(v,u) ≡ 1−
(vu)2

QvQu
.

The spread is unchanged if eitherv or u are multiplied by
a non-zero number.

2.1 Basic notation and definitions

One-dimensional and two-dimensional subspaces ofV =
F

3 may be viewed as the basic objects forming the pro-
jective plane, with metrical notions coming from the affine
notions of quadrance and spread in the associated vector
space, but we prefer to give independent definitions so that
logically neither the affine nor projective settings have pri-
ority. In general our notation in the projective setting is
oppositeto that in the affine setting, in the sense that the
roles of small and capital letters are reversed throughout.
A (projective) point is a proportiona= [x : y : z] in square
brackets, or equivalently a projective row vectora =[
x y z

]
where the square brackets in the latter are inter-

preted projectively: unchanged if multiplied by a non-zero
number. A (projective) line is a proportionL = 〈l : m : n〉
in pointed brackets, or equivalently a projective column
vector

L =




l
m
n


 .

When the context is clear, we refer to projective points and
projective lines simply aspoints andlines. Theincidence
between the pointa = [x : y : z] and the lineL = 〈l : m : n〉
is given by the relation

aL =
[
x y z

]



l
m
n


 = lx+my+nz= 0.

In such a case we saya lies onL, or L passes througha.
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The join a1a2 of distinct pointsa1 ≡ [x1 : y1 : z1] anda2 ≡
[x2 : y2 : z2] is the line

a1a2 ≡ [x1 : y1 : z1]× [x2 : y2 : z2]

≡ 〈y1z2−y2z1 : z1x2−z2x1 : x1y2−x2y1〉 . (3)

This is the unique line passing througha1 and a2. The
meet L1L2 of distinct linesL1 ≡ 〈l1 : m1 : n1〉 and L2 ≡
〈l2 : m2 : n2〉 is the point

L1L2 ≡ 〈l1 : m1 : n1〉× 〈l2 : m2 : n2〉

≡ [m1n2−m2n1 : n1l2−n2l1 : l1m2− l2m1] . (4)

This is the unique point lying onL1 andL2.
Three pointsa1,a2,a3 arecollinear precisely when they
lie on a line L; in this case we will sometimes write
L = a1a2a3. Similarly three linesL1,L2,L3 areconcurrent
precisely when they pass through a pointa; in this case we
will sometimes writea = L1L2L3.
It will be convenient to connect the affine and projective
frameworks by the following conventions. Ifv= (x,y,z) =(
x y z

)
is a vector, thena = [v] = [x : y : z] =

[
x y z

]

is theassociated projective point, andv is a representa-
tive vector for a. If f = (l ,m,n)T is a dual vector, then

L = [ f ] = 〈l : m : n〉 =
[
l m n

]T
is theassociated pro-

jective line, and f is arepresentative dual vectorfor L.

2.2 Projective quadrance and spread

If C is a symmetric invertible 3×3 matrix, with entries in
F, andD is its adjugate matrix (the inverse, up to a multi-
ple), then we denote byC andD the corresponding projec-
tive matrices, each defined up to a non-zero multiple. This
pair of projective matrices determine a metrical structure
on projective points and lines, as follows.
The (projective) pointsa1 anda2 areperpendicular pre-
cisely whena1CaT

2 = 0, writtena1 ⊥ a2. This is a sym-
metric relation, and is well-defined. Similarly (projec-
tive) lines L1 and L2 are perpendicular precisely when
LT

1 DL2 = 0, writtenL1 ⊥ L2. The pointa and the lineL
aredual precisely when

L = a⊥ ≡ CaT or equivalently a = L⊥ ≡ LTD. (5)

Then two points are perpendicular precisely whenone is
incident with the dual of the other,and similarly for two
lines. Soa1 ⊥ a2 precisely whena⊥1 ⊥ a⊥2 , because of the
projective relation

(
CaT

1

)T
D

(
CaT

2

)
=

(
a1CT)

D
(
CaT

2

)
= a1 (CD)

(
CaT

2

)

= a1CaT
2 .

A point a is null precisely when it is perpendicular to it-
self, that is, whenaCaT = 0, and a lineL is null precisely

when it is perpendicular to itself, that is, whenLTDL = 0.
The null points determine thenull conic, sometimes also
called theabsolute.
Hyperbolicandelliptic geometriesarise respectively from
the special cases

C = J ≡




1 0 0
0 1 0
0 0 −1


 = D and

C = I ≡




1 0 0
0 1 0
0 0 1



 = D. (6)

In the hyperbolic case, which forms the basis for almost
all examples in this paper, the pointa = [x : y : z] is null
precisely whenx2 + y2 − z2 = 0, and dually the lineL =
(l : m : n) is null precisely whenl2 + m2−n2 = 0. This is
the reason we can picture the null circle in affine coordi-
natesX ≡ x/zandY ≡ y/zas the (blue) circleX2+Y2 = 1.
Note that in the elliptic case the null circle, over the rational
numbers, has no points lying on it. This is why visualizing
hyperbolic geometry is often easier than elliptic geometry.
The bilinear forms determined byC and D can be used
to define the metrical structure in the associated pro-
jective setting. The dual notions of (projective) quad-
ranceq(a1,a2) between pointsa1 anda2, and (projective)
spreadS(L1,L2) between linesL1 andL2, are

q(a1,a2) ≡ 1−

(
a1CaT

2

)2

(
a1CaT

1

)(
a2CaT

2

) and

S(L1,L2) ≡ 1−

(
LT

1 DL2
)2

(
LT

1 DL1
)(

LT
2 DL2

) . (7)

While the numerators and denominators of these expres-
sions depend on choices of representative vectors and ma-
trices fora1,a2,C,L1,L2 andD, thequotients are indepen-
dent of scaling, so the overall expressions are indeed well-
defined projectively.Ifa1 = [v1], a2 = [v2], andL1 = [ f1],
L2 = [ f2], then we may write

q(a1,a2) = 1−
(v1 ·v2)

2

(v1 ·v1) (v2 ·v2)
and

S(L1,L2) = 1−
( f1� f2)

2

( f1� f1) ( f2� f2)

where we introduce the dual bilinear form on column vec-
tors by f1� f2 ≡ f T

1 D f2.
Clearly q(a,a) = 0 andS(L,L) = 0, while q(a1,a2) = 1
precisely whena1 ⊥ a2, and duallyS(L1,L2) = 1 precisely
whenL1 ⊥ L2. Then using (5)

S
(

a⊥1 ,a⊥2
)

= q(a1,a2) .
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In [14], we showed that both these metrical notions can
also be reformulated projectively and rationally using suit-
able cross ratios (and no transcendental functions!)
The following formula, introduced in [12], is is given in a
more general setting in [13].

Theorem 2 (Hyperbolic Triple quad formula) Suppose
that a1,a2,a3 are collinear points, with quadrances
q1 ≡ q(a2,a3), q2 ≡ q(a1,a3) and q3 ≡ q(a1,a2). Then

(q1 +q2+q3)
2 = 2

(
q2

1 +q2
2+q2

3

)
+4q1q2q3. (8)

Proof. We may assume at least two of the points distinct,
as otherwise the relation is trivial. Suppose that represen-
tative vectors are thenv1,v2 andv3 ≡ kv1+ lv2, with v1 and
v2 linearly independent. Consider just the two-dimensional
subspace spanned byv1 and v2. The bilinear form re-
stricted to the subspace spanned by the ordered basisv1,v2

is given by some symmetric matrix̃C =

(
a b
b c

)
. Then in

this basisv1 = (1,0), v2 = (0,1) andv3 = (k, l), and we
may compute that

q3 = s(v1,v2) =
ac−b2

ac

q2 = s(v1,v3) =
l2

(
ac−b2

)

a(ak2 +2bkl+cl2)

q1 = s(v2,v3) =
k2

(
ac−b2

)

c(ak2 +2bkl+cl2)
.

Then (8) is an identity. �

Here are a few useful consequences of the Triple quad for-
mula. If one of the quadrances isq3 = 1, thenq1 +q2 = 1;
this is a consequence of the identity

(q1 +q2+1)2−2q2
1−2q2

2−2−4q1q2 =−(q1 +q2−1)2 .

Also if two of the quadrances are equal, sayq1 = q2 = r,
thenq3 = 0 or q3 = 4r (1− r); this follows from the iden-
tity

(2r +q3)
2−4r2−2q2

3−4r2q3 = −q3
(
q3−4r +4r2) .

2.3 Midpoints of a side

Midpoints are defined very simply using the metrical struc-
ture.

Definition 1 A midpoint of a non-null sideab is a point m
lying on ab which satisfies

q(a,m) = q(b,m) .

We exclude null sides because every two points on such a
side have quadrance 0.

Theorem 3 (Side midpoints) Suppose that a and b are
distinct non-null points andab is a non-null side. Then
ab has a midpoint precisely when the quantity1−q(a,b)
is a square number. In this case, we may find represen-
tative vectors v and u for a and b respectively satisfying
v2 = u2, and then there are exactly two midpoints ofab,
namely m= [u+v] and n= [u−v]. These two midpoints
are perpendicular. Furthermore a,m,b,n form a harmonic
range.

Proof. Suppose thata = [v] andb = [u] so that

1−q(a,b) =
(vu)2

QvQu
.

A general pointmonabhas representative non-zero vector
w = kv+ lu. The conditionq(a,m) = q(b,m) amounts to

(vw)2

QvQw
=

(uw)2

QuQw
⇔ u2(

kv2 + l (vu)
)2

= v2(
k(vu)+ lu2)2

⇔ k2u2(
v2)2

+ l2 (vu)2u2 = k2v2 (vu)2 + l2v2(
u2)2

⇔
(

v2u2− (vu)2
)(

k2v2− l2u2) = 0.

If v2u2 = (vu)2 then by the Parallel vectors theorem either
v andu are parallel, which is impossible sincea andb are
distinct, or the bilinear form restricted to[v,u] is degener-
ate, which implies that the sideab is null. So a midpointm
exists precisely whenk2v2 = l2u2.
In this case sincea andb are non-null,v2 andu2 are non-
zero, sok andl are also, since by assumptionw= kv+ lu is
non-zero, and we may renormalizev andu so thatv2 = u2

(by for example setting̃v= kvandũ = lu, and then replac-
ing ṽ,ũ by v,u again).
After this renormalization 1− q(a,b) = (vu)2/

(
v2

)2
is

then a square, and there are two midpoints[v+u] and
[v−u]. Since(v+u)(v−u) = v2 −u2 = 0, the two mid-
points are perpendicular. It is well known that for any two
vectorsv andu, the four lines[v],[v+u],[u],[v−u] form a
harmonic range.
Conversely suppose that 1− q(a,b) = (vu)2/

(
v2u2

)
is a

square, sayr2. Then the ratio ofv2 to u2 is a square, sov
andu can be renormalized so thatv2 = u2, at which point
the above calculations show that[v+u] and[v−u] are both
midpoints. �

We can also relate this to hyperbolic trigonometry as in
[14]. If q(a,b) = r 6= 0, andm is a midpoint of the sideab
with q(a,m)= q(b,m)= q, then{r,q,q} satisfies the Triple
quad formula. So as we observed earlier,r = 4q(1−q),

and in particular 1− r = 1− 4q(1−q) = (2q−1)2 is a
square number.
The dual linesM andN of the midpointsmandn of a side
are called themidlines of the side. Sincem andn are per-
pendicular, these each pass through the other midpoint, and
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so might also be called theperpendicular bisectorsof the
side.
The dual concept of a midpoint of a side is the following.

Definition 2 A biline of a non-null vertexAB is a line L
passing through AB which satisfies

S(A,L) = S(B,L).

From duality the vertexABhas a biline precisely when the
quantity 1−S(A,B) is a square number, and in this case
we have exactly two bilines which are perpendicular. The
symmetry between midpoints and bilines is reflected in the
duality between the Incenter and Circumcenter hierarchies
in UHG. This notion of symmetry is absent in classical hy-
perbolic geometry, since there we always have only one
midpoint of a side and two bilines (usually called angle bi-
sectors); the number-theoretic considerations with the ex-
istence of these are generally invisible—the price of work-
ing over the “real numbers”!

2.4 Sydpoints of a side

Definition 3 A sydpoint of a non-null sideab is a point s
lying on ab which satisfies

q(a,s) = −q(b,s).

Note both the similarities and differences between the fol-
lowing theorem and the Side midpoints theorem.

Theorem 4 (Side sydpoints)Suppose that a and b are
distinct non-null points andab is a non-null side. Thenab
has a sydpoint precisely when q(a,b)−1 is a square num-
ber. In this case we can find representative vectors v and
u for a and b respectively satisfying v2 = −u2, and then
there are exactly two sydpoints ofab, namely s= [v+u]
and r= [v−u]. In such a case, a and b are also sydpoints
of the sidesr, and while s and r are not in general perpen-
dicular, we do have

q(a,s) = q(b, r) and q(a, r) = q(b,s).

Furthermore a,s,b, r form a harmonic range.

Proof. Suppose thata = [v] andb = [u] so that a general
point s= [w] on ab has representative vectorw = kv+ lu.
Then the relationq(a,s) = −q(b,s) amounts to

1−
(vw)2

QvQw
= −1+

(uw)2

QuQw

⇔ 2u2v2 (kv+lu)2−u2(kv2+l (vu)
)2

=v2(
k(vu)+ lu2)2

⇔ k2u2(
v2)2

+ l2
(
u2)2

v2−
(
k2v2 + l2u2)(vu)2 = 0

⇔
(

v2u2− (vu)2
)(

k2v2 + l2u2) = 0.

If v2u2 = (vu)2 then by the Parallel vectors theorem either
v andu are parallel, which is impossible sincea andb are
distinct, or the bilinear form restricted to[v,u] is degener-
ate, which implies that the sideab is null. So a sydpoints
exists precisely whenk2v2 = −l2u2. In this case we may
renormalizev andu so thatv2 = −u2, so thats≡ [v+u]
and r ≡ [v−u] are sydpoints. Ifq(a,s) = −q(b,s) = d,
q(a, r) = −q(b, r) = eand alsoq(r,s) = f , then the Triple
quad formula applied to{a, r,s} and{b, r,s} implies that
both

( f +d+e)2 = 2
(

f 2 +d2+e2)+4 f de and

( f −d−e)2 = 2
(

f 2 +d2+e2)+4 f de

which implies thatf +d+e= ±( f −d−e). Sincef 6= 0,
we conclude thatd = −e, which shows that

q(a,s) = q(b, r) and q(a, r) = q(b,s).

Now (v+u)(v−u) = v2−u2 = 2v2 so the two sydpointss
andr arenot in general perpendicular. However

(v+u)2 = v2 +2uv+u2 = 2uv and

(v−u)2 = v2−2uv+u2 = −2uv

so that(v+u)2 = −(v−u)2. By symmetry this implies
that[(v+u)+ (v−u)] = [2v] = a and[(v+u)− (v−u)] =
[−2u] = b are sydpoints ofrs. �

For a fixedq there is at most one sydpointsof ab for which
q(a,s) = q; the other sydpointr then satisfiesq(a, r) =
−q 6= q sinceq is non-zero.

Example 1 In the hyperbolic case, suppose that a=
[x : 0 : 1] and b= [y : 0 : 1]. Then from [14], Ex. 6

q(a,b) = −
(x−y)2

(1−x2) (1−y2)

and so midpoints m= [w : 0 : 1] and sydpoints s= [z : 0 : 1]
of ab exist precisely when

(
x2−1

)(
y2−1

)
= r2 and(

x2−1
)(

y2−1
)

= −t2 respectively, in which cases

w =
xy+1± r

x+y
and z=

(1−xy)(x+y)± t (x−y)
x2 +y2−2

.

So we see that algebraically sydpoints are somewhat more
complicated than midpoints in general.

Over the rational numbers, any non-null side either approx-
imately has midpoints or sydpoints, since being a square is
approximately the same as being positive.
There are a few related notions which are useful to define.
The dualsSandR of the sydpointssandr of a sideab are
the sydlinesof the sideab. They do not in general pass
through the sydpoints themselves. There is also a dual no-
tion to that of sydpoints of a side which applies to vertices.
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Definition 4 A siline of a vertexAB is a line L which
passes through AB and satisfies S(A,L) = −S(B,L).

