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INTRODUCTION 

A macro-system is one that includes a large number of elements. It can only be controlled on a 

macro level by changing parameters averaged over the ensemble of its elements. Thermodynamic 

systems containing large numbers of molecules provide a classical, long-studied example of 

macro-systems. Economic systems containing large numbers of economic micro-agents 

provide a second important class of macro-systems. Further examples of macro-systems are 

given by migration systems, segregated systems, whose elements interact through a uniform 

single medium, etc. 

An important feature of macro-systems is that direct contact between two macro-systems 

leads to a stochastic interaction between their elements on a micro-level. This occurs 

spontaneously and is irreversible, because it is necessary to supply the systems with external 

energy or capital to return them to their initial states. 

Mathematical models of macro-systems can be divided into structural analytical models, which 

derive a system’s behaviour from the behaviour and statistical properties of its micro-elements, 

and phenomenological models, which directly model macro behaviour. The macro-system 

(thermodynamic) approach to economics was developed by von Neumann, Samuelsen, 

Lihnerovich, Rozonoer, Martinás and others. A comprehensive list of references can be found 

in the reviews [1, 7] and the monographs [9, 10]. 

In this paper we will employ the following definitions: 

1. The state of a macro- system is described by two types of variables – extensive and 

intensive. The former are proportional to the scale of the system, while the latter are 

independent of scale change. For example, in thermodynamics, volume, internal energy 

and mass are extensive while concentration is intensive. In economics, endowments of 

resources and capital are extensive, while resource prices are intensive. Extensive 

variables in an isolated macro-system obey balance equations. For systems with 

transformers such as chemical reactors or production companies, these balances govern 

the transformation of one type of extensive variables into another, for example. 

2. We consider three types of sub-systems: 

2.1. Systems with infinite capacity and constant intensive variables (reservoirs). For 

example, heat reservoir in thermodynamics or market in economics where the 

trading flows are so large that the influence of an individual trader on prices is 

infinitely small and prices are constant(prices do not depend on the trading volume). 

2.2. Finite capacity systems, with intensive variables that depend on its extensive 

variables for fixed time scale. For example, the temperature of a thermodynamic 

system with finite heat capacity depends on its internal energy. For economic system 

with finite capacity resource’s estimate depend on its endowment. We will also refer 

to a finite capacity economic system as economic system. 

2.3. Active systems with controllable intensive variables. For example, a working body of 

a heat engine or an economic intermediary that operates between economic systems. 

3. Kinetics of exchange processes. The difference of intensive variables of two contacting 

macro-systems with finite capacities leads to an emergence of exchange flows. These flows 

in turn depend of the intensive variables of contacting systems and are directed in such a 

way that the values of intensive variables move closer. In equilibrium these values are the 

same and there are no flows. 
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Similarly to the approach adopted in finite-time thermodynamics ([9, 16, 17]) we assume that 

the economic system under consideration consists of subsystems in internal equilibrium and 

that all irreversibility is concentrated on the contact surfaces between these subsystems. 

The maximal work problem of transforming a non-organized form of energy (heat, chemical 

energy) into an organized form (mechanical work, electric current, work of separation) plays 

the major role in thermodynamics. Its solution led to the introduction of exergy, the maximal 

amount of nonorganised energy that can be transformed into work. This measure does not 

take into account the rate of work (transformer’s power). Accounting for this constraint led to 

the replacement of exergy with a more general notion of work capacity [12]. 

The problem of extracting the maximal capital from a macro-system, with subsystems that 

have different initial endowments of liquid capital and illiquid capital in the form of various 

resources, represents microeconomic analogy of thermodynamics’ maximal work problem. In 

thermodynamics the work can be fully transformed into other forms of energy. Similarly all 

capital (money, basic resource) in microeconomics can be fully transformed into any other 

resources. Other resources can only be transformed into money if there is demand for it from 

the other economic system. We shall call the limiting amount of money that can be extracted 

from economic system subject to some conditions the profitability of this system. Production 

of work or extraction of capital is not possible unless the system includes active subsystems. 

In thermodynamics they are heat engines and other transformers, in economics they are 

economic intermediaries or production companies. 

The special variable that gives a quantitative measure of irreversibility of system’s processes 

plays a central role in macro-system’s theory. When macrosystem approaches the equilibrium 

the value of this variable increases. In equilibrium it attains maximum. In thermodynamics this 

measure is called entropy. It has been proven that entropy is a function of extensive variables 

and is an extensive variable itself. Therefore the entropy is a homogeneous function of the 

degree one. In microeconomics equilibrium economic system is described by the wealth 

function S that depends on the stock of resources N and stock of capital N0. Note that wealth 

function of a system that consists of a number of non-uniform subsystems is not additive. 

Furthermore, in the general case subsystems’ wealth functions can have different 

dimensionality. The principle difference between thermodynamic and economic macro-systems 

is that in thermodynamics an exchange of only one type of material or energy is possible (heat 

transferred from a hot to a cold body). During this exchange the entropy of one of contacting 

subsystems can decrease but the entropy of the other will increase in such a way that the total 

system’s entropy tends to maximum. In economics all exchanges are voluntary. Therefore the 

wealth function of each participant does not decrease. In most cases that is only possible for a 

multi-resources’ exchange. 

PROPERTIES OF WEALTH FUNCTION AND ANALOGY OF 
GIBBS-DUHEM EQUATION 

The state of an economic system can be described by the vector of N = (N1; …; Nn) resources 

and capital N0. These are extensive variables. Economic system is prepared to sell resource Ni 

at a price that is not less than pi, and to buy it at a price that is not higher than pi. We shall 

call pi the equilibrium price estimate of the i-th resource by economic system. These 

estimates themselves are economic system’s intensive variables. For a finite-capacity 

economic system p depends on N and N0. 

Suppose that active subsystem interacts with economic system by buying and selling its 

resources in such a way that the state of economic system changes cyclically and the exchange 

is executed at the equilibrium prices p. Then the increase of economic system’s capital is 
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  NpN dd 0 . (1) 

If dN0 was not equal zero than active subsystem would be able to extract arbitrary large profit 

by exchanging with one economic system without changing the state of the environment (if 

dN0 < 0 then active subsystem extracts resource in direct cycle, if dN0 > 0 then it does it in 

inverse cycle). This is not feasible in economics (Ville Axiom [14]) and therefore the integral 

(1) must be equal zero and a function M(N) exists such that 
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Let us construct function S, such that 
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From Pfaffian forms theory it is known that for two variables N0 and M there exists 

integrating multiplier p0, such that dS is total differential. 

The formal proof of the existence of the wealth function S(N0; N) in an economic system is 

similar to this sketch [2, 4, 10, 15]. The multiplier p0 = dS/dN0 is the estimate of the basic 

resource (capital) and the estimate of the i-th resource is 
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Expressing dN0 from (3) we get 
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The wealth function and all its arguments are proportional to the scale of the system. 

Therefore, it is a homogeneous function of the degree one. From Euler theorem it follows that 

it can be written in the following form 
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The estimates of resources and capital p0(N); pi(N) here are homogeneous functions of the 

degree zero. 

From (6) follows that 
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Comparison of equations (8) and (5) yields the following equation that links capital’s 

estimate and resources’ estimates 
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Similarly comparing the differential S from (6) with the expression (3), we get 
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The conditions (9) and (10) follow from the existence of function S and its homogeneity. 

They are economics analogies of Gibbs-Duhem equations. The following conditions also 

follow from the existence of function S: 
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It is easy to see that from conditions (11), (12), it follows that 
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Conditions (11) and (12) are economic analogies of Maxwell equations. 

One of the forms of wealth function that obeys the conditions (3 – 10), is the Cobb-Douglas 

function 
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with A > 0 a constant,   0 and 1
0




n
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i . An alternative form of S proposed by Martinás is 
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where gi and ki are some constants. 

For economic reservoir 
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where p00 and pi0 are constants. The dimensionality of function S is in units of currency of the 

corresponding economic system. The dimensionality of the estimates pi is the amount of 

capital per unit of i-th resource. 

Demand and supply functions are defined as dependencies of the amounts of resource sold 

(bought) on the price. If we consider its time-dependent version then demand and supply 

functions will describe the dependence of the flow of the traded resource on its price. This flow 

is equal zero if the price Ci is equal to the estimate pi. The equations (9 – 13) show that 

estimates can not be arbitrary functions of resources’ endowments. They must be 

homogeneous functions of zero degree that obey these equations. 

This makes possible to model empirical data for nearly equilibrium economic systems. In [13] 

it was demonstrated on historic data for Sweden that the conditions (11) and (12) held during 

the periods when it was nearly equilibrium and broke down during economic crisis of 1930-th. 

Fulfilment of the conditions (11) and (12) guarantees the existence of a function S. 

EQUILIBRIUM IN ECONOMIC SYSTEMS 

We consider an economic system that has a wealth function and which includes m 

subsystems with given initial endowments of resources N(0),  = 1, ..., m. 

SYSTEM WITH ECONOMIC RESERVOIR 

Economic reservoir corresponds to the perfect competition market with constant prices. They 

are determined by exogenous factors or by the conditions of non-accumulation of resource on 

the market. 
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The conditions of equilibrium in such systems is reduced to the equality of the resources’ 

estimates in all subsystems to the market’s prices 

 0)( ii pNp  ,     i = 1, …, n,  = 1, ..., m. (17) 

Here N  = ( 0N , 1N , ...) is vector of stocks of resources in equilibrium for v-th subsystem. 

The balances of capital in each subsystem 
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are to be added to conditions (17). The system (17) and (18) determines (n+1)m variables 

iN , i = 0, …, n,  = 1, ..., m. 

Suppose that the wealth functions for each subsystem have Cobb-Douglas form (14) 
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The estimates then are 
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Let us introduce the variable 
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called capitalization of the v-th subsystem in terms of market prices. The condition (18) 

states that capitalization is constant during equilibrium exchange 
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The conditions (17) take the form 
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The solution of the system (22) and (23) has the form 

 
0

i

i

i
p

VN 



 ,       00 VN  ,     i = 1, …, n,  = 1, ..., m. (24) 

The corresponding equilibrium value of the wealth function is 
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If the vector of market’s prices p0 is not determined by the external factors but is set at such 

level that all resources offered at the auction are sold then in addition to the conditions of 

equilibrium (17) the capital balance (18) and conditions of non-accumulation of resources on 

the market are needed 
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These conditions determine n variables pi
0
. 

If Sv has the form (19) then the equations (26) take the form 
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We denote 
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and after taking into account (21) the conditions (27) can be rewritten as a linear system 
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that determines price vector p
0
. 

SYSTEMS WITHOUT ECONOMIC RESERVOIR 

Since economic exchange is a voluntarily action by an agent, it is possible to exchange a 

resource if and only if this resource estimates for contacting systems have opposite signs. For 

example, production waste has negative estimate for one subsystem and positive for another, 

which have a capability to process it. If these estimates have the same sign in both contacting 

systems then only an exchange where at least two resources are traded can take place (flow of 

a resource and counter flow of capital and counter flow of another resource (barter)). It turns 

out that a state where vectors of estimates p for all subsystems are identical and any exchange 

that increases the wealth function of v-th function 
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reduces the wealth function of at least one other contacting subsystems, is an equilibrium 

state. That is, in economics (unlike thermodynamics) all Pareto-optimal states turned out to 

be equilibrium states. Some of these equilibrium states correspond to an exchange via an 

auction when the prices are determined by the conditions of non-accumulation (26). In this 

case capitalization Vv of each subsystem in equilibrium is equal to the initial capitalization, 

which determines the equilibrium distribution of the basic resource. 

If functions Sv have all the same dimensionality (which is not always the case) then it is possible 

to single out the state in the Pareto set for which the value of the wealth function is maximal. 

This means that transfer into another equilibrium state would not give wealth function gains 

to some subsystem sufficient high to offset losses to wealth function of other subsystems. 

It is clear that this maximal wealth function state corresponds to the equality of capital estimates 

 00 pp  ,      = 1, …, m. (30) 

which determines, jointly with conditions of equilibrium and conditions of non-accumulation, 

the distribution of all resources. 

EXTRACTION OF CAPITAL 

Consider a system with an active subsystem whose goal is to extract capital. For simplicity we 

assume that this subsystem is an intermediary, which resells resources without processing it. 

UNCONSTRAINT EXCHANGE TIME 
Extraction of capital from a system is only possible if the its initial state is non-equilibrium, 

that is, if vectors of estimates pv(0) for its subsystems are different. The process terminates in 

equilibrium when 

 0

0 ),( ii pNNp  ,     i = 1, …, n,  = 1, ..., m. (31) 

Maximum of the extracted capital corresponds to the minimum of the following expression 
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Intermediary buys resources at lowest prices (from subsystems with estimates of the i-th 

resource lower than pi
0
) and sells it at the highest prices (to subsystems with estimates higher 

than pi
0
). Both buying and selling are reversible with zero Increments of wealth function. The 

state of equilibrium is determined by mn conditions (31), m reversibility conditions 

  SNNSNNS  ))0(),0((),( 00 ,      = 1, ..., m, (33) 

and condition of non-accumulation of resources by the intermediary 
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The system (31), (33) and (34) determines (m+1)n subsystems’ state variables and n 

equilibrium estimates pi. Naturally in equilibrium in a system with an intermediary N0 and N 

are different from equilibrium during a direct exchange. Maximum of the extracted capital is 
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For the Cobb-Douglas wealth function (19) the conditions of equilibrium take the form (23), 

where instead of condition of constant capitalisation (22) one needs to use the condition of 

constancy of Sv 
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jointly with equation (34). 

DISSIPATION AND CAPITAL EXTRACTION IN A FINITE TIME IN A CLOSED 
ECONOMIC SYSTEM 

If the duration of the process is finite and constraint then the increment of the wealth function 

and the amount of extracted capital depend on the demand and supply functions (that is, the 

dependencies of the flow rates of resources on the price differentials). When an intermediary 

buys resource from economic system in a finite time is has to increase the offered price above 

the equilibrium price. As a result it spends more capital. Similarly during a sale in a finite time 

an intermediary has to give a discount on the equilibrium price. This reduces its capital. The 

product of the flow between two EA on the difference between the prices of buying and selling 

describes the current losses of capital due to the factor of irreversibility capital dissipation) 

 ))(,(),( cpcpgcp  . (37) 

Capital dissipation measures irreversibility of the processes in the system. 

Reciprocity conditions for flows that linearly depend on price differences 

The causes of resource-exchange flows (their ”driving forces”) is the differential between 

resources’ estimate by the economic systems and the price offered by an intermediary. 

Suppose that deviations from the equilibrium are small and the flows can be considered as 

linear functions of the price estimate differences. 

The driving force for the i–th resource is i = pi - ci. We denote the flow directed to economic 

system as positive. We get 
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We shall call matrix A with elements ai the matrix of kinetic coefficients of economic 

system. It determines kinetics of its exchange with environment. The flow of resource causes 

the counter-flow of capital such that 
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The change in the value of the wealth function here is 
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 is the vector of driving forces. 

Because capital’s estimate p0 > 0, resource exchange can be executed with buyer’s and seller’s 

consent and wealth function does not decrease, the matrix is positive. Let us show that it is 

also symmetrical. Indeed, if driving forces are expressed in terms of flows using equation 

(38) then for any infinitesimally short time period the expression (40) will take the form 
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where dN is the vector-column of increases of resources’ stocks, B = A
-1

. The elements bi of 

this matrix are 
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Thus, the matrix B is positive and symmetrical. Therefore its inverse demand/supply matrix is 

also symmetrical and positive near equilibrium. The following reciprocity relations hold: the 

effect of the difference between price and estimate of the v-the resource on the flow of i-th 

resource is the same as the effect of the difference between the price and estimate of the i-th 

resource on the flow of the v-th. 

The optimal buying (selling) of resource for linear resource exchange 

System with one finite-capacity economic subsystem. Consider a system with one finite 

capacity subsystem (economic system) and an active subsystem (intermediary). Suppose the 

initial and finite states of economic system are given N(0) = (N0(0), N1(0), …, Nm(0)), N  = 

(N0(), N1(), …, Nm()). The intermediary sets such vector of prices c(t) = (c1(t), c2(t), …, 

cm(t)), that the final capital of economic system N0() is minimal. First we assume that the 

flow depends linearly on the driving forces 
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Matrix A with mm elements aij is positive and symmetrical, (c – p) is the vector with elements 

 i = ci – pi(N). (44) 

We denote i = Nm() – Ni(0) and rewrite the problem as follows 

 
)(

0 1 1

000 mind)()()0()(
tc

m

i

m

j

jjiji tpcatcNNN   
 



 , (45) 

subject to constraints 

 ii dttg 



0

)( ,     i = 1, …, m. (46) 

The problem (44 – 46) corresponds to maximum of the extracted capital as M = N0(0) – N0(). 

Let us express c in terms of g using (43) 

 BgpgApgc  1)( . (47) 

The problem 
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g

T dtBgpgNN min)()0(
0

00  


, (48) 

subject to constraints (46) gives lower bound on the optimal solution of the problem (44 – 46), 

because the condition (45) has been deleted. If this solution is realisable, that is, if it obeys 

the condition (45), then the solution of the problem (48) and (46) is also a solution of (44 – 46). 

Because matrix B is symmetrical and positive the problem (48) and (46) is a convex averaged 

problem of non-linear programming. Its optimal solution is constant and equal to 

 






 )()0(* iii

i

NN
g


 ,     i = 1, …, m. (49) 

The corresponding solution of the equations (45) is realisable (Ni
*
(t)  0) 

 t
NN

NtN ii

ii


 )()0(
)0()(*


 ,     i = 1, …, m. (50) 

Substitution of this dependence into pi(N) will determine pi
*
(t) and the equation (47) yields 

the optimal price c
*
(t). 

System with a number of economic subsystems. Consider a system with n economic systems 

and an intermediary. Intermediary buys resource from some subsystems and sells it to others. 

The maximum of the extracted capital corresponds to its minimum in all economic systems at 

time . That is, the solution of the problem 

 
c

m n

i

ii

m

tctgtcNN mind),()()(
1 0 1

0

1

0 













 

  







  , (51) 

where the conditions (45) hold for each economic system, and condition (46) is replaced with 

the condition of non-accumulation of resources by the intermediary 

 



m

i dttg
1 0

0)(




 ,     i = 1, …, n. (52) 

The values of iN  in this problem are free. 

Because both buying and selling should proceed optimally, the flows of resource should be 

constant and must obey the conditions (49) 

 





ii

i

NN
g


* ,     i = 1, …, n,  = 1, ..., m. (53) 

From (53) it follows that the criterion (51) is determined by the subsystems’ final states 

 



m

N
NNN

1

00 min)(





. (54) 

N  must be chosen in such a way that 0N  is minimal subject to constraint (52), which takes 

the form 

 )0()0(
11

NNN
m

i

m

i 
 





 ,     i = 1, …, n. (55) 

The conditions of optimality (54) and (55) on iN  for this problem take the form 

 i

iN

N




 


 0 ,     i = 1, …, n,  = 1, ..., m. (56) 

Since )(/0  ii cNN  , (56) is reduced to the condition that at time  the buying and 

selling prices must be the same for all economic systems for each kind of resources ci() = 
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i,  . The conditions (55) and (56) consist of n(1 + m) equations with respect to unknowns 

i, i = 1, …, n and iN , i = 1, …, n,  = 1, ..., m. The dependencies 0N  on iN , in turn are 

determined by )(* ii Ng  , p(N) and by the matrix B via the equation (47). 

Their substitution into (54) allows us to find the minimum of the residual capital and 

therefore, the maximum of the extracted capital. 

Conditions of optimal trading for non-linear dependence of flows on price 
differences 

Consider the problem of optimal buying (selling) of resource for non-linear resource-

exchange law. This problem for scalar resource was considered in [11], [12]. We denote the 

amount of resource as N and the duration of exchange as . The problem of optimal buying 

takes the form 

 
)(

00 min)(
tc

NN   , (57) 

subject to constraints 

 


0

0 d)),(,( tNNpcg  = N, (58) 

 )),(,(
d

d
0 NNpcg

t

N
 , N(0) = N

0
, (59) 

 )),(,(
d

d
0

0 NNpccg
t

N
 , N0(0) = N0

0
, (60) 

In this problem c(t) is the price set by the intermediary, p(N0, N) is resource estimate by the 

subsystem, g(c, p(N0, N)) is the flow of resource that depend on c and p in such a way that 

 
.0),(

)(Sign)(Sign

pcpcg

pcg




 (61) 

The conditions of optimality for the problem (57-60) have the form (11, 12) 

 
),(

)/)(/(

),(

/

d

d
2

0

2 cpg

Nppg

cpg

cg

N





. (62) 

In 11 and 12 it is also shown that criterion (57) is equivalent to criterion of minimal 

dissipation 

  




0

mind))(,( tpcpcg . (63) 

We consider the optimal buying problem for vector flows, where the flow of each i-th 

resource gi (i = 1, …, n) depends on the vector of prices c = (c1, …, cn) and estimates p = (p1, 

…, pn). Here the minimum of spent capital corresponds to the problem with criterion (57) 

subject to constraints 

  




0

mind))(,( tpcpcg . (63) 

We consider the optimal buying problem for vector flows, where the flow of each i-th 

resource gi (i = 1, …, n) depends on the vector of prices c = (c1, …, cn) and estimates p = (p1, 

…, pn). Here the minimum of spent capital corresponds to the problem with criteria (57) 

subject to constraints 
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  



0

0 d)),(,( ii NtNNpcg , (64) 

 niNNNNpcg
t

N
iii ...,,1)0()),,(,(

d

d 0

0
i  , (65) 

 0

00

1

0
0 )0(,)),(,(

d

d
NNNNpcg

t

N n

i

i 


. (66) 

The maximal amount of residual capital decreases monotonically when  increases, tending 

to reversible limit we already found. Indeed, if this dependence was not monotonic then the 

intermediary could stop exchange at i <  when this capital was minimum. This means that 

during an optimal process the r.h.s. of the equation (66) has one sign. This allows us to 

choose the new independent variable 

 





n

i

ii pcgc

N
t

1

0

),(

d
d , (67) 

and replace minimisation of the residual capital with minimisation of the duration of the 

process for given 0N  

 
)(

1

0 min

),(

d0

0
0

tc

N

N

n

i

ii pcgc

N
 




 , (68) 

subject to constraints 

 iii

N

N

n

i

ii

i

N

N

i NN

pcgc

NNNpcg
N

N

N
 






0

1

00

0

0

0

0
0

0

0
0 ),(

d)),(,(
d

d

d
, (69) 

 niNNN

pcgc

NNpcg

N

N
iin

i

ii

i ...,,1)(,

),(

)),(,(

d

d 00

0

1

0

0

i 




. (70) 

We assume that the solution of the problem (68 – 70) is not degenerate (0 = –1) and denote 

the scalar product as follows 

 ),(),,( gggcgc
j

jj

j

jj    .  

The Hamiltonian function of this problem is 

 
),(

),(1

gc

g
H


 , (71) 

 nijNNNNNN
gc

g

N

N
iiii

i ...,,1,,)(,)(,
),(d

d
0

00

0

0

i  . (72) 

The weak conditions of optimality here are 

 













i

jiij

i

jii

j cgcg

cg

gcH
c

H

)/(

)/(

),,(0



 , (73) 

   



























j i

j

jj

i

i

i ni
N

g
gcHc

gcNN

H

N
...,,1,),,(

),(

1

00




. (74) 
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Conditions (74) show that for an optimal process the expression in the r.h.s. of this equation 

has the same value for all j. The boundary conditions for adjoint variables are determined by 

the boundary conditions N(0) = 0

0N  and N() = N . 0N  can be viewed as a parameter. This 

parameter can be determined from the condition that in the optimal process the integral (68) 

equals . Conditions (74) are a system of linear equations with respect to vector of adjoint 

variables . After elimination of  from (73) the optimality conditions can be reduced to a 

form similar to (62). 

MAXIMAL RATE OF PROFIT EXTRACTION IN OPEN ECONOMIC 
SYSTEM 

STATIONARY STATE OF AN OPEN ECONOMIC SYSTEM WITH LINEAR 
RESOURCE-EXCHANGE LAWS, PRINCIPLE OF MINIMAL CAPITAL DISSIPATION 

Consider an open microeconomic system shown in Fig. 1. 

Suppose the system is in a stationary state; each of its n subsystems (i = 1, …, n) exchanges m types 

of resources 

ijg  (i, j = 1, …, n;  = 1, …, m) with other subsystems; the flows of resources depend 

linearly on the differences of estimates 
ijij pp  . For each subsystem and each resource these 

flows are constrained by the conditions of the balance 

 

Figure 1. The structure of an open microeconomic system. 

 mnig
n

j

ijij ...,,1,1...,,2,0)(
1




 . (75) 

Here ij is the vector of driving forces with components 

ij . 

If these flows depend linearly on the estimates’ difference then (see (38)) 

 mnjiag
m

ijijij ...,,1,,...,,1,,
1







 . (76) 

For i-th subsystem (i = 2, …, n-1) the vector of resources’ estimates pi depends on its 

endowments of resources. The market prices 1p  and np  for corresponding markets where 

these resources are bought and sold are fixed. The capital dissipation can be written as 

 
 


n

ji

m

ijijg
1, 12

1



 . (77) 

The multiplier 1/2 appears here because each flow enters (77) twice. The function  

characterises the irreversible losses necