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ABSTRACT

We introduce the new notion of sydpoints into projec-
tive triangle geometry with respect to a general bilinear
form. These are analogs of midpoints, and allow us to ex-
tend hyperbolic triangle geometry to non-classical triangles
with points inside and outside of the null conic. Surprising
analogs of circumcircles may be defined, involving the ap-
pearance of pairs of twin circles, yielding in general eight
circles with interesting intersection properties.
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Univerzalna hiperbolitka geometrija 1V: sidto¢ke
i kruZnice blizanke

SAZETAK

Uvodimo novi pojam sidto¢aka u projektivhu geometriju
trokuta s obzirom na opéu bilinearnu formu. One su anal-
ogoni polovista i dopustaju nam progiriti hiperboli¢ku ge-
ometriju trokuta ka neklasi¢nim trokutima s to¢kama un-
utar i van apsolutne konike. Mogu se definirati neocekivani
analogoni opisanih kruZnica koji uklju¢uju pojavljivanje
kruZnica blizanki $to vodi ka osam kruZnica sa zanimljivim
svojstvima presjeka.

Klju€ne rijeci: univerzalna hiperboli¢ka geometrija, geo-
metrija trokuta, projektivna geometrija, bilinearna forma,
sidtotka, kruZnice blizanke
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1 Introduction is a classical circle in the Cayley Beltrami Klein model of
hyperbolic geometry, the other three are usually described
In this paper we continue a study of hyperbolic triangle as curves of constant widthbut for us they arall just
geometry, parallel to, but with different features to the Eu circles This is the start of the Circumcenter hierarchy in
clidean case laid out in [5] and [6], and in a related but yHG.

different direction from [9], [10] and [11], using the frame
work of Universal hyperbolic geometry (UHG), developed
by Wildberger in [13], [14], [15] and [16]. We study the
new notion ofsydpoints of a sideab—this is analogous
and somewhat complementary to the more familiar notion
of midpoints mthe related idea dfvin circumcirclesof a
triangle and introducecircumlinear coordinate$o build

up the Circumcenter hierarchy of a triangle, treating mid-
points and sydpoints uniformly.

In [16] we saw that if each of the three sides of a triangle
(in UHG) has midpointsn, then these six points lie three
at a time on four circumline€, whose duals are the four
circumcenters cThese are the centers of the faincum- Figure 1: Midpoints, Midlines, Circumlines, Circumcen-
circleswhich pass through the three points of the triangle. ters and Circumcircles

This is shown for a classical triangle in Figure 1, where Remarkably, much of this extends also to triangles with
the larger blue circle is theull circle defining the metri-  points both interior and exterior to the null circle, but we
cal structure, together with thaidlines M—traditionally also find new phenomenon relating to circumcircles, that
called perpendicular bisectors. While the red circumeircl suggest a reconsideration of the classical case above.
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The fundamental metrical notion between points in UHG
is thequadrance gand a midpoint o&bis a pointmonab
satisfyingq(a,m) = g(b,m). Our key new concept is the

following: asydpoint of abis a points on ab satisfying

q(a,s) = —Q(b,S).

While the existence of midpoints is equivalent to-1
g(a,b) being a square in the field, the existence of syd-
points is equivalent tg(a,b) — 1 being a square. As with
midpoints, if sydpoints exist there are generally two of
them.

Figure 2: A non-classical triangle with both midpoints
and sydpoints

In Figure 2, the non-classical triangigazaz has one side
azaz with midpointsm whose duals arenidlines M and
two sidesazaz andazaz with sydpointss whose duals are
sydlines S The six midpoints and sydpoints lie three at a
time on fourcircumlines G whose duals are the foair-
cumcenters cThe connection between these new circum-
centers and the idea of circumcircles is particularly inter
esting, since in this case it is impossible to fardycircles
which pass through all three points of the triangiezas.

In UHG circles can often be paired: two circles arns if
they share the same center and their quadrances sum to
The circumcenters are the centers dfvin circumcircles
passing through collectively the three points of the trlang

This notion extends our understanding even in the classical

case. The four pairs of twin circumcircles give eigbher-
alized circumcirclegeven for the classical case), and these
meet in a surprising way in th@ircumMeet pointssome

Figure 3: Four twin circumcircles of a non-classical tri-
angle

In Figure 3 we see the twin circumcircles of the triangle
of the previous Figure; some of these appear in this model
as hyperbolas tangent to the null circle—these are inésibl
in classical hyperbolic geometry, but have a natural inter-
pretation in terms of hyperboloids of one sheet in three-
dimensional space (DeSitter space).

The other main contribution of this paper is in setting up
circumlinear coordinatesUHG is more algebraic than the
classical theory ([2], [1], [3], [4], [8]), emphasizing agr
jective metrical formulation without transcendental func
tions for Cayley-Klein geometries, valid both inside and
outside the usual null circle (or absolute), and working
over a general field, generally not of characteristic two. In
[16], triangle geometry was studied in the more general
setting of a projective plane over a field, with a metrical
structure induced by a symmetric bilinear form on the as-
sociated three-dimensional vector space, or equivalantly
general conic playing the role of the null circle or absalute
That paper focussed artholinear coordinatesand gave
derivations for many initial constructions in the Incenter
hierarchy, and only dual statements for the corresponding
results for the Circumcenter hierarchy.

In this paper we introduce the complementaigzumlin-

ear coordinateswhich are well suited for studying mid-
points and sydpoints simultaneously. Finding formulas for
key points and lines is, as always, a main aim. If the tri-
angleazazaz has either midpoints or sydpoints for each
#f its sides, a change of coordinates allows us to write
ap=1[1:0:0,a2,=[0:1:0 andazg=[0:0: 1, with the
bilinear form given by a matrix

1 a b
al c
b c ¢

C= 1)

of which pleasantly depend only the side of the triangle on wheree? = +1. We reformulate formulas of the Ortho-

which they lie.
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including theOrthoaxis Awith the five important points  The basic isometries in such a geometry are reflections in
h,s,b,x andz, and then turn to the Circumcenter hierarchy, points (or reflections in lines—these two notions turn out
studyingMedians Centroids CircumCentroidsCircumD- to be the same). Ifnis not a null point, the reflectiony,
ual points Tangent linesJay lines Wren lines, Circum-  in minterchanges the two null points on any line through
Meet pointsand some new associated points and lines, andm, should there be such. In Figure 5 for examplg,in-
finish with a nice correspondence between the Circumcen-terchanges andw, and interchangegandz. It is then a
ters and fouiSound conicpassing two at a time through remarkable and fundamental fact thgtextends to a pro-
the twelveSound points Note that when we study a par- jective transformation: to find the image of a po@ton-
ticular triangle, we adopt the convention of Capitalizing struct any line through which meets the null circle at two
major points and lines of that Triangle. Although the paper points, sayx andy, then find the images of andy under
is one of a series, we have tried to make it largely self- rp,, namelyw andz, and then define, (a) = b= (am) (w2)
contained. as shown. Perpendicularity of both points and lines is pre-
served byrm.
1.1 Projective duality and midpoint constructions

One can approach Universal Hyperbolic Geometry from
either a synthetic projective geometry or an analytic linea
algebra point of view; both are useful, and they shed light
on each other. In this section we give a synthetic introduc-
tion useful for dynamic geometry packages such as GSP,
C.a.R., Cabri, GeoGebra and Cinderella. We work in the
projective plane over a field, which in our pictures will be
the rational numbers, with a distinguished conic, called th
null circle, but elsewhere also thabsolute In our pic- Figure 5: Reflection f,inm sends ato b
tures, this will be the familiar unit circle, always in blue,
with points lying on it callechull points.

The notion of reflection allows us to define midpoints with-
out metrical measurementsrif (a) = b then we may say
thatmis amidpoint of the sideab. To construct the mid-
points of a sideab, when they exist (this is essentially a
guadratic condition), we essentially invert the above con-
struction.

Figure 4: Duals and perpendicularity

The key duality, or polarity, between points and lines in-
duced by the null circle allows a notion of perpendicular-
ity: two pointsa andb areperpendicular, writtena L b,
precisely wherb lies on the dual ofa, or converselya
lies on the dual ob (these are equivalent), and similarly
two linesL andM areperpendicular, writtenL 1. M, pre-
cisely whenlL passes through the dual M, or conversely

M passes through the dual lof

In Figure 4 we see a construction for ttieal of a pointd;
this is the lineD formed by the other two diagonatsand

m of any null quadrangle for whicH is a diagonal point.
Thend is perpendicular to any point dd = nm, and any
line throughd is perpendicular t®. To construct the dual
of a lineL, take the meet of the duals of any two points on
it. Figure 6: Constructing midpoints m and n of the sile
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Figure 6 shows two situations where we can construct mid-

pointsm andn of the sideab, at least approximately over
the rational numbers, which is the orientation of Geome-

ter's Sketchpad and other dynamic geometry packages. In

the top diagram, we take the duabf the lineab, and if
the linesac andbc meet the null circle we take the other
two diagonal points of this null quadrangle. This is also the
case in Figure 4. In the bottom diagram, the liaesand
bcdo not meet the null circle, but the dual linksindB of
aandb, which necessarily pass throughdo meet the null

circle in a quadrangle, whose other diagonal points are theV€"S€

required midpointsn andn.

To define a circleC in this projective setting, suppose that
¢ and p are points; then the locus of the reflectionép)
asx runs along the dual line af is thecircle with center

¢ throughp. This projective definition immediately gives

Proof. Consider a two-dimensional space containiragd
u and the bilinear form restricted to it, given by a matrix

a
e (3

v = (x,y) andu = (u,v), then we may calculate that

2) with respect to some basis. If in this basis

(xv—yu)* (ac—b?)*
(a2 + 2buv-+ c\2)? (a2 + 2bxy-+ cy2)?

Soifvanduare parallel, the left hand side is zero, and con-
ly if the left hand side is zero, then eitlaer b?> # 0

in which case the bilinear form restricted to the spaw of
andu is degenerate, otv— yu = 0, meaning that the vec-
torsv andu are parallel. O

The previous result motivates the following measure of the
non-parallelism of two vectors. Th@ffine) spreadbe-

QQu— (vu)?

a correspondence between a circle and a line. Of coursdWeen non-null vectorgandu is the number

there is also a metrical definition, once we have set up

guadrance and spread.

2 Metrical projective linear algebra

While the synthetic framework is attractive, for explicit
computations and formulas it is useful to work with ana-
lytic geometry in the context of (projective) linear algabr

(v?

QQu
The spread is unchanged if eitheor u are multiplied by
a non-zero number.

s(vu)=1

2.1 Basic notation and definitions

One-dimensional and two-dimensional subspaceg ef

Our strategy, as in [16], will be to set up coordinates so F2 may be viewed as the basic objects forming the pro-
that our basic triangle is as simple as possible, and all thejective plane, with metrical notions coming from the affine
complexity resides in the bilinear form. We begin with notions of quadrance and spread in the associated vector
establishing some notation and basic results in the affinespace, but we prefer to give independent definitions so that

setting, although the projective setting is the main irgere
The three-dimensional vector spa¢eover a fieldF, of
characteristic not two, consists of row vectors (XY, 2)
or equivalently i« 3 matrice§x y 2. Ametrical struc-
ture is determined by symmetric bilinear form

v-u=vu=vCu

whereC is an invertible symmetric & 3 matrix. Note
in particular our use of the algebraic notatisn. The
dual vector spac¥* may be viewed as column vectors
f = (I,m,n)" or equivalently 3« 1 matrices.

\Vectorsv, u areperpendicular precisely whew-u=vu=

0. Thequadranceof a vectorv is the numbeQ, =v-v=
v2. A vectorv is null precisely wherQ, = v? = 0.

A variant of the following also appears in [7].

Theorem 1 (Parallel vectors) If vectors v and u are par-
allel then

QQu = (Vu)®. 2)

Conversely if (2) holds then either v and u are parallel, or
the bilinear form restricted to the span of u and v is degen-
erate.
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logically neither the affine nor projective settings havie pr
ority. In general our notation in the projective setting is
oppositeto that in the affine setting, in the sense that the
roles of small and capital letters are reversed throughout.
A (projective) point is a proportiora= [X:y: Z in square
brackets, or equivalently a projective row vectar=

[x 'y 7 where the square brackets in the latter are inter-
preted projectively: unchanged if multiplied by a non-zero
number. A projective) line is a proportiorL = (I : m: n)

in pointed brackets, or equivalently a projective column
vector

I
mj .
n

L:

When the context is clear, we refer to projective points and
projective lines simply apoints andlines. Theincidence
between the poird = [x:y: Z and the lineL = (I : m: n)

is given by the relation

I
aL=[x y 7 [m| =Ix+my+nz=0.
n

In such a case we sayies onL, or L passes througla.
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Thejoin aya, of distinct pointsa; = [Xq : y1 : z1] andaz =
[X2:y2: 2] is the line

A =[X1:y1:21) X [X2: Y2 22]
= (Y12Zo — YoZ1 : Z1Xo — ZoX1 : X1Y2 — X2Y1) -

3)

This is the unique line passing through anda,. The
meet L1L, of distinct linesL; = (I3 :m:ng) andLy =
(I2: mp 1 np) is the point

Lilo=(I1:mg:ng) x {Io:mp:ny)
= [mll’]z— mpNng : Nylo —nolq : lamp — I2m1].

(4)

This is the unique point lying ob; andL.

Three pointsas, ap,az are collinear precisely when they
lie on a lineL; in this case we will sometimes write
L = ajapag. Similarly three lined 1,L,L3 areconcurrent
precisely when they pass through a p@nin this case we
will sometimes writea= L1L,L3.

It will be convenient to connect the affine and projective
frameworks by the following conventions.uf= (x,y,z) =
(x y 2isavector,them=[V]=[x:y:Z=[x y 7

is theassociated projective pointandv is arepresenta-
tive vector for a. If f = (I,m/n)" is a dual vector, then
L=[fl=(0:m:n)=[ m n}T is theassociated pro-
jective line, andf is arepresentative dual vectorfor L.

2.2 Projective quadrance and spread

If Cis a symmetric invertible & 3 matrix, with entries in
I, andD is its adjugate matrix (the inverse, up to a multi-
ple), then we denote b andD the corresponding projec-

tive matrices, each defined up to a non-zero multiple. This S(La,L2)=1-

pair of projective matrices determine a metrical structure
on projective points and lines, as follows.

The (projective) pointg; anday areperpendicular pre-
cisely whenalcag =0, writtena; L a». This is a sym-
metric relation, and is well-defined. Similarly (projec-
tive) linesL; andL, are perpendicular precisely when
LIDL, = 0, writtenL; L L. The pointa and the lineL
aredual precisely when

L=a'=ca’ orequivalently a=L"=L"D.

(5)

Then two points are perpendicular precisely wiver is

incident with the dual of the otheand similarly for two

lines. Soa; L ay precisely wheraf 1 aﬁ, because of the

projective relation

(cal)' D(Ca}) = (aC") D (Ca}) = as (CD) (Cay)
=aCal.

A point a is null precisely when it is perpendicular to it-
self, that is, whemCa" = 0, and a lineL is null precisely

when it is perpendicular to itself, that is, whehDL = 0.
The null points determine theull conic, sometimes also
called theabsolute

Hyperbolicandelliptic geometriesarise respectively from
the special cases

1 0 O
C=J=(0 1 0]=D and
0 0 -1
1 00
C=l=|(0 1 0| =D. (6)
0 0 1

In the hyperbolic case, which forms the basis for almost
all examples in this paper, the poiat= [x:y: 7 is null
precisely when? +y? — 22 = 0, and dually the lind. =

(I :m:n) is null precisely when? +n? —n? = 0. This is

the reason we can picture the null circle in affine coordi-
natesX = x/zandY = y/zas the (blue) circlX?+Y2 =1.
Note that in the elliptic case the null circle, over the ratib
numbers, has no points lying on it. This is why visualizing
hyperbolic geometry is often easier than elliptic geometry
The bilinear forms determined b and D can be used
to define the metrical structure in the associated pro-
jective setting. The dual notions oprpjective) quad-
ranceq(az,az) between pointa; anday, and projective)
spreadS(Li,Ly) between lines; andL,, are

(arca))?

a;Caj ) (a2Cal) and

q(al,ag)zl—(

(L{DLo)”

(LTDL) (L3BL) )

While the numerators and denominators of these expres-
sions depend on choices of representative vectors and ma-
trices forag,az, C, L1, L, andD, thequotients are indepen-
dent of scalingso the overall expressions are indeed well-
defined projectively.lby = [v1], a2 = [vo], andLy = [f1],

L, = [f2], then we may write

(V- V2)?
ajap)=1——— < and
a(a,2) (V1-v1) (V2 Vo)
2
S(La,L2) =1- (1O T2

(1o f1) (f20 f)

where we introduce the dual bilinear form on column vec-
tors byf;L@ fo = f;Lerz.

Clearlyg(a,a) = 0 andS(L,L) = 0, whileq(ag,a2) = 1
precisely whera; L ap, and duallyS(L1,L2) = 1 precisely
whenL; L L. Then using (5)

S(af,aﬁ) =q(ag,ap).
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In [14], we showed that both these metrical notions can Theorem 3 (Side midpoints) Suppose that a and b are

also be reformulated projectively and rationally using-sui
able cross ratios (and no transcendental functions!)
The following formula, introduced in [12], is is given in a
more general setting in [13].

Theorem 2 (Hyperbolic Triple quad formula) Suppose
that a,ap,az are collinear points, with quadrances
o1 =q(aa3), 2 =q(a1,as) and g = q(ag,az). Then

(01 + G2+ Gs)? = 2 (08 + 0B+ G3) + 4010203 (8)

Proof. We may assume at least two of the points distinct, 1 _ q(a.b)
as otherwise the relation is trivial. Suppose that represen '

tative vectors are then ,v» andvs = kv; + lva, with vy and

distinct non-null points andb is a non-null side. Then
ab has a midpoint precisely when the quantity g(a, b)

is a square number. In this case, we may find represen-
tative vectors v and u for a and b respectively satisfying
V2 = U2, and then there are exactly two midpointsadf,
namely m= [u+Vv] and n= [u—V]. These two midpoints
are perpendicular. Furthermore, e, b, n form a harmonic
range.

Proof. Suppose that = [v] andb = [u] so that

B (vu)2
QQu’

A general pointmonab has representative non-zero vector

vz linearly independent. Consider just the two-dimensional |, — kv lu. The conditiorg (a,m) = g (b, m) amounts to

subspace spanned by andv,. The bilinear form re-
stricted to the subspace spanned by the ordered bagis
a b Thenin
b ¢/’

this basisvy = (1,0), v = (0,1) andvs = (k,I), and we
may compute that

is given by some symmetric matrx=

ac—b?
ac
12 (ac—b?)
ak? 4 2bkl + cl?)
k? (ac—b?)
ak? 4 2bkl+cl?)
Then (8) is an identity.

0z =S(V1,V2) =

02 =S(V1,W3) = al

gL =S(v2,V3) = o

Here are a few useful consequences of the Triple quad for-;

mula. If one of the quadrancesqs =1, thenqy + g2 = 1;
this is a consequence of the identity

(q1+ 02+ 1) — 297 — 203 — 2— 42 = — (G + G2 — 1)°.

Also if two of the quadrances are equal, Sgpy=p =,
thengz = 0 or gz = 4r (1 —r); this follows from the iden-
tity

(2r +qs)® — 4r2 — 203 — 4r2qz = —q3 (g — 4r + 4r2) .

2.3 Midpoints of a side

% = % (Y (vu))2 _\2 (k(vu)+|u2)2
& K2 () + 12 (U212 = K2 (i + 122 (1)

= (vzu2 — (vu)z) (K32 —12u%) = 0.

If V22 = (vu)? then by the Parallel vectors theorem either
v andu are parallel, which is impossible sinaeandb are
distinct, or the bilinear form restricted {g,u] is degener-
ate, which implies that the sidis null. So a midpoinin
exists precisely whek?v2 = 12u2.

In this case sinca andb are non-nully? andu? are non-
zero, sk andl are also, since by assumptian= kv+lu is
non-zero, and we may renormalizandu so thatv® = u?
(by for example setting = kvandu = lu, and then replac-
ing v,u by v,u again).

After this renormalization 1 q(a,b) = (vu)z/(vz)2 is
then a square, and there are two midpoiws u] and
[v—u]. Since(v+u) (v—u) = V2> —u? = 0, the two mid-
points are perpendicular. It is well known that for any two
vectorsv andu, the four lines|v],[v+ u],[u],[v—u] form a
harmonic range.

Conversely suppose that-1q(a,b) = (vu)?/ (Vu?) is a
square, say?. Then the ratio of to u? is a square, sg
andu can be renormalized so thet = u?, at which point
the above calculations show that- u] and[v — u] are both
midpoints. O

Midpoints are defined very simply using the metrical struc- We can also relate this to hyperbolic trigonometry as in

ture.

Definition 1 A midpoint of a non-null sideab is a point m
lying on ab which satisfies

q(avm):q(bvm)'

[14]. If g(a,b) =r # 0, andmis a midpoint of the sidab
with g(a,m) = q(b,m) =q, then{r,q,q} satisfies the Triple
quad formula. So as we observed earlie; 49(1—q),
and in particular -1 =1—-4q(1—q) = (29— 1)* is a
square number.

The dual linesM andN of the midpointamandn of a side

We exclude null sides because every two points on such aare called thenidlines of the side. Sincenandn are per-

side have quadrance 0

48
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so might also be called thgerpendicular bisectorsf the If v2u? = (vu)2 then by the Parallel vectors theorem either

side. v andu are parallel, which is impossible sinaeandb are

The dual concept of a midpoint of a side is the following. distinct, or the bilinear form restricted fg u] is degener-
ate, which implies that the sidibis null. So a sydpoins

Definition 2 A biline of a non-null Vel’teXA_B is aline L exists precise|y Whehz\/2 — _|2u2_ In this case we may
passing through AB which satisfies renormalizev andu so thatv? = —u?, so thats = [v+ U]
B andr = [v—u] are sydpoints. If(a,s) = —q(b,s) =d,
SAL)=SBL). g(a,r)=—q(b,r) =eandalsm(r,s) = f, then the Triple
From duality the verteB has a biline precisely when the duad formula applied tda,r,s} and {b,r,s} implies that

quantity 1— S(A,B) is a square number, and in this case both
we have exactly two bilines which are perpendicular. The (f+d+ e)z ) (f2+ o2+ e2) +4fde and
symmetry between midpoints and bilines is reflected in the
duality between the Incenter and Circumcenter hierarchies(f —d — e)2 =2 (f2 +d?2+ e2) +4fde
in UHC_;.Thls notion o_f symmetry is absentin classical hy- which implies thatf +d+e= + (f —d—e). Sincef 0,
perbolic geometry, since there we always have only one .

o . o .~ we conclude that = —e, which shows that
midpoint of a side and two bilines (usually called angle bi-
sectors); the number-theoretic considerations with the ex g(a,s) = q(b,r) and g(a,r) =q(b,s).
istence of these are generally invisible—the price of work- . 5 _
ing over the “real numbers”! Now (V+Uu) (V—u) = v* —u = 2v so the two sydpoints

andr arenotin general perpendicular. However

2.4 Sydpoints of a side
yep (v+u?=v2+2uv+u?=2uv  and

Definition 3 A sydpoint of a non-null sideab is a point s

lying on ab which satisfies (V—u)® =V? — 2uv+ U? = —2uv
so that(v+u)? = — (v—u)2. By symmetry this implies
q(a,s) = —q(b,s). (V+u) (_ )_ y sy y plie
that[(v+u)+ (v—u)] =[2v] =aand[(V+u) — (v—u)] =
Note both the similarities and differences between the fol- [—2u] = b are sydpoints ofs. O
lowing theorem and the Side midpoints theorem. For a fixedq there is at most one sydpomof ab for which

g(a,s) = q; the other sydpoint then satisfiesj(a,r) =

Theorem 4 (Side sydpoints)Suppose that a and b are —q+ qsinceqis non-zero.

distinct non-null points andb is a non-null side. Theab
has a sydpoint precisely wheiiagb) — 1is a square num-  Example 1 In the hyperbolic case, suppose that=a
ber. In this case we can find representative vectors v and[x: 0: 1] and b= [y: 0: 1]. Then from [14], Ex. 6

u for a and b respectively satisfying ¥ —u?, and then )

there are exactly two sydpoints ab, namely s= [v+ U] q(ab) = — (x=y)

and r= [v—ul. In such a case, a and b are also sydpoints ’ (1-x3) (1—y?)

of the sidesr, and while s and r are not in general perpen- and so midpoints m [w: 0 : 1] and sydpoints s [z: 0 : 1]
dicular, we do have F v : 2 2 2
of ab exist precisely wher{x*—1) (y*—1) = r? and

qas)=q(b,r) and  q(ar)=q(b,s). (x—1) (y>— 1) = —t? respectively, in which cases
Furthermore as, b,r form a harmonic range. We xXy+1+£r and  7— (1—xy) (x+y)£t(x— ).
X+Yy X24y2—2

Proof. Suppose thaa = [v] andb = [u] so that a general
points= [w] on ab has representative vectar= kv+ lu.
Then the relatiom (a,s) = —q(b,s) amounts to

So we see that algebraically sydpoints are somewhat more
complicated than midpoints in general.

Over the rational numbers, any non-null side either approx-

2 2 . . . . . . .
1 () 14 (uw) imately has midpoints or sydpoints, since being a square is
QvQw QuQw approximately the same as being positive.
o 2022 (kv+|u)2— uz(kvz+l (vu))2 —\2 (k(vu) + Iu2)2 There are a few related notior_13 which are usgful_to define.
- 2 5, o2 5 - 5 The dualsSandR of the sydpoints andr of a sideab are
& KU (V) "+ 12 (U7) V2 — (KA + 120%) (vu)? = 0 the sydlines of the sideab. They do not in general pass
2 2\ /1,2 2.2\ through the sydpoints themselves. There is also a dual no-
< (vzu (vu) ) (k v+ )=0 tion to that of sydpoints of a side which applies to vertices.
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Definition 4 A siline of a vertexAB is a line L which
passes through AB and satisfigA\d.) = —S(B, L).

Again by duality we deduce that a vert&B has a siline
precisely when the quanti§(A, B) — 1 is a square number,
and in this case there are exactly two silihesndK of the
vertexAB. Then alscA, B, L andK are a harmonic pencil
of lines. The duals of the silines are tsipoints of a vertex
AB.

2.5 The construction of Sydpoints

The following theorem is helpful in constructing sydpoints
using a dynamic geometry package.

Theorem 5 (Sydpoints null points) Suppose that the
non-null sideab has sydpoints s and r, and that has
midpoints m and n, where=¢ (ab)"". Then x= (mr) (bc) =
(ns) (bc) and y= (mg) (bc) = (nr) (bc) are null points.

Proof. Suppose thah = [v], b= [u] andc = [w]. Then
vw=uw= 0, sincec = (ab)", and also sincabis not null

v, uandw are independent. Hc has midpoints, in which
case we may assume th&t=w?, these aram = [v+Ww
andn = [v—w]. If alsoab has sydpoints, in which case
we may assume thaf = —u?, these ares= [v+u] and

r = [v—ul. Note that this renormalization can be made
independent of the previous one.

Now considex = (mr) (bc). This is a point with a repre-
sentative vector of the forrk(v+w) + | (v—u) for some
numbers andl. Sincex has a representative vector which
is also in the span ofi andw, it must be a multiple of
(V4+w)— (v—u) =u+w. But then

(U+w)? = 12+ 2uw+w? =0

sinceuw= 0 andu? = —w?. Sox is a null point, and simi-
larly fory. O

Figure 7: Construction of sydpoints aib

the dualc = (ab)™, then the midpointsn andn of ac, and
then use the null pointsandy lying on bc as shown (we
are assuming these exist—for a dynamic geometry pack-
age, approximately is sufficient!

The required points are= (nx) (ab) = (my) (ab) andr =

(ny) (ab) = (mx) (ab). Similarly, given the sydpointsand

sof ab, aandb can be constructed as the sydpointssafs-

ing the null pointsv andz lying onrc and the midpoint&
andl of ts the required points a@= (1z) (rs) = (kw) (rs)
andb = (Iw) (rs) = (kz) (rs). So the construction of syd-
points can be reduced, at least in this kind of situation, to
computations of midpoints.

Once we establish the Circumlines theorem, it is interest-
ing that Figure 7 can be viewed as a limiting case applied
to the triangleabc—the null pointsc andy act as midpoints

of bc, somrxacts as a circumline.

Another useful construction s to find, given the pdirtnd
one of the sydpoints, the other poina and the other syd-
pointr as in Figure 8. First construct the duak (bs)™,
then find the midpointk andl of Ts Use the null pointsi, t
lying on bk and the null points, w lying onbl to construct

r = (cuv)(bs) anda = (lu) (bs) = (kv) (bs).

However by symmetry there is a second solutian=
(cwt)(bs) anda= (It) (bs) = (kw) (bs). Thus, we can think

of sandr as being the sydpoints of the sidb, ands and

T as the sydpoints of the sidi. Notice also thab is a
midpoint of the sideT and similarlysis a midpoint of the
sideaa, and in factg(b,r) = q(b,F) = q(s,a) = q(s,a).

Figure 8: Constructing r and a (or anda) from s and b

2.6 Twin circles

In the geometry we are studying, a circlenay be defined
as an equation of the form(c,x) =k, for a fixed point

We make some remarks that are useful for practical con-c called thecenter, and a fixed numbék called thequad-

structions involving Geometer’s Sketchpad, C.a.R., Gabri

rance of the circle. We also writgX for this circle, and say

GeoGebra or Cinderella etc. To approximately construct that a pointa lies onthe circle precisely wheq(c,a) = k.

the sydpoints ands of ab as in Figure 7, first construct
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we write ¥ = 1%, The bracket reminds us thatis not
unique.

Definition 5 Two circles(: and (> with the same center ¢
and quadrancesigand ¢ aretwins precisely when

L+0=2

We now show that twin circles are naturally connected with
sydpoints.

Theorem 6 (Sydpoint twin circle) If s is a sydpoint of
ab, and c lies on & st then the circlest® and ¢”

are twins. Conversely itc(a> and Cc(b> are twins, then
s=c' (ab) is a sydpoint ofb. Figure 9: Constructing the twin circleD of C

Proof. If sis a sydpoint oBbthenq(a,s) = q= —q(b,s)
for someg. Then sincec ands are perpendiculag(c,s) =

1. Letd = s’ (ab). Then sinced ands are perpendicu-
lar,q(d,s) =1, and themj(a,d) =1—q(a,s) = 1—qgand
gq(b,d) =1-q(b,s)=1+q. Soq(a,d)+q(b,d) = 2.
Now suppose thaj(c,d) =r. Then by Pythagoras’ theo-
rem (see [13], [14]) in the right triangldawe have

Figure 10 shows another example of constructing the twin
D of a given circleC (in brown) with centec. In this case
cis outside the null circle, so its dual li@passes through
null pointsx andy (approximately—remember that a dy-
namic geometry package usually only deals with decimal
approximations, so the number-theoretical subtlety is di-
minished). Choose a poiaton ¢ with dual lineA = a*.
qca)=r+(1-q) —r(1—q) Then the twin circl_eQ) (in red) is the locus of the point

b = (ax) A or the pointd = (ay) A asa moves along_.
while in the right triangleedbwe have

qg(c,b)=r+(1+qg)—r(1+q).
Then

q(c.a)+aq(c.b) =
=r+1-q)—-r(l-q)+r+1+q-r(l+g =2
The argument can be reversed to show the conversg]

We note that the theorem has another possible interpreta-
tion: the locus of a point such thag(a,c) + q(b,c) =2
is a line.

2.7 Constructions of twin circles Figure 10: Another construction of a twin circle

The Sydpoint twin circle theorem assists us to construct

twin circles; we generally expect this to reduce to finding The fact that(a,c) +q(b,c) = 2 follows by applying ei-
midpoints, but there are also some simpler scenarios. Supther the Nil Cross law ([14, Thm 80]) or the Null subtended
pose we are given a circlé (in brown) with centecasin ~ quadrance theorem ([14, Thm 90]) to the triarajte Sim-

Figure 9. Choose an arbitrary pombn the circleC and ilarly, given the red circleD, its twin circle C (in brown)
construcC = c', then letsbe the meet oicandC, andt ~ can be constructed as the locus of the pairt (bx)b*
the meet oA = a’ andC. when moving the poinb on D.

Now, we can apply the construction of Figure 8; suppose It should also be noted that we havet at all established
that the sidést has midpointsn andn, and thatx andy are that the twin of any circle necessarily exists fact over
null points onam, andz andw are null points oran. Then the rational numbers, the twin circle of a given circle does

b= (m2 (ac) = (ny) (ac) ande= (mw) (ac) = (nx) (ac) lie not always exist. For example over the rational numbers,
on the twin circleD to C. Symmetry implies that we could if cis inside the null circle, theq(c,a) never takes on val-
also used = (mw) (ct) = (ny)(ct) and f = (m2) (ct) = ues in the rangg), 1), but it can take on values in the range
(nx) (ct). (1,2).
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3 Circumlinear coordinates and the Ortho- This quantity appears as a common factor in several of the
center hierarchy derivations of proportions in the paper, and since itis by as
_ _ sumption non-zero, we simply cancel it without mention.
In t?ﬁ pgpfr: ([16]2 we focusseb? o?horthohrtlgar Co?rd'tnat98£We now reformulate some of the formulas of the Ortho-
as the Orthocenter 1S arguably the most important point o0, hierarchy of ([16]) using circumlinear coordinates

n :typrer:ibcr)“(r: trrllanlakihgigeomet:)\ll,van(: Seﬁ(r)nndrlﬁ/ (i)r?t t?e ind maintaining the convention of using capital letters for-var
center ierarcny. S paperwe are primanly INterested ;, s constructions associated to a base triangle. The pro-

:.n the C|rcgrnc$n;er h'eliar;hY’ atrlld Wti 'Qt?r)iugeunl jective matrices corresponding @andD are denotedC
inear coordinatego work efficiently with bothmidpoints andD respectively.

andsydpointsimultaneously. While triangle geometry in-
volving sydpoints will be new and somewhat unfamiliar, Our starting pointis that the basic Triangigas has been
the natural beauty and elegance of this theory is very com-Projectively transformed so that ioints are

pelling indeed.

Suppo;e the_bilinear form-u = vAuT_ in _the associated g =[1:0:0 a,=[0:1:0 a3=[0:0:1]. (11)

three-dimensional vector spade= F2 is given by a sym-
metric matrixA, and thatT : V — V is a linear trans-
formation given by an invertible 8 3 matrix M, so that
T (v) = vM = w, with inverse matrixN, so thatwN = v.

ThelLines of the Triangle are then

The new bilinear form> defined by L1=(1:0:0 L,=(0:1:0 L3=(0:0:1).
wioWs = (WiN) - (WoN) = (WiN) A(WoN)T
— wi(NANT W] 9) The main assumption is that each of the three sides is either
a midside or a sydside, or possibly both, which we have
has matrixC = NANT. seen allows us to write the bilinear form using the projec-
So let us start with three (projective) poiras a; andag tive matrices (10). The Triangle will have three midsides

such thaeach of the three sides of the trian@igazaz has if € =1, and two sydsides and one midside # —1. The
either midpoints or sydpointd hat means we can find rep- computations are based on two basic operatidimgting
resentative vectong, v, andvs inV so that for any andj, joins and meetavhich essentially amounts to taking cross
V2 = ivjz. There are two possibilities up to relabelling and products as in (3) and (4); afidding duals either by mul-
re-scaling: 12 = vZ = v3 = 1 (this corresponds to three tiplying transposes of points iy on the left, or transposes
midsides) and 2y7 = v5 = —v3 = 1 (this corresponds to  of lines byD on the right as in (5).

one midside and two sydsides). We can incorporate bothQur goal is to establish formulas for important points and

situations at once by supposing that lines to facilitate determining relationships betweemthe

V=B=pZ=1 where £—+1. the reader is encouraged to follow along and check our
computations, which are mostly elementary. Occasionally

Now we can find a linear transformation to map v, we simplify a proportion by cancelling a common factor:

andvs to the basis vectors, = (1,0,0), &2 = (0,1,0) and naturally this factor should not be zero, so we state this as
es = (0,0,1) respectively. With respect to this new basis, a condition.

the bilinear form is then given by a new matrix of the form

1 a b 3.1 Change of coordinates and the main example
€= g (1: g with adjugate Most of the diagrams in this paper deal with the particular
triangle in Figure 11 created with GSP, with affine points
c?—¢ ae—bc b-ac a; ~ [-0.039590.15272, a, ~ [-0.203630.78056
D=[(as—bc KF—-g c—ab (10) and ag ~ [-1.753440.19797, and corresponding rep-
b—ac c—ab &-1 resentative vectorssy ~ (—0.237,0.914,5.985), v» ~

(—2.036,7.806,10) and vs ~ (—7.1280.805 4.065).

where the diagonal entries Gfensure thatf =ef =1and L, " -0 0 L S et

€ = ¢, and otherwisese; = a, e16e3 = b andeye; = c are
arbitrary. So the metrical structure depends on the numbers

a, bandc and (the sign off. Note that Qv =Quv, = —Qu,
1 ab

detla 1 c| =—-a%—b?—c?+¢c+2abc with respect to the bilinear form- u = vJu', whereJ is
b ¢ ¢ defined in (6).
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3.2 Altitudes, Orthocenter and Orthic triangle

yﬂ

TheDual linesare

Ai=a =Ca] =(1:a:b)
Ac=a;=Ca] =(a:l:c)
As=a3 =Cal = (b:c:¢).

TheDual points are

: li=L]D=[c*—€:ea—bc:b—ac
> I, = [ea—bc:b?—€g:c—ab

l3=[b—ac:c—ab:a?—1].

TheAltitudes are

Ni=aili =(0:ac—b:ea—bc)

N2 =aglp = (c—ab: 0:bc—¢a)

N3 = aglz = (ab—c:b—ac: 0)

We now show how to explicitly change coordinates, fol- and theAltitude dual points are
lowing Section 1.5 of [16]. The linear transformation

Figure 11: Basic example triangle with coordinates

T(v) = N, whereN is m=AL=[0:-b:a
no = Aol = [CZOZ—E\]
0237 Q914 5985 Ne=Agls = [—c:b:0].
N=|-2036 7806 10 |, TheBase pointsare
7128 Q805 4065 P

b1 =NiLy =[0:ea—bc: b—ac|
sendse; = (1,0,0), & = (0,1,0) andes = (0,0,1) to vy, by =Noly = [ea— bc:0 :c—ab]
v, andvs respectively. The inverse matii = N~1 sends b3 =NsL3 = [b—ac:c—ab: (]
the vectorsyy, v andvs to e, & andes. Following (9), )
after we apply the linear transformatidnJ is replaced by ~ and theBase linesare
the matrix By =ml; = (b*—2abc+a%:a(e—c?) :b(e—c?))
10 1495 0627 B2 =mly = (a(e—b?) : ¢ — 2abc+ &% : ¢ (e — b?))
C=NJN"~ (1495 1 0568| withadjugate Bs=nsls = (b(1-a?) :c(1—a?):b?—2abc+c?).
0.627 0568 -1

1.327 -1.851 -0.222
D=|-1.851 1393 -0.369].
—-0222 -0.369 1235

We get the constants
a=1495 b=0627 ¢=0568 &=-1

As an example of how to explicitly apply the theorems
of this paper to our specific triangle, consider the mid-
points of the sideazaz in standard coordinates which are
m=ny =[1:1:0andm=n;_ =[1:-1:0. Multi-

ply by N and then renormalize so that 1, to find these
midpoints in the original triangle to be

Ny =[1:1:0N=[-2273 872 15985

= [‘0142 0546 10} Figure 12: Altitudes, Orthocenter, Orthic triangle
n-=[1:-1:0N=[1.799 -6.892 —4.015 and Base center b
= [_0-448 172 10] : Assumingas — bc# 0,b—ac+# 0 andc— ab+# 0, theOr-

As another example, using the formulas from the Circum- thic lines are
lines/Circumcenter theorem, we may similarly compute
that the circumcenters in agreement with Figure 11, are  C; = bybz = (ab—c: b—ac: ga—bc)

Co=[0.268 0653 10] cy=[-0997 1573 10] Cp=bhibz=(c—ab:ac—b:ea—bc)
c2=[0249 1898 10| c3=[-1.308 Q241 10]. Cz=bhib,=(c—ab:b—ac:bc—ae).
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TheOrthic points are

¢1 = BoBs =[(2ca® — ba—c) e+ c (20?4 ¢ — 3abo) :
: (ac—b) (b*—¢) : (bc—ag) (a2 - 1)]
o = B1Bs =[(ab—c) (c? —¢) : (2ba? — ca—b) e+
+b (b?+2¢% — 3abg) : (bc—ag) (a2 — 1)]
c3 = B1B; =[(ab—c) (c? —¢) : (ac—b) (b*—¢) :
ra(a®— 1) &+ (2ab? — 3a’bc+ 2ac® — be)).

The Orthocenter is arguably the most important point in
triangle geometry, it is

h=N;N2 = N2N3 = Nz N3
= [(b—ac)(aes — bc): (c— ab) (ag — bc): (ac— b) (ab—c)].

The dual line is thértholine
H =ninz =nin3 =nenz = (ab: ac: bc).

The Orthic triangle bibsbs is perspective with the Trian-
glearazaz with center of perspectivity the Orthocenter

The Triangle Base center theorerstates that theOr-
thic dual triangle T1C,C3 is perspective with the Triangle
arazaz. The center of perspectivity is tikase center

b= [(ab—c)(c? —¢):(ac—b) (b?—¢): (bc—¢a) (a®—1)]
with dual line theBase axis

B=(c+ab:b+ac:ea+hc).

In Figure 12 we see the Altitudes, Orthocenfteaind the
dual OrtholineH, the Orthic trianglebibobs, Orthic dual
triangleciCaCs, base centep and Base axiB.

3.3 Desargues points and the Orthoaxis

TheDesargues pointsare the meets of corresponding Or-
thic lines and Lines:

01=CiL; =[0:bc—ea:b—ad
g2 =Colp=[bc—¢ea:0:c—ab]
g3=Cslz=[b—ac:ab—c: 0

and the duaDesargues linesre

@

1= (b* —a%: 2bc—ac®—ae : b + be — 2ace)
Gp = (2bc—ab? — ae : ¢® — a’% : b’c + ce — 2abe)
Gs = (b+a’b— 2ac: 2ab—c—a’c: b? —c?).
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Figure 13: Desargues points, Orthic axis S and Or-
thoaxis A

Desargues’ theorem implies that the Desargues points
01,092,093 are collinear. They lie on th@rthic axis

S=(ab—c:ac—b:bc—ag). (12)

Dually the Desargues lin€%;, G, Gz are concurrent, pass-
ing through theOrthostar

(2ca? —3ba+c)e+c(2b? —c?—abg) :
s=| (2ba?—3ca+b)e—b(b?—2c?+abo):
a(1—a?) e+ (2ab? —a’bc+ 2ac® — 3be)

TheOrthoaxis A, introduced in [16], is arguably the most
important line in hyperbolic triangle geometry; it and its
dual theOrthoaxis point a are
A=sh=((ab—c) (a%e—b?) : (b—ac) (a%e —c?):

- (bc—ag) (b? — c?))
a=SH=[c(a%—b?) :b(c?—€a®) :a(b*—c?)].

TheBase center on Orthoaxis theorexsserts that the Or-
thoaxisA passes through the Base ceriter

3.4 Parallels and the Double triangle

Recall from [14] that theparallel line P through a point
ato aline L is the line througta perpendicular to the al-
titude froma to L. This motivates the definition of the
Double triangle of a Triangle. Thearallel lines

Pr=aini=(0:a:b)

Po=an;=(a:0:c)

Ps=agnz=(b:c:0)

are the joins of corresponding Poirsind Altitude points
n, and their duals are tHearallel points

p1 = [b? — 2abc+ a’% : bc—ag: ac— b

p2 = [bc— ae: ¢ - 2abc+a’% :ab—

ps = [e(ac—b) : g(ab—c): b? — 2abc+c?].
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Assuminga # 0, b # 0 andc # 0, the meets of Parallel
lines are thédouble points

dlEP2P3=[—CZbZa]
dzEPlF’g:[CZ—b:a]
d35P1P2:[c:b:—a]

and their duals are thHeouble lines

D; = pepz={(2ab—c:b:¢ca)

Dy=pipz={(c:2ac—Dh:ea)
D3=pipz=(c:b:2bc—e¢a).

Figure 14: The Double triangle, Orthoaxis ,Aand the
points zb,x;h and s

We give here another proof of the following result, involv-
ing a simpler computation than in [16].

Theorem 7 (Double triangle midpoint) The Points a,
ap, ag are midpoints of the Double triangh d,ds.

Proof. We compute

—b%—c?+ 2abc
q(dy,ag) = =

a?—b2—c2+2abc A(dz. ).

Similarly, a; is a midpoint ofdds, anda; is a midpoint of
d1ds. |

The Double triangle perspectivity theorestates that the
Double triangled;d>d; and the Triangleazazaz are per-
spective from a point, thBouble point, or x point

x=[c:b:a

which lies on the Orthoaxi8. The proof is very simple in
these coordinates: we compute that

apd; =(0:—a:b)
axdy=(a:0:—c)
azds = (—b:c:0)

and then observe that these lines meet at
The dual of thex point is theX line

X = (2ab+c:2ac+b: 2bc+ ag).

TheDouble dual triangle perspectivity theoreasserts that
the Double triangled;d2ds and the Dual triangldlols
are perspective from a point, ti@ouble dual point, or
Zpoint

(ca®—2ba+c)e+c(b>—c?):
(ba? —2ca+b)e—b(b?—c?):
a(1-—a?)e+ab?— 2bc+ac?

Z=

Its dual is theZ line
Z={(c:b:¢a).

Thezpoint lies on the Orthoaxi&, or equivalently the Or-
thoaxis pointa lies on theZ line.

4 The Circumcenter hierarchy

We now begin the study of the Circumcenter hierarchy.
The basic assumption that we used to set up circumlinear
coordinates was that each side of the triangle was either a
midside or a sydside. We wish to treat both cases symmet-
rically, hence we introduce the notion thasmydpoint n

of the sideab is either a midpoint or a sydpoint (or pos-
sibly both). Smydpoints exists precisely wher 8j(a,b)

is either a square or the negative of a square (or possibly
both). Our diagrams will illustrate the situation when one
side has midpoints and the other two sides have sydpoints.
We introduce consistent labelling to bring out the foudfol
symmetry in this situation.

4.1 Circumcenters, medians and centroids

By the Side midpoints and Side sydpoints theorems, in Cir-
cumlinear coordinates the smydpoints are

Ny =[0:1:Jandn_=[0:-1:1 onaag
Np =[1:0:3 andnp_ =[1:0:-1] onaas
Nz =[1:1:0 andnz_=[1:-1:0 onaia.

Note that the indices of our labelling reflect the positions
and relative signs of the non-zero entries.

Theorem 8 (Circumlines/Circumcenters) The six Smyd-
points lie three at a time on fou@ircumlines

Co=n_npnzg =(1:1:1)

Ci=n_nynz,=(-1:1:1
(1:-1:1)

Cs=nz_niphnpy =(1:1:-1).

C= No_N1 N3+ = 1:-1

The duals are th€ircumcenters
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The dualCentroid lines are

. [ (a—1)e—c(a+b—c)+b: | Go=(a+b+1:a+c+1:b+c+e

co=Cy=| (@a—1)e—b(a—b+c)+c: G — bo1: 1c_b

| (@a-1)(a-b—c+1) | 1=(a+b—-1l:c—a+1l:c—b+e¢

_(a+1)£—c(a+b+c)+b:_ G2=<b—a+1:a+c—1:b—c+8
c1=C{=| c—(a+1le—b(a—b—c): G3=(a—b+1l:a-—c+1:b+c—¢).

| (@+l(a-b+c-1) |

[ b—(a+1l)e—c(a—b-c): | Proof. Straightforward.
c2=Cy=| (a+1)e—b(a+b+c)+c:

| (@a+1l)(a+b-c-1) | 4.2 CircumCentroids

[ b—(a—1)e—c(a—b+c): |
c3=C3y=| c—(a—1)e—b(a+b—oc):

(a—1)(a+b+c+1)

Proof. The formulas for the Circumlines can be checked

)
)
)
)

While many aspects of the Circumcenter hierarchy are in-
dependent of, there are some that are not. The following
is an extension of the similarly named result in [16].

immediately, the Circumcenter formulas are computations ' "€erem 10 (CircumCentroid axis) The meets of corre-

using duality. O

sponding Circumlines and Centroid lines are collinear pre-

cisely when either b= +c ore = 1. If e = 1, the common

— 3 cumCentroid points

=06y =
Figure 15: Circumlines, Circumcenters, Medians and Cen-_,_ _ _
troids %=CsGs =

Median lines (or justmediang are joins of Pointm and ~ The determinants

Smydpoints1 which lie on the opposite lines:
+1 c—a+e-1

a—b—¢
D =an =(0:1:1) Dy, =ang = (0:-1:1) detjb—a-e+1 1-a-c—¢
Doy =apnp, = (1:0:-1) Do =apnp_ =(1:0:1) 1-a-b-¢& c-a-e+l
_ 11 _ i 1-1- =-4(b*~c?) (e-1)

a—b—-¢+1 c—at+e—-1
det|l-a—b—¢ c—a—¢€¢+1
at+tb—-¢+1 ge—a—-c—1

=4(b*—c?)(e—1)

Figure 15 shows the six Medians and their meets.

Theorem 9 (Centroids) The Median lines D are concur-
rent in threes, meeting at fo@entroid points

go=D1:D2: D3 =[1:1:17
01 =D1:Dy D3 =[-1:1:1
g2=D1-Dp; D3 =[1:-1:1
03=D1-Dy D3 =[1:1:-1].

cisely whene = 1 or b = +c.

(—b:b:a—e+1).
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lineis the Z axigc: b: €a), and the joins of corresponding
Circumcenters and Centroid points meet at the z point. If
b = c, then the common line i&: b:a+¢—1), while if

b= —c, thenthe commonlineis-b:b:a—e+1).

Proof. The meets of Circumline€y,C1,C,,C3 and cor-
responding Centroid lineSp, G1, Gy, Gz are the foulCir-

2=CGp=[a—b—e+1l:c—a+e—1:b—c

21=CGi=[b—a—-¢e+1l:1-a—c—¢€:b+
[l-a—b—¢g:c—a—¢e+1:b+(]
[a+b—e+1l:e—a—c—1:b—¢.

b—c
b+c
b+c

b—c
b+c
b—c

show that the CircumCentroid points are collinear pre-

If € =1 the common

line is (c:b:a) which in this case agrees with =
(c:b:ea). If b= c we can check that the common line
is (b:b:a+e—1), and if b = —c the common line is

O
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4.3 Twin Circumcircles of a Triangle

If a triangle has three midsides, then corresponding Cir-
cumcenters will be centers of circles which pass through

all three points, as in the classical triangle in Figure 1isTh
situation also holds for a triangle sucha@spaz in Figure
16, lying outside the null circle (still in blue) shown with
three of its Midpointsn, (the other three are off the page),
six Midlines M, three of the four Circumline§, the four
Circumcenters, and the corresponding Circumcircles.

Figure 16: Circumcenters of a triangle outside the null cir-
cle

But what happens if a triangle has some points inside and_

throughag, for i = 0,1,2,3. Their equations|(p,c;)
g(ci,ag) in a variable pointp = [x:y: Z, can be written,
after factoring a common terme + a’e + b? + ¢? — 2abg,

as

Co (L—&) (32 +y?
X2 +y?

+
N
N
N

( +2(a—g)xy+2(b—g)xz+2(c—€)yz=0
Ci: (178)<
G (178)<x2 V2
s (178)<

(
+2(a+e)xy+2(b+e)xz+2(c—€)yz=0
+2(a+¢€)xy+2(b—¢€)xz+2(c+€)yz=0
(

X2 +y2

+2(a—g)xy+2(b+¢)xz+2(c+¢e)yz=0.

N—— N N~

The respective twin circleg; with equationsg(p,c)
2—q(ci,a3) can be written as

Co:(1+¢€) (X +Y?) +2eZ +2(a+g)xy
+2(b+e)xz+2(c+¢€)yz=0

D (14€) (R +Y?) +2eZ +2(a—€)Xy
+2(b—¢)xz+2(c+¢€)yz=0

S (14€) (R +y?) + 27 +2(a—g)xy
+2(b+€)xz+2(c—€)yz=0

Ca:(1+¢€) (X +Y?) +2eZ +2(a+g)xy

C1

C2

some outside the null circle? In that case it turns out that ¢3

we need to consider specadirs of circles, which collec-
tively play the role of circumcircles. We do not know of
any classical precedents for this phenomenon.

Definition 6 Twin circlesC and C aretwin circumcircles
for a triangle aiazas precisely when each ohaay, ag lie
on eitherC or C.

Theorem 11 (Twin circumcircles) If a triangle aiazas

has smydpoints on all three sides, then the four circumcen-

ters @,C1,Cp, C3 are each the center of twin circumcircles
for agazas.

Proof. If nis a smydpoint of the sidagg then its dual
n’ passes through two circumcenters, sagndc;. Let's
consider just;. If nis a sydpoint ofga then the Sydpoint

twin circle theorem shows that the circlé‘éak) and Céia*)
are twin circles. Ifn is a midpoint ofagay then the reflec-
tion ry interchangesy anda and fixes bottt; andcj, so
that ¢ and ¢l coincide.

Sincec; is perpendicular to two smydpoints on different
lines of the triangle@yazaz, the argument can be repeated,
so that either there is one circle with centecighat passes

through all three points, or one of the twin circ@§“> and
Cc(ia') also passes through the third point of the triangle, in
which case these are twin circumcircles. O

Now let’s introduce some labelling and explicit formulas.
Consider the circleg; = (%) centered at; and passing

+2(b—¢)xz+2(c—¢€)yz=0.

If € =1, then each of the four circumcircle$ passes
through all three points of the triangle, while their twins
Ci pass through none of the points of the triangle; even so,
their presence is felt.

In Figure 17 we see a triangigazaz with all three points
inside the null circle, together with its four pairs of twin
circumcircles, each pair with the same colour. The reader
might enjoy looking for interesting relations between thes
circles.

Figure 17: Twin circumcircles for a classical triangle
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4.4 CircumbDual points, Tangent lines and Sound  TheSound points; is the meet of the Tangent liffg with
points the opposite Lind;. The twelve Sound points are:

If € = —1, then the circumcircleg, pass only througlas,

while the twinsC; pass througle; andc,. In each case we

=[0:1-b:a—1] So=[1-c:0:a-1]
have four twin circumcircle pairs of the Triangl&@hese {
0

[
=
=[-
[

0:—b—-1:a+1] 1-c:0:a+1]
eight circles are shown for our standard example Trlanglesl 11-bra+1] 1-c:0:a+1]

in Figure 18, along with the Tangent lines, which we now g, —

tb+1:1—74 S3=[1+c:0:1-4
introduce.

Sso=[e—Cc:b—¢:0

[
[
=
=[-

e—c:b+¢€:0
c+e:e—b:0
c—e:b+e:0].

31 =

Figure 18: Twin Circumcircles and Tangent lines

The CircumDual point pjj is the meet of the Dual line
A and the Circumline&€;j, fori =1,2,3 andj =0,1,2,3.
Then

pio=[a—b:b—1:—-a+1] pp=[c—1l:a—c:—a+1]
pii=[a—b:—-b—-1:a+1 pu=] ]
pi2=[a+b:b—1:—-a—1] pxp=[c+l:c—a:—a—1]

[-a—b:b+1:1-a pa3=[-c—1l:a+c:a—1]

l-c:—-a—-c:a+1
Figure 19: CircumDual points and Sound points

P13=
4.5 Jay and Wren lines

e—cib—e:—b+c In this section we begin to see more divergence between
c—e:—b—g:b+d thee = 1 ande = —1 cases. In the latter case a symme-
] try emerges between the Circumcentgyandcs, and be-
]

P32 = €:b—ge:b+c tweenc; andcy.

[
[
[~
[-c—€:b+e:b—

c—
P33 =[—C— .
) ] o ] ] Theorem 12 (Jay lines)If € = 1 then the sets of Sound
The Tangent line Tj; is the join of the CircumDual point points {s10,50,530}, {S11.51,%1}, {S12,52,52} and

pij and the point;. This line is indeed tangent to the cir- {s13,%3,533} are each collinear, while it = —1 then
cumcircle( at the pointg; if this circle passes through. the sets of Sound point§sio,Sr0,S83}, {S11,51,582}
The twelve Tangent lines are: {S12, 922,531} and{s13, 53, Sz0} are each collinear. In both
Tio=(0:a—1:b—1) Too— (a—1:0:c—1) cases the common lines are respectively the Jayiines
Tii=(0:a+1:b+1) Tu=(a+1:0:c—1) Jo=(@@-1)(b-1):(a-1)(c-1):(c-1)(b—-1))
Tiz=(0:a+1:b—1) Tro=(a+1:0:c+1) J=(@a+1)(b+1):(a+1)(c-1):(c—1)(b+1))
Tiz=(0:a—1:b+1) Ta=(a—1:0:c+1) Y =(@@+1)(b-1):(a+1)(c+1):(c+1)(b—-1))
JB={(a-1)(b+1):(a—1)(c+1):(c+1)(b+1)).
Tso= < .C—€. 0> . .
_ Proof. The forms of the Sound points and Jay lines make
Tai=(b+e:c—e:0) verifying these incidences almost trivial. Note that chang
Tso=(b—¢:c+¢€:0) ing the sign ofe interchangesgo with s33, andsgy with
_ s32. This explains why the two lists appear different in
Taz= <b+5 c+e:0). these two cases. O
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Inthe case of = 1 we associate each triple of Sound points that group CircumWren points are the meets of Circum-
to the Circumline which is involved in each term. In the lines and associated Wren lines. These points are
case oft = —1 we associate each triple to the Circumline

which is involved intwo of the three elements of the triple. Uo = CoWo

There are four meets of Circumlines and associated Jay =[(c+1)(a—b):—(b+1)(a—c):(a+1)(b—c)
lines calledCircumJay points, namely U = CW,
to=Codo=[(c—1)(a—b):(—b+1)(a—c):(a—1)(b—c)] =[(c+1)(a—b):(-b+1)(a+c): (a—1)(b+c)
ti=Cih=[(c-1)(a—b):=(b+1)(a+c):(a+1)(b+c)]  u=C\Ws
to=Colh=[(c+1)(a+b):(1—b)(a—c):—(a+1)(b+c)] =[(c—=1)(a+b):—(b+1)(a—c): (—a+1)(b+c)
t3=Cslzs=[-(c+1)(a+b):(b+1)(a+c):(a—1)(b—c)]. uz=CWs

=[(-c+1)(a+b):(b—1)(a+c):(a+1)(b—c).

Note that these formulas are independers of

Theorem 13 (CircumJay) The four CircumJay points
to,t1,t2,t3 are collinear and lie on the line

T =(c+ab:b+ac:a+bc).

Whene = 1 this coincides with the Base axis Bvhen
€ = —1, this is a new line which we call the &is. In
the case of = —1, T,B and Lz are concurrent at a new
point

f=[—(b+ac):c+ab:0].

Proof. The CircumJay poirtp lies onT since

(c-1)(a—b)(c+ab)+(—b+1)(a—c)(b+ac)
+(@-1)(b—c)(a+bc)=

and similarly for the other points. The axis agrees with  Figure 20: Jay lines JWren lines W, TU,V axes and new

the Base axi8 = (c+ab:b+ac: ea+bc) if e = 1. For pointsa, 0,
e=-1,the _ve_rification of = TBis also straightforward,
and clearly it lies oris. 0 Theorem 15 (CircumWren) The  four  CircumWren

points W, U1, Uz, Uz are collinear and lie on the line
Theorem 14 (Wren lines) If € = 1 then the sets of Sound
points {s11,52,s3}, H{&O,”S327523}, h{|531,520;513} ﬁnd U= (ab—c:ac—b:bc—a).
i ile it = -1 o . o
t{hsél’:gt’ssg%}% %rguﬁgcpo(i:r?tégﬁasnzzw%éf Iffslo 3 Sgﬁn Whene = 1 this coincides with the Orthic axis. $Vhen
e ' it ' &€ = —1, thisis a new line which we call the bkis. In case

{s13, %20, S32} and{s12, 1,33} are each collinear. In both ~ ; :
cases the common lines are respectively the faien €= —1, SU and Ls are concurrentin a new point

lines U=[ac—b:c—ab:0].
Wo=((a+1)(b+1):(a+1)(c+1): (b+1)(c+1)) Proof. We may compute thag lies onU since
Wi=(a-1)(b—1):(c+1)(a—1):(c+1)(b—1))

b= ((b+1)(a—1): (a—1)(c—1): (b+1)(c—1)) (c+1)(a—b)(ab—c)— (b+1)(a—c)(ac—h)
Ws=((a+ 1)(b—1): (a+ 1)(c—1): (b—1)(c— 1) Flarhbrobera =0

The other incidences are similar. From (12) we recall that
Proof. Again, with the formulas for Sound points and the Orthic axis has equati®= (ab—c:ac—b: bc— ag)
Wren lines, it is straightforward to check incidences. As which agrees withJ precisely wherge = 1. Again the for-
with the Jay lines, changing the signointerchangesys mula foru is easy. t
with s33, ands; 3 with sp3. O

In Figure 20 we see the CircumJay poittgdark blue)
Notice that each set of collinear Sound points is associatedon T, the CircumWren pointsl; (purple) onU, and the
to the Circumcenter which is not involved in the indices of JayWren pointy; (yellow) onV.
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Theorem 16 (CircumJayWren) The lines U, T and H
are concurrent, and pass through

a=[c(a®—b?) :b(c?—a%) :a(b®—c?)]. (13)

If € =1 thena agrees with the Orthoaxis point &
[c(a’e—Db?) :b(c®—ea®) 1a(b®>—c?)].

Proof. The concurrence of these lines follows from

ab—c ac—b bc—a
det{c+ab b+ac a+bc| =0.
ab

ac bc

The common incidence with (13) is also readily checked.
The last statement is self-evident. O

There are foudayWren points which are the meets of as-
sociated Jay lines and Wren lines:

Vo=JWb= [(c?~1)(a—b): (b*~1)(c—a): (a®~1)(b—c)
vi=hWi = [(®~1)(a—b): (b®*~1)(a+c): (1—a%) (b+c)
vo=JWs = [(c—1)(a+b): (b?—1)(a—c): (1-a?)(b+c)|
va=JWs=[(c®~1)(a+b): (1-b?)(a+c): (a®—1)(b—c)].
Theorem 17 (JayWren) The four JayWren points

Vo,V1,V2,V3 are collinear and lie on thelayWren axis,
ortheV line

V={c(b?~1) (@%—1):b(c*1) @>-1): ac®-1)(b*>~1)).

Proof. The JayWren poinf lies onV since

(?—1)(a—b)c(b®—1) (a®-1)

—(b*—1)(a—c)b(c?—1) (a®-1)
+(a®—1)(b—c)a(c®—1) (b*—1) =0.
Checking the other incidences is similar. O

4.6 CircumMeets and reflections

One of the interesting features of this situation concdraes t
meets of the eighgeneralized circumcirclesforming the
four twin circumcircles of a triangle with six smydpoints.
We establish easily a basic fact.
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Figure 21: Circumcircles and CircumMeet points

Theorem 18 (Smydpoint reflection) Suppose that a gen-
eralized circumcircleC has center ¢ perpendicular to a
smydpoint nlf ¢ passes through a poinfaf the Trian-
gle, then it also passes through the reflectigfe).

Proof. If nis perpendicular ta;, then the reflectiomy in
n fixes the centec; of C, and so fixeg”. Thus if C passes
throughay, it also passes through (ax). O

This theorem helps explain why in Figure 21 the meets
of the generalized circumcircles lie either on the lines
of the Triangle, or on the Medians. We see that reflec-
tions of Points in Sydpoints are also interesting points of
the Triangle—in fact somewhat surprisingly these Circum-
Meet points are independent of the third Point of the Trian-
gle, and depend only on the particular side on which they
lie. The reader can verify with a dynamic geometry pack-
age that as we vary one point of the Triangle, the gener-
alized circumcircles move, but their meets on the opposite
Line do not.

In general meets of circles are complicated by number-
theoretical issues (circles do not have to meet, after all).
We conjecture that whenever generalized Circumcircles
meet, they do so either on Lines or Medians. We hope to
explain the more detailed structure of these CircumMeet
points in a future paper.

4.7 Sound conics

The twelve sound points are quite interesting, supporting
the linear structures of Jay and Wren lines. They also are
connected with four special conics in an interesting way,
each conic naturally also associated with a circumcenter.
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Figure 22: Sound conics

Theorem 19 The sextuples {si2,13, 21, %23, 31, 32},

{12,513, 920,922,530, 83}, {510,511, 521, 23, 30,533} and
{s10, S11, S20, 22, S31, S32} Of sound points all lie on conics.
Each of these fouSound conics Xj is associated to a
Circumcenter ¢.

Proof. We compute the coefficients of the equation of the
(blue) conic

Ko : arx? 4 agy? + aaZ> + asxy+ asxz+ agyz="0

passing through pointsi2, S13, 91, 23,531 by solving the
linear system

This results in the values

a1=(c+e)(b—g)(b®—1) (a®—1)
az=(c+e)(b—g)(c*-1)(a®—1)
as=(c+e)(b—g)(c?~1) (b~ 1)

as=2(a’— 1) (bc+1) (be — ce+bc—1)
as=2(c+e)(b—¢)(b®—1)(ac+1)
ag=2(c+é€)(b—¢)(ab+1)(c?—1).

When substituting the coordinatess$ in the above equa-
tion with these coefficients, we obtain equality precisely
when

(2-1) (a® 1) ((b—c) (4bc+b*+c2+2)e

+(bc—1) (b*+c?—2))=0

which is true since? = 1.

By following the same argument, we can obtain the equa-
tions of the (red) conic

K- le2 + bzy2 + b322 + bgxy+ bsxz+ bgyz= 0
throughsy 2, S13, S20, S22, S30, S33 With coefficients

by = (b+¢)(c+e) (b?—1) (a2 1)
b= (b+e€)(c+e)(?—1) (a%—1)
bs = (b+e€)(c+e) (?—1) (b? 1)

bs=2(bc—1)(a? — 1) (be +ce+bc+ 1)

bs =2(b+€)(c+e)(ac—1) (b*—1)
bs=2(b+€)(c+e)(ab+1)(c?—1),

the (green) conic

Ko : C1X° + CoY? + CaZ> + CaXy+ CsXZ+ Cgyz=0
throughsio, 11, S21, $23, S30, S33 With coefficients

¢ = (c+e)(b+e) (b*—1) (a®—1)
02—(c+s)(b+s)( 1) (a®-1)
=(c+¢)(b+e)(?—1) (b® 1)

2

cs =2(bc— 1) (be+ce+bc+ 1) (
=2(c+¢)(b+e)(ac+1) (b*—1)
=2(c+¢)(b+e)(ab—1)(c*—1),

-1
(
(
and the (brown) conic

Kz : dx 4 doy? + daZ® + daxy+ dsxz+ dgyz= 0
throughs; o, S11, 20, S22, S31, S32 With coefficients

di=(c+e)(b—¢)(b?—1)(a®—1
do=(c+e)(b—¢)(c*-1)(a®—1)
ds = (c+€)(b—¢)(c?—1) (b*—1)

ds = 2(bc+ 1) (be — ce +be—1) (a2 — 1)
ds=2(c+¢€)(b—¢)(ac—1) (b?— 1)
ds=2(c+é€)(b—¢)(ab—1)(c*~1).

We associate each Sound cotgto the Circumcentet;
not involved in any of the six Sound points lying on itJ

5 Further directions

We can now extend hyperbolic triangle geometry from
classical triangles to more general ones. Taking duals we
get also analogous results for the Incenter hierarchy,tand i
is worthwhile to elaborate these and then investigate fur-
ther the links between Incenter and Circumcenter hierar-
chies.
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The close relations between twin circles ought to have con-oretical or combinatorial bend. It turns out that sydpoints
sequences for relativistic physics, as points inside the nu play a big role in the theory of conics in UHG as well, as
circle correspond to time-like lines and points outside to we will explain in a future paper.

space-like lines. The geometry we are investigating sug-

gests these two aspects of relativistic geometry ought to beAcknowIedgements

much more closely linked.

Another direction is that over certain finite fields, we can Ali Alkhaldi would like to thank the University of King
expect some sides to have both midpoints and sydpoints!Khalid in Saudi Arabia for financial support for his PhD
This is an interesting aspect for those with a number the- studies at UNSW.
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