Again by duality we deduce that a vertexAB has a siline
precisely when the quantityS(A,B)−1 is a square number,
and in this case there are exactly two silinesL andK of the
vertexAB. Then alsoA, B, L andK are a harmonic pencil
of lines. The duals of the silines are thesipointsof a vertex
AB.

2.5 The construction of Sydpoints

The following theorem is helpful in constructing sydpoints
using a dynamic geometry package.

Theorem 5 (Sydpoints null points) Suppose that the
non-null sideab has sydpoints s and r, and thatac has
midpoints m and n, where c= (ab)⊥. Then x≡ (mr) (bc)=
(ns)(bc) and y≡ (ms)(bc) = (nr)(bc) are null points.

Proof. Suppose thata = [v], b = [u] andc = [w]. Then
vw= uw= 0, sincec= (ab)⊥, and also sinceab is not null
v, u andw are independent. Ifac has midpoints, in which
case we may assume thatv2 = w2, these arem≡ [v+w]
andn ≡ [v−w]. If also ab has sydpoints, in which case
we may assume thatv2 = −u2, these ares = [v+u] and
r = [v−u]. Note that this renormalization can be made
independent of the previous one.
Now considerx≡ (mr) (bc). This is a point with a repre-
sentative vector of the formk(v+w)+ l (v−u) for some
numbersk andl . Sincex has a representative vector which
is also in the span ofu and w, it must be a multiple of
(v+w)− (v−u) = u+w. But then

(u+w)2 = u2 +2uw+w2 = 0

sinceuw= 0 andu2 = −w2. Sox is a null point, and simi-
larly for y. �

Figure 7: Construction of sydpoints ofab

We make some remarks that are useful for practical con-
structions involving Geometer’s Sketchpad, C.a.R., Cabri,
GeoGebra or Cinderella etc. To approximately construct
the sydpointsr ands of ab as in Figure 7, first construct

the dualc = (ab)⊥, then the midpointsm andn of ac, and
then use the null pointsx andy lying on bc as shown (we
are assuming these exist—for a dynamic geometry pack-
age, approximately is sufficient!
The required points ares= (nx)(ab) = (my)(ab) andr =
(ny)(ab) = (mx)(ab). Similarly, given the sydpointsr and
sof ab, aandb can be constructed as the sydpoints ofrsus-
ing the null pointsw andz lying on rc and the midpointsk
andl of cs, the required points area= (lz) (rs) = (kw) (rs)
andb = (lw) (rs) = (kz) (rs). So the construction of syd-
points can be reduced, at least in this kind of situation, to
computations of midpoints.
Once we establish the Circumlines theorem, it is interest-
ing that Figure 7 can be viewed as a limiting case applied
to the triangleabc—the null pointsx andy act as midpoints
of bc, somrx acts as a circumline.
Another useful construction is to find, given the pointb and
one of the sydpointss, the other pointa and the other syd-
point r as in Figure 8. First construct the dualc = (bs)⊥,
then find the midpointsk andl of cs. Use the null pointsu,t
lying onbkand the null pointsv,w lying onbl to construct
r = (cuv)(bs) anda = (lu)(bs) = (kv)(bs).
However by symmetry there is a second solution:r =
(cwt)(bs) anda=(lt )(bs)= (kw)(bs). Thus, we can think
of s andr as being the sydpoints of the sideab, ands and
r as the sydpoints of the sideab. Notice also thatb is a
midpoint of the siderr and similarlys is a midpoint of the
sideaa, and in factq(b, r) = q(b, r) = q(s,a) = q(s,a).

Figure 8: Constructing r and a (orr anda) from s and b

2.6 Twin circles

In the geometry we are studying, a circleC may be defined
as an equation of the formq(c,x) = k, for a fixed point
c called thecenter, and a fixed numberk called thequad-
ranceof the circle. We also writeC k

c for this circle, and say
that a pointa lies onthe circle precisely whenq(c,a) = k.
Since in this case the circle is also determined byc anda,
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we write C k
c = C

(a)
c . The bracket reminds us thata is not

unique.

Definition 5 Two circlesC1 andC2 with the same center c
and quadrances q1 and q2 are twins precisely when

q1 +q2 = 2.

We now show that twin circles are naturally connected with
sydpoints.

Theorem 6 (Sydpoint twin circle) If s is a sydpoint of

ab, and c lies on S≡ s⊥, then the circlesC (a)
c and C

(b)
c

are twins. Conversely ifC (a)
c and C

(b)
c are twins, then

s≡ c⊥ (ab) is a sydpoint ofab.

Proof. If s is a sydpoint ofab thenq(a,s) = q = −q(b,s)
for someq. Then sincec andsare perpendicular,q(c,s) =
1. Let d = s⊥ (ab). Then sinced ands are perpendicu-
lar, q(d,s) = 1, and thenq(a,d) = 1−q(a,s) = 1−q and
q(b,d) = 1− q(b,s) = 1+ q. So q(a,d) + q(b,d) = 2.
Now suppose thatq(c,d) = r. Then by Pythagoras’ theo-
rem (see [13], [14]) in the right trianglecdawe have

q(c,a) = r +(1−q)− r (1−q)

while in the right trianglecdbwe have

q(c,b) = r +(1+q)− r (1+q).

Then

q(c,a)+q(c,b) =

= r +(1−q)− r (1−q)+ r +(1+q)− r (1+q) = 2.

The argument can be reversed to show the converse.�

We note that the theorem has another possible interpreta-
tion: the locus of a pointc such thatq(a,c)+ q(b,c) = 2
is a line.

2.7 Constructions of twin circles

The Sydpoint twin circle theorem assists us to construct
twin circles; we generally expect this to reduce to finding
midpoints, but there are also some simpler scenarios. Sup-
pose we are given a circleC (in brown) with centerc as in
Figure 9. Choose an arbitrary pointa on the circleC and
constructC≡ c⊥, then lets be the meet ofac andC, andt
the meet ofA≡ a⊥ andC.
Now, we can apply the construction of Figure 8; suppose
that the sidest has midpointsm andn, and thatx andy are
null points onam, andzandw are null points onan. Then
b≡ (mz)(ac) = (ny)(ac) ande≡ (mw)(ac)= (nx)(ac) lie
on the twin circleD to C . Symmetry implies that we could
also used ≡ (mw) (ct) = (ny)(ct) and f ≡ (mz) (ct) =
(nx)(ct).

Figure 9: Constructing the twin circleD of C

Figure 10 shows another example of constructing the twin
D of a given circleC (in brown) with centerc. In this case
c is outside the null circle, so its dual lineC passes through
null pointsx andy (approximately—remember that a dy-
namic geometry package usually only deals with decimal
approximations, so the number-theoretical subtlety is di-
minished). Choose a pointa on C with dual lineA = a⊥.
Then the twin circleD (in red) is the locus of the point
b = (ax)A or the pointd = (ay)A asa moves alongC .

Figure 10:Another construction of a twin circle

The fact thatq(a,c)+ q(b,c) = 2 follows by applying ei-
ther the Nil Cross law ([14, Thm 80]) or the Null subtended
quadrance theorem ([14, Thm 90]) to the triangleabc. Sim-
ilarly, given the red circleD, its twin circleC (in brown)
can be constructed as the locus of the pointa = (bx)b⊥

when moving the pointb onD.
It should also be noted that we havenot at all established
that the twin of any circle necessarily exists. In fact over
the rational numbers, the twin circle of a given circle does
not always exist. For example over the rational numbers,
if c is inside the null circle, thenq(c,a) never takes on val-
ues in the range(0,1), but it can take on values in the range
(1,2).
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3 Circumlinear coordinates and the Ortho-
center hierarchy

In the paper ([16]) we focussed on ortholinear coordinates,
as the Orthocenter is arguably the most important point
in hyperbolic triangle geometry, and secondly on the In-
center hierarchy. In this paper we are primarily interested
in the Circumcenter hierarchy, and we introducecircum-
linear coordinatesto work efficiently with bothmidpoints
andsydpointssimultaneously. While triangle geometry in-
volving sydpoints will be new and somewhat unfamiliar,
the natural beauty and elegance of this theory is very com-
pelling indeed.
Suppose the bilinear formv · u = vAuT in the associated
three-dimensional vector spaceV = F

3 is given by a sym-
metric matrix A, and thatT : V → V is a linear trans-
formation given by an invertible 3× 3 matrix M, so that
T (v) = vM = w, with inverse matrixN, so thatwN = v.
The new bilinear form◦ defined by

w1 ◦w2 ≡ (w1N) · (w2N) = (w1N)A(w2N)T

= w1(NANT)wT
2 (9)

has matrixC = NANT .
So let us start with three (projective) pointsa1, a2 anda3

such thateach of the three sides of the trianglea1a2a3 has
either midpoints or sydpoints. That means we can find rep-
resentative vectorsv1, v2 andv3 in V so that for anyi and j,
v2

i = ±v2
j . There are two possibilities up to relabelling and

re-scaling: 1)v2
1 = v2

2 = v2
3 = 1 (this corresponds to three

midsides) and 2)v2
1 = v2

2 = −v2
3 = 1 (this corresponds to

one midside and two sydsides). We can incorporate both
situations at once by supposing that

v2
1 = v2

2 = εv2
3 = 1 where ε = ±1.

Now we can find a linear transformation to mapv1, v2

andv3 to the basis vectorse1 = (1,0,0), e2 = (0,1,0) and
e3 = (0,0,1) respectively. With respect to this new basis,
the bilinear form is then given by a new matrix of the form

C =




1 a b
a 1 c
b c ε



 with adjugate

D =




c2− ε aε−bc b−ac

aε−bc b2− ε c−ab
b−ac c−ab a2−1



 (10)

where the diagonal entries ofC ensure thate2
1 = e2

2 = 1 and
e2

3 = ε, and otherwisee1e2 = a, e1e3 = b ande2e3 = c are
arbitrary. So the metrical structure depends on the numbers
a, b andc and (the sign of)ε. Note that

det




1 a b
a 1 c
b c ε


 = −a2ε−b2−c2+ ε+2abc.

This quantity appears as a common factor in several of the
derivations of proportions in the paper, and since it is by as-
sumption non-zero, we simply cancel it without mention.

We now reformulate some of the formulas of the Ortho-
center hierarchy of ([16]) using circumlinear coordinates,
maintaining the convention of using capital letters for var-
ious constructions associated to a base triangle. The pro-
jective matrices corresponding toC andD are denotedC
andD respectively.

Our starting point is that the basic Trianglea1a2a3 has been
projectively transformed so that itsPointsare

a1 = [1 : 0 : 0] a2 = [0 : 1 : 0] a3 = [0 : 0 : 1] . (11)

TheLines of the Triangle are then

L1 = 〈1 : 0 : 0〉 L2 = 〈0 : 1 : 0〉 L3 = 〈0 : 0 : 1〉 .

The main assumption is that each of the three sides is either
a midside or a sydside, or possibly both, which we have
seen allows us to write the bilinear form using the projec-
tive matrices (10). The Triangle will have three midsides
if ε = 1, and two sydsides and one midside ifε = −1. The
computations are based on two basic operations:finding
joins and meets, which essentially amounts to taking cross
products as in (3) and (4); andfinding duals, either by mul-
tiplying transposes of points byC on the left, or transposes
of lines byD on the right as in (5).

Our goal is to establish formulas for important points and
lines to facilitate determining relationships between them:
the reader is encouraged to follow along and check our
computations, which are mostly elementary. Occasionally
we simplify a proportion by cancelling a common factor:
naturally this factor should not be zero, so we state this as
a condition.

3.1 Change of coordinates and the main example

Most of the diagrams in this paper deal with the particular
triangle in Figure 11 created with GSP, with affine points
a1 ≈ [−0.03959,0.15272], a2 ≈ [−0.20363,0.78056]
and a3 ≈ [−1.75344,0.19797], and corresponding rep-
resentative vectorsv1 ≈ (−0.237,0.914,5.985), v2 ≈
(−2.036,7.806,10) and v3 ≈ (−7.128,0.805,4.065).
These have been normalized so that

Qv1 = Qv2 = −Qv3

with respect to the bilinear formv · u ≡ vJuT , whereJ is
defined in (6).
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Figure 11:Basic example triangle with coordinates

We now show how to explicitly change coordinates, fol-
lowing Section 1.5 of [16]. The linear transformation
T(v) = vN, whereN is

N =



−0.237 0.914 5.985
−2.036 7.806 10
−7.128 0.805 4.065


 ,

sendse1 = (1,0,0), e2 = (0,1,0) ande3 = (0,0,1) to v1,
v2 andv3 respectively. The inverse matrixM = N−1 sends
the vectorsv1, v2 andv3 to e1, e2 ande3. Following (9),
after we apply the linear transformationT, J is replaced by
the matrix

C = NJNT ≈




1.0 1.495 0.627

1.495 1 0.568
0.627 0.568 −1



 with adjugate

D =




1.327 −1.851 −0.222
−1.851 1.393 −0.369
−0.222 −0.369 1.235



 .

We get the constants

a = 1.495 b = 0.627 c = 0.568 ε = −1.

As an example of how to explicitly apply the theorems
of this paper to our specific triangle, consider the mid-
points of the sidea1a2 in standard coordinates which are
m = n1+ = [1 : 1 : 0] and m = n1− = [1 :−1 : 0]. Multi-
ply by N and then renormalize so thatz= 1, to find these
midpoints in the original triangle to be

n1+ = [1 : 1 : 0]N =
[
−2.273 8.72 15.985

]

=
[
−0.142 0.546 1.0

]

n1− = [1 :−1 : 0]N =
[
1.799 −6.892 −4.015

]

=
[
−0.448 1.72 1.0

]
.

As another example, using the formulas from the Circum-
lines/Circumcenter theorem, we may similarly compute
that the circumcentersc, in agreement with Figure 11, are

c0 =
[
0.268 0.653 1.0

]
c1 =

[
−0.997 1.573 1.0

]

c2 =
[
0.249 1.898 1.0

]
c3 =

[
−1.308 0.241 1.0

]
.

3.2 Altitudes, Orthocenter and Orthic triangle

TheDual linesare

A1 ≡ a⊥1 = CaT
1 = 〈1 : a : b〉

A2 ≡ a⊥2 = CaT
2 = 〈a : 1 : c〉

A3 ≡ a⊥3 = CaT
3 = 〈b : c : ε〉 .

TheDual points are

l1 ≡ LT
1 D =

[
c2− ε : εa−bc : b−ac

]

l2 =
[
εa−bc: b2− ε : c−ab

]

l3 =
[
b−ac: c−ab : a2−1

]
.

TheAltitudes are

N1 ≡ a1l1 = 〈0 : ac−b : εa−bc〉
N2 ≡ a2l2 = 〈c−ab : 0 : bc− εa〉
N3 ≡ a3l3 = 〈ab−c : b−ac: 0〉

and theAltitude dual points are

n1 ≡ A1L1 = [0 :−b : a]
n2 ≡ A2L2 = [c : 0 :−a]
n3 ≡ A3L3 = [−c : b : 0] .

TheBase pointsare

b1 ≡ N1L1 = [0 : εa−bc: b−ac]
b2 ≡ N2L2 = [εa−bc : 0 : c−ab]
b3 ≡ N3L3 = [b−ac: c−ab : 0]

and theBase linesare

B1 ≡ n1l1 =
〈
b2−2abc+a2ε : a

(
ε−c2

)
: b

(
ε−c2

)〉

B2 ≡ n2l2 =
〈
a
(
ε−b2

)
: c2−2abc+a2ε : c

(
ε−b2

)〉

B3 ≡ n3l3 =
〈
b
(
1−a2

)
: c

(
1−a2

)
: b2−2abc+c2

〉
.

Figure 12:Altitudes, Orthocenter, Orthic triangle
and Base center b

Assumingaε−bc 6= 0, b−ac 6= 0 andc−ab 6= 0, theOr-
thic lines are

C1 ≡ b2b3 = 〈ab−c : b−ac: εa−bc〉

C2 ≡ b1b3 = 〈c−ab : ac−b : εa−bc〉

C3 ≡ b1b2 = 〈c−ab : b−ac: bc−aε〉.
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TheOrthic points are

c1 ≡ B2B3 =[
(
2ca2−ba−c

)
ε+c

(
2b2 +c2−3abc

)
:

: (ac−b)
(
b2− ε

)
: (bc−aε)

(
a2−1

)
]

c2 ≡ B1B3 =[(ab−c)
(
c2− ε

)
:
(
2ba2−ca−b

)
ε+

+b
(
b2+2c2−3abc

)
: (bc−aε)

(
a2−1

)
]

c3 ≡ B1B2 =[(ab−c)
(
c2− ε

)
: (ac−b)

(
b2− ε

)
:

: a
(
a2−1

)
ε+

(
2ab2−3a2bc+2ac2−bc

)
].

TheOrthocenter is arguably the most important point in
triangle geometry, it is

h≡ N1N2 = N2N3 = N1N3

= [(b−ac)(aε−bc):(c−ab)(aε−bc):(ac−b)(ab−c)] .

The dual line is theOrtholine

H ≡ n1n2 = n1n3 = n2n3 = 〈ab : ac : bc〉 .

TheOrthic triangle b1b2b3 is perspective with the Trian-
glea1a2a3 with center of perspectivity the Orthocenterh.

The Triangle Base center theoremstates that theOr-
thic dual triangle c1c2c3 is perspective with the Triangle
a1a2a3. The center of perspectivity is theBase center

b =
[
(ab−c)

(
c2− ε

)
:(ac−b)

(
b2−ε

)
:(bc−εa)

(
a2−1

)]

with dual line theBase axis

B = 〈c+ab : b+ac: εa+bc〉.

In Figure 12 we see the Altitudes, Orthocenterh and the
dual OrtholineH, the Orthic triangleb1b2b3, Orthic dual
trianglec1c2c3, base centerb and Base axisB.

3.3 Desargues points and the Orthoaxis

TheDesargues pointsare the meets of corresponding Or-
thic lines and Lines:

g1 ≡C1L1 = [0 : bc− εa : b−ac]

g2 ≡C2L2 = [bc− εa : 0 : c−ab]

g3 ≡C3L3 = [b−ac: ab−c : 0]

and the dualDesargues linesare

G1 =
〈
b2−a2ε : 2bc−ac2−aε : bc2 +bε−2acε

〉

G2 =
〈
2bc−ab2−aε : c2−a2ε : b2c+cε−2abε

〉

G3 =
〈
b+a2b−2ac: 2ab−c−a2c : b2−c2〉 .

Figure 13: Desargues points, Orthic axis S and Or-
thoaxis A

Desargues’ theorem implies that the Desargues points
g1,g2,g3 are collinear. They lie on theOrthic axis

S= 〈ab−c : ac−b : bc−aε〉. (12)

Dually the Desargues linesG1,G2,G3 are concurrent, pass-
ing through theOrthostar

s=




(
2ca2−3ba+c

)
ε+c

(
2b2−c2−abc

)
:(

2ba2−3ca+b
)

ε−b
(
b2−2c2+abc

)
:

a
(
1−a2

)
ε+

(
2ab2−a2bc+2ac2−3bc

)


 .

TheOrthoaxis A, introduced in [16], is arguably the most
important line in hyperbolic triangle geometry; it and its
dual theOrthoaxis point a are

A≡ sh=〈(ab−c)
(
a2ε−b2) : (b−ac)

(
a2ε−c2) :

: (bc−aε)
(
b2−c2)〉

a≡ SH=
[
c
(
a2ε−b2) : b

(
c2− εa2) : a

(
b2−c2)] .

TheBase center on Orthoaxis theoremasserts that the Or-
thoaxisA passes through the Base centerb.

3.4 Parallels and the Double triangle

Recall from [14] that theparallel line P through a point
a to a line L is the line througha perpendicular to the al-
titude from a to L. This motivates the definition of the
Double triangle of a Triangle. TheParallel lines

P1 ≡ a1n1 = 〈0 : a : b〉

P2 ≡ a2n2 = 〈a : 0 : c〉

P3 ≡ a3n3 = 〈b : c : 0〉

are the joins of corresponding Pointsa and Altitude points
n, and their duals are theParallel points

p1 =
[
b2−2abc+a2ε : bc−aε : ac−b

]

p2 =
[
bc−aε : c2−2abc+a2ε : ab−c

]

p3 =
[
ε(ac−b) : ε(ab−c) : b2−2abc+c2] .
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Assuminga 6= 0, b 6= 0 andc 6= 0, the meets of Parallel
lines are theDouble points

d1 ≡ P2P3 = [−c : b : a]

d2 ≡ P1P3 = [c : −b : a]

d3 ≡ P1P2 = [c : b : −a]

and their duals are theDouble lines

D1 ≡ p2p3 = 〈2ab−c : b : εa〉

D2 ≡ p1p3 = 〈c : 2ac−b : εa〉

D3 ≡ p1p2 = 〈c : b : 2bc− εa〉.

Figure 14: The Double triangle, Orthoaxis A, and the
points z,b,x,h and s

We give here another proof of the following result, involv-
ing a simpler computation than in [16].

Theorem 7 (Double triangle midpoint) The Points a1,
a2, a3 are midpoints of the Double triangled1d2d3.

Proof. We compute

q(d1,a3) =
−b2−c2 +2abc

a2−b2−c2+2abc
= q(d2,a3).

Similarly, a1 is a midpoint ofd2d3, anda2 is a midpoint of
d1d3. �

The Double triangle perspectivity theoremstates that the
Double triangled1d2d3 and the Trianglea1a2a3 are per-
spective from a point, theDouble point, or x point

x = [c : b : a]

which lies on the OrthoaxisA. The proof is very simple in
these coordinates: we compute that

a1d1 = 〈0 :−a : b〉

a2d2 = 〈a : 0 :−c〉

a3d3 = 〈−b : c : 0〉

and then observe that these lines meet atx.

The dual of thex point is theX line

X = 〈2ab+c : 2ac+b : 2bc+aε〉.

TheDouble dual triangle perspectivity theoremasserts that
the Double triangled1d2d3 and the Dual trianglel1l2l3
are perspective from a point, theDouble dual point, or
zpoint

z=




(
ca2−2ba+c

)
ε+c

(
b2−c2

)
:(

ba2−2ca+b
)

ε−b
(
b2−c2

)
:

a
(
1−a2

)
ε+ab2−2bc+ac2


 .

Its dual is theZ line

Z = 〈c : b : εa〉 .

Thezpoint lies on the OrthoaxisA, or equivalently the Or-
thoaxis pointa lies on theZ line.

4 The Circumcenter hierarchy

We now begin the study of the Circumcenter hierarchy.
The basic assumption that we used to set up circumlinear
coordinates was that each side of the triangle was either a
midside or a sydside. We wish to treat both cases symmet-
rically, hence we introduce the notion that asmydpoint n
of the sideab is either a midpoint or a sydpoint (or pos-
sibly both). Smydpoints exists precisely when 1−q(a,b)
is either a square or the negative of a square (or possibly
both). Our diagrams will illustrate the situation when one
side has midpoints and the other two sides have sydpoints.
We introduce consistent labelling to bring out the four-fold
symmetry in this situation.

4.1 Circumcenters, medians and centroids

By the Side midpoints and Side sydpoints theorems, in Cir-
cumlinear coordinates the smydpoints are

n1+ = [0 : 1 : 1] andn1− = [0 :−1 : 1] ona2a3

n2+ = [1 : 0 : 1] andn2− = [1 : 0 :−1] ona1a3

n3+ = [1 : 1 : 0] andn3− = [1 :−1 : 0] ona1a2.

Note that the indices of our labelling reflect the positions
and relative signs of the non-zero entries.

Theorem 8 (Circumlines/Circumcenters) The six Smyd-
points lie three at a time on fourCircumlines

C0 ≡ n1−n2−n3− = 〈1 : 1 : 1〉

C1 ≡ n1−n2+n3+ = 〈−1 : 1 : 1〉

C2 ≡ n2−n1+n3+ = 〈1 :−1 : 1〉

C3 ≡ n3−n1+n2+ = 〈1 : 1 :−1〉 .

The duals are theCircumcenters
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c0 = C⊥
0 =




(a−1)ε−c(a+b−c)+b :
(a−1)ε−b(a−b+c)+c :

(a−1)(a−b−c+1)





c1 = C⊥
1 =




(a+1)ε−c(a+b+c)+b :
c− (a+1)ε−b(a−b−c) :

(a+1)(a−b+c−1)





c2 = C⊥
2 =




b− (a+1)ε−c(a−b−c) :
(a+1)ε−b(a+b+c)+c :

(a+1)(a+b−c−1)





c3 = C⊥
3 =




b− (a−1)ε−c(a−b+c) :
c− (a−1)ε−b(a+b−c) :

(a−1)(a+b+c+1)



 .

Proof. The formulas for the Circumlines can be checked
immediately, the Circumcenter formulas are computations
using duality. �

Figure 15: Circumlines, Circumcenters, Medians and Cen-
troids

Median lines (or just medians) are joins of Pointsa and
Smydpointsn which lie on the opposite lines:

D1− ≡ a1n1− = 〈0 : 1 : 1〉 D1+ ≡ a1n1+ = 〈0 :−1 : 1〉

D2+ ≡ a2n2+ = 〈1 : 0 :−1〉 D2− ≡ a2n2− = 〈1 : 0 : 1〉

D3− ≡ a3n3− = 〈1 : 1 : 0〉 D3+ ≡ a3n3+ = 〈−1 : 1 : 0〉 .

Figure 15 shows the six Medians and their meets.

Theorem 9 (Centroids) The Median lines D are concur-
rent in threes, meeting at fourCentroid points

g0 ≡ D1+D2+D3+ = [1 : 1 : 1]

g1 ≡ D1+D2−D3− = [−1 : 1 : 1]

g2 ≡ D1−D2+D3− = [1 :−1 : 1]

g3 ≡ D1−D2−D3+ = [1 : 1 :−1] .

The dualCentroid lines are

G0 = 〈a+b+1 : a+c+1 : b+c+ ε〉
G1 = 〈a+b−1 : c−a+1 : c−b+ ε〉
G2 = 〈b−a+1 : a+c−1 : b−c+ ε〉
G3 = 〈a−b+1 : a−c+1 : b+c− ε〉.

Proof. Straightforward. �

4.2 CircumCentroids

While many aspects of the Circumcenter hierarchy are in-
dependent ofε, there are some that are not. The following
is an extension of the similarly named result in [16].

Theorem 10 (CircumCentroid axis) The meets of corre-
sponding Circumlines and Centroid lines are collinear pre-
cisely when either b= ±c or ε = 1. If ε = 1, the common
line is the Z axis〈c : b : εa〉, and the joins of corresponding
Circumcenters and Centroid points meet at the z point. If
b = c, then the common line is〈b : b : a+ ε−1〉, while if
b = −c, then the common line is〈−b : b : a− ε+1〉.

Proof. The meets of CircumlinesC0,C1,C2,C3 and cor-
responding Centroid linesG0,G1,G2,G3 are the fourCir-
cumCentroid points

z0 ≡C0G0 = [a−b− ε+1 : c−a+ ε−1 : b−c]

z1 ≡C1G1 = [b−a− ε+1 : 1−a−c− ε : b+c]

z2 ≡C2G2 = [1−a−b− ε : c−a− ε+1 : b+c]

z3 ≡C3G3 = [a+b− ε+1 : ε−a−c−1 : b−c] .

The determinants

det




a−b− ε+1 c−a+ ε−1 b−c
b−a− ε+1 1−a−c− ε b+c
1−a−b− ε c−a− ε+1 b+c





= −4
(
b2−c2)(ε−1)

det




a−b− ε+1 c−a+ ε−1 b−c
1−a−b− ε c−a− ε+1 b+c
a+b− ε+1 ε−a−c−1 b−c




= 4
(
b2−c2)(ε−1)

show that the CircumCentroid points are collinear pre-
cisely whenε = 1 or b = ±c. If ε = 1 the common
line is 〈c : b : a〉 which in this case agrees withZ =
〈c : b : εa〉. If b = c we can check that the common line
is 〈b : b : a+ ε−1〉, and if b = −c the common line is
〈−b : b : a− ε+1〉. �
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4.3 Twin Circumcircles of a Triangle

If a triangle has three midsides, then corresponding Cir-
cumcenters will be centers of circles which pass through
all three points, as in the classical triangle in Figure 1. This
situation also holds for a triangle such asa1a2a3 in Figure
16, lying outside the null circle (still in blue) shown with
three of its Midpointsm, (the other three are off the page),
six MidlinesM, three of the four CircumlinesC, the four
Circumcentersc, and the corresponding Circumcircles.

Figure 16: Circumcenters of a triangle outside the null cir-
cle

But what happens if a triangle has some points inside and
some outside the null circle? In that case it turns out that
we need to consider specialpairs of circles, which collec-
tively play the role of circumcircles. We do not know of
any classical precedents for this phenomenon.

Definition 6 Twin circlesC andC are twin circumcircles
for a trianglea1a2a3 precisely when each of a1, a2, a3 lie
on eitherC or C .

Theorem 11 (Twin circumcircles) If a triangle a1a2a3
has smydpoints on all three sides, then the four circumcen-
ters c0,c1,c2,c3 are each the center of twin circumcircles
for a1a2a3.

Proof. If n is a smydpoint of the sideakal then its dual
n⊥ passes through two circumcenters, sayci andc j . Let’s
consider justci . If n is a sydpoint ofakal then the Sydpoint

twin circle theorem shows that the circlesC
(ak)
ci andC

(al )
ci

are twin circles. Ifn is a midpoint ofakal then the reflec-
tion rn interchangesak andal and fixes bothci andc j , so

thatC (ak)
ci andC

(al )
ci coincide.

Sinceci is perpendicular to two smydpoints on different
lines of the trianglea1a2a3, the argument can be repeated,
so that either there is one circle with center atci that passes

through all three points, or one of the twin circlesC
(ak)
ci and

C
(al )
ci also passes through the third point of the triangle, in

which case these are twin circumcircles. �

Now let’s introduce some labelling and explicit formulas.
Consider the circlesCi = C (a3)

i
centered atci and passing

througha3, for i = 0,1,2,3. Their equationsq(p,ci) =
q(ci ,a3) in a variable pointp = [x : y : z], can be written,
after factoring a common term−ε+a2ε+b2+c2−2abc,
as

C0: (1− ε)
(

x2 +y2
)

+2(a− ε)xy+2(b− ε)xz+2(c− ε)yz= 0

C1: (1− ε)
(

x2 +y2
)

+2(a+ ε)xy+2(b+ ε)xz+2(c− ε)yz= 0

C2: (1− ε)
(

x2 +y2
)

+2(a+ ε)xy+2(b− ε)xz+2(c+ ε)yz= 0

C3: (1− ε)
(

x2 +y2
)

+2(a− ε)xy+2(b+ ε)xz+2(c+ ε)yz= 0.

The respective twin circlesCi with equationsq(p,ci) =
2−q(ci,a3) can be written as

C 0 : (1+ ε)
(
x2 +y2)+2εz2+2(a+ ε)xy

+2(b+ ε)xz+2(c+ ε)yz= 0

C 1 : (1+ ε)
(
x2 +y2)+2εz2+2(a− ε)xy

+2(b− ε)xz+2(c+ ε)yz= 0

C 2 : (1+ ε)
(
x2 +y2)+2εz2+2(a− ε)xy

+2(b+ ε)xz+2(c− ε)yz= 0

C 3 : (1+ ε)
(
x2 +y2)+2εz2+2(a+ ε)xy

+2(b− ε)xz+2(c− ε)yz= 0.

If ε = 1, then each of the four circumcirclesCi passes
through all three points of the triangle, while their twins
C i pass through none of the points of the triangle; even so,
their presence is felt.

In Figure 17 we see a trianglea1a2a3 with all three points
inside the null circle, together with its four pairs of twin
circumcircles, each pair with the same colour. The reader
might enjoy looking for interesting relations between these
circles.

Figure 17: Twin circumcircles for a classical triangle
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4.4 CircumDual points, Tangent lines and Sound
points

If ε = −1, then the circumcirclesCi pass only throughc3,

while the twinsC i pass throughc1 andc2. In each case we
have four twin circumcircle pairs of the Triangle. These
eight circles are shown for our standard example Triangle
in Figure 18, along with the Tangent lines, which we now
introduce.

Figure 18: Twin Circumcircles and Tangent lines

The CircumDual point pi j is the meet of the Dual line
Ai and the CircumlineCj , for i = 1,2,3 and j = 0,1,2,3.
Then

p10=[a−b : b−1 :−a+1] p20=[c−1 : a−c : −a+1]

p11=[a−b : −b−1 : a+1] p21=[1−c : −a−c : a+1]

p12=[a+b : b−1 :−a−1] p22=[c+1 : c−a : −a−1]

p13=[−a−b : b+1 : 1−a] p23=[−c−1 : a+c : a−1]

p30 = [ε−c : b− ε : −b+c]

p31 = [c− ε : −b− ε : b+c]

p32 = [−c− ε : b− ε : b+c]

p33 = [−c− ε : b+ ε : b−c].

TheTangent line Ti j is the join of the CircumDual point
pi j and the pointai. This line is indeed tangent to the cir-
cumcircleCi at the pointai if this circle passes throughai .
The twelve Tangent lines are:

T10 = 〈0 : a−1 : b−1〉 T20 = 〈a−1 : 0 :c−1〉

T11 = 〈0 : a+1 : b+1〉 T21 = 〈a+1 : 0 :c−1〉

T12 = 〈0 : a+1 : b−1〉 T22 = 〈a+1 : 0 :c+1〉

T13 = 〈0 : a−1 : b+1〉 T23 = 〈a−1 : 0 :c+1〉

T30 = 〈b− ε : c− ε : 0〉

T31 = 〈b+ ε : c− ε : 0〉

T32 = 〈b− ε : c+ ε : 0〉

T33 = 〈b+ ε : c+ ε : 0〉 .

TheSound pointsi j is the meet of the Tangent lineTi j with
the opposite LineLi . The twelve Sound points are:

s10 = [0 : 1−b : a−1] s20 = [1−c : 0 : a−1]

s11 = [0 :−b−1 : a+1] s21 = [1−c : 0 : a+1]

s12 = [0 : 1−b : a+1] s22 = [−1−c : 0 : a+1]

s13 = [0 : b+1 : 1−a] s23 = [1+c : 0 : 1−a]

s30 = [ε−c : b− ε : 0]

s31 = [ε−c : b+ ε : 0]

s32 = [c+ ε : ε−b : 0]

s33 = [−c− ε : b+ ε : 0] .

Figure 19: CircumDual points and Sound points

4.5 Jay and Wren lines

In this section we begin to see more divergence between
the ε = 1 andε = −1 cases. In the latter case a symme-
try emerges between the Circumcentersc0 andc3, and be-
tweenc1 andc2.

Theorem 12 (Jay lines) If ε = 1 then the sets of Sound
points {s10,s20,s30}, {s11,s21,s31}, {s12,s22,s32} and
{s13,s23,s33} are each collinear, while ifε = −1 then
the sets of Sound points{s10,s20,s33}, {s11,s21,s32},
{s12,s22,s31} and{s13,s23,s30} are each collinear. In both
cases the common lines are respectively the fourJay lines

J0 = 〈(a−1)(b−1) : (a−1)(c−1) : (c−1)(b−1)〉

J1 = 〈(a+1)(b+1) : (a+1)(c−1) : (c−1)(b+1)〉

J2 = 〈(a+1)(b−1) : (a+1)(c+1) : (c+1)(b−1)〉

J3 = 〈(a−1)(b+1) : (a−1)(c+1) : (c+1)(b+1)〉 .

Proof. The forms of the Sound points and Jay lines make
verifying these incidences almost trivial. Note that chang-
ing the sign ofε interchangess30 with s33, ands31 with
s32. This explains why the two lists appear different in
these two cases. �
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In the case ofε = 1 we associate each triple of Sound points
to the Circumline which is involved in each term. In the
case ofε = −1 we associate each triple to the Circumline
which is involved intwoof the three elements of the triple.

There are four meets of Circumlines and associated Jay
lines calledCircumJay points, namely

t0 ≡C0J0=[(c−1)(a−b):(−b+1)(a−c):(a−1)(b−c)]

t1 ≡C1J1=[(c−1)(a−b):−(b+1)(a+c):(a+1)(b+c)]

t2 ≡C2J2=[(c+1)(a+b):(1−b)(a−c):−(a+1)(b+c)]

t3 ≡C3J3=[−(c+1)(a+b):(b+1)(a+c):(a−1)(b−c)] .

Note that these formulas are independent ofε.

Theorem 13 (CircumJay) The four CircumJay points
t0,t1,t2,t3 are collinear and lie on the line

T = 〈c+ab : b+ac: a+bc〉.

Whenε = 1 this coincides with the Base axis B. When
ε = −1, this is a new line which we call the Taxis. In
the case ofε = −1, T,B and L3 are concurrent at a new
point

t = [−(b+ac) : c+ab: 0] .

Proof. The CircumJay pointt0 lies onT since

(c−1)(a−b)(c+ab)+ (−b+1)(a−c)(b+ac)

+ (a−1)(b−c)(a+bc) = 0

and similarly for the other points. TheT axis agrees with
the Base axisB = 〈c+ab : b+ac: εa+bc〉 if ε = 1. For
ε = −1, the verification oft = TB is also straightforward,
and clearly it lies onL3. �

Theorem 14 (Wren lines) If ε = 1 then the sets of Sound
points {s11,s22,s33}, {s10,s32,s23}, {s31,s20,s13} and
{s21,s12,s30} are each collinear, while ifε = −1 then
the sets of Sound points{s11,s22,s30}, {s10,s23,s31},
{s13,s20,s32} and{s12,s21,s33} are each collinear. In both
cases the common lines are respectively the fourWren
lines

W0 = 〈(a+1)(b+1) : (a+1)(c+1) : (b+1)(c+1)〉

W1 = 〈(a−1)(b−1) : (c+1)(a−1) : (c+1)(b−1)〉

W2 = 〈(b+1)(a−1) : (a−1)(c−1) : (b+1)(c−1)〉

W3 = 〈(a+1)(b−1) : (a+1)(c−1) : (b−1)(c−1)〉 .

Proof. Again, with the formulas for Sound points and
Wren lines, it is straightforward to check incidences. As
with the Jay lines, changing the sign ofε interchangess03
with s33, ands13 with s23. �

Notice that each set of collinear Sound points is associated
to the Circumcenter which is not involved in the indices of

that group.CircumWren points are the meets of Circum-
lines and associated Wren lines. These points are

u0 ≡C0W0

= [(c+1)(a−b) : −(b+1)(a−c) : (a+1)(b−c)]

u1 ≡C1W1

= [(c+1)(a−b) : (−b+1)(a+c) : (a−1)(b+c)]

u2 ≡C2W2

= [(c−1)(a+b) : −(b+1)(a−c) : (−a+1)(b+c)]

u3 ≡C3W3

= [(−c+1)(a+b) : (b−1)(a+c) : (a+1)(b−c)] .

Figure 20: Jay lines J, Wren lines W, T,U,V axes and new
pointsa,u, t

Theorem 15 (CircumWren) The four CircumWren
points u0,u1,u2,u3 are collinear and lie on the line

U ≡ 〈ab−c : ac−b : bc−a〉.

Whenε = 1 this coincides with the Orthic axis S. When
ε =−1, this is a new line which we call the Uaxis. In case
ε = −1, S,U and L3 are concurrent in a new point

u = [ac−b : c−ab : 0] .

Proof. We may compute thatv0 lies onU since

(c+1)(a−b)(ab−c)− (b+1)(a−c)(ac−b)

+ (a+1)(b−c)(bc−a) = 0.

The other incidences are similar. From (12) we recall that
the Orthic axis has equationS= 〈ab−c : ac−b : bc−aε〉
which agrees withU precisely whenε = 1. Again the for-
mula foru is easy. �

In Figure 20 we see the CircumJay pointst j (dark blue)
on T, the CircumWren pointsu j (purple) onU, and the
JayWren pointsv j (yellow) onV.
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Theorem 16 (CircumJayWren) The lines U, T and H
are concurrent, and pass through

a≡
[
c
(
a2−b2) : b

(
c2−a2) : a

(
b2−c2)] . (13)

If ε = 1 then a agrees with the Orthoaxis point a=[
c
(
a2ε−b2

)
: b

(
c2− εa2

)
: a

(
b2−c2

)]
.

Proof. The concurrence of these lines follows from

det




ab−c ac−b bc−a
c+ab b+ac a+bc

ab ac bc


 = 0.

The common incidence with (13) is also readily checked.
The last statement is self-evident. �

There are fourJayWren points which are the meets of as-
sociated Jay lines and Wren lines:

v0=J0W0=
[(

c2−1
)
(a−b):

(
b2−1

)
(c−a):

(
a2−1

)
(b−c)

]

v1=J1W1=
[(

c2−1
)
(a−b) :

(
b2−1

)
(a+c):

(
1−a2)(b+c)

]

v2=J2W2=
[(

c2−1
)
(a+b) :

(
b2−1

)
(a−c):

(
1−a2)(b+c)

]

v3=J3W3=
[(

c2−1
)
(a+b):

(
1−b2)(a+c) :

(
a2−1

)
(b−c)

]
.

Theorem 17 (JayWren) The four JayWren points
v0,v1,v2,v3 are collinear and lie on theJayWren axis,
or the V line

V=
〈
c
(
b2−1

)(
a2−1

)
:b

(
c2−1

)(
a2−1

)
: a

(
c2−1

)(
b2−1

)〉
.

Proof. The JayWren pointv0 lies onV since

(
c2−1

)
(a−b)c

(
b2−1

)(
a2−1

)

−
(
b2−1

)
(a−c)b

(
c2−1

)(
a2−1

)

+
(
a2−1

)
(b−c)a

(
c2−1

)(
b2−1

)
= 0.

Checking the other incidences is similar. �

4.6 CircumMeets and reflections

One of the interesting features of this situation concerns the
meets of the eightgeneralized circumcirclesforming the
four twin circumcircles of a triangle with six smydpoints.
We establish easily a basic fact.

Figure 21: Circumcircles and CircumMeet points

Theorem 18 (Smydpoint reflection)Suppose that a gen-
eralized circumcircleC has center cj perpendicular to a
smydpoint n. If C passes through a point ak of the Trian-
gle, then it also passes through the reflection rn (ak).

Proof. If n is perpendicular toc j , then the reflectionrn in
n fixes the centerc j of C , and so fixesC . Thus ifC passes
throughak, it also passes throughrn (ak). �

This theorem helps explain why in Figure 21 the meets
of the generalized circumcircles lie either on the lines
of the Triangle, or on the Medians. We see that reflec-
tions of Points in Sydpoints are also interesting points of
the Triangle—in fact somewhat surprisingly these Circum-
Meet points are independent of the third Point of the Trian-
gle, and depend only on the particular side on which they
lie. The reader can verify with a dynamic geometry pack-
age that as we vary one point of the Triangle, the gener-
alized circumcircles move, but their meets on the opposite
Line do not.

In general meets of circles are complicated by number-
theoretical issues (circles do not have to meet, after all).
We conjecture that whenever generalized Circumcircles
meet, they do so either on Lines or Medians. We hope to
explain the more detailed structure of these CircumMeet
points in a future paper.

4.7 Sound conics

The twelve sound points are quite interesting, supporting
the linear structures of Jay and Wren lines. They also are
connected with four special conics in an interesting way,
each conic naturally also associated with a circumcenter.
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Figure 22: Sound conics

Theorem 19 The sextuples {s12,s13,s21,s23,s31,s32},
{s12,s13,s20,s22,s30,s33}, {s10,s11,s21,s23,s30,s33} and
{s10,s11,s20,s22,s31,s32} of sound points all lie on conics.
Each of these fourSound conics K j is associated to a
Circumcenter cj .

Proof. We compute the coefficients of the equation of the
(blue) conic

K0 : a1x2 +a2y2 +a3z
2 +a4xy+a5xz+a6yz= 0

passing through pointss12,s13,s21,s23,s31 by solving the
linear system

(1−b)2a2 +(a+1)2a3 +(1−b)(a+1)a6 = 0

(1+b)2a2 +(1−a)2a3 +(1+b)(1−a)a6 = 0

(1−c)2a1 +(a+1)2a3 +(1−c)(a+1)a5 = 0

(1+c)2a1 +(1−a)2a3 +(1+c)(1−a)a5 = 0

(ε−c)2a1 +(b+ ε)2a2 +(ε−c)(b+ ε)a4 = 0

This results in the values

a1 = (c+ ε)(b− ε)
(
b2−1

)(
a2−1

)

a2 = (c+ ε)(b− ε)
(
c2−1

)(
a2−1

)

a3 = (c+ ε)(b− ε)
(
c2−1

)(
b2−1

)

a4 = 2
(
a2−1

)
(bc+1)(bε−cε+bc−1)

a5 = 2(c+ ε)(b− ε)
(
b2−1

)
(ac+1)

a6 = 2(c+ ε)(b− ε)(ab+1)
(
c2−1

)
.

When substituting the coordinates ofs32 in the above equa-
tion with these coefficients, we obtain equality precisely
when
(
ε2−1

)(
a2−1

)
((b−c)

(
4bc+b2+c2 +2

)
ε

+(bc−1)
(
b2+c2−2

)
) = 0

which is true sinceε2 = 1.

By following the same argument, we can obtain the equa-
tions of the (red) conic

K1 : b1x2 +b2y2 +b3z
2 +b4xy+b5xz+b6yz= 0

throughs12,s13,s20,s22,s30,s33 with coefficients

b1 = (b+ ε)(c+ ε)
(
b2−1

)(
a2−1

)

b2 = (b+ ε)(c+ ε)
(
c2−1

)(
a2−1

)

b3 = (b+ ε)(c+ ε)
(
c2−1

)(
b2−1

)

b4 = 2(bc−1)
(
a2−1

)
(bε+cε+bc+1)

b5 = 2(b+ ε)(c+ ε)(ac−1)
(
b2−1

)

b6 = 2(b+ ε)(c+ ε)(ab+1)
(
c2−1

)
,

the (green) conic

K2 : c1x2 +c2y2 +c3z
2 +c4xy+c5xz+c6yz= 0

throughs10,s11,s21,s23,s30,s33 with coefficients

c1 = (c+ ε)(b+ ε)
(
b2−1

)(
a2−1

)

c2 = (c+ ε)(b+ ε)
(
c2−1

)(
a2−1

)

c3 = (c+ ε)(b+ ε)
(
c2−1

)(
b2−1

)

c4 = 2(bc−1)(bε+cε+bc+1)
(
a2−1

)

c5 = 2(c+ ε)(b+ ε)(ac+1)
(
b2−1

)

c6 = 2(c+ ε)(b+ ε)(ab−1)
(
c2−1

)
,

and the (brown) conic

K3 : d1x2 +d2y2 +d3z
2 +d4xy+d5xz+d6yz= 0

throughs10,s11,s20,s22,s31,s32 with coefficients

d1 = (c+ ε)(b− ε)
(
b2−1

)(
a2−1

)

d2 = (c+ ε)(b− ε)
(
c2−1

)(
a2−1

)

d3 = (c+ ε)(b− ε)
(
c2−1

)(
b2−1

)

d4 = 2(bc+1)(bε−cε+bc−1)
(
a2−1

)

d5 = 2(c+ ε)(b− ε)(ac−1)
(
b2−1

)

d6 = 2(c+ ε)(b− ε)(ab−1)
(
c2−1

)
.

We associate each Sound conicK j to the Circumcenterc j
not involved in any of the six Sound points lying on it.�

5 Further directions

We can now extend hyperbolic triangle geometry from
classical triangles to more general ones. Taking duals we
get also analogous results for the Incenter hierarchy, and it
is worthwhile to elaborate these and then investigate fur-
ther the links between Incenter and Circumcenter hierar-
chies.
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The close relations between twin circles ought to have con-
sequences for relativistic physics, as points inside the null
circle correspond to time-like lines and points outside to
space-like lines. The geometry we are investigating sug-
gests these two aspects of relativistic geometry ought to be
much more closely linked.

Another direction is that over certain finite fields, we can
expect some sides to have both midpoints and sydpoints!
This is an interesting aspect for those with a number the-

oretical or combinatorial bend. It turns out that sydpoints
play a big role in the theory of conics in UHG as well, as
we will explain in a future paper.
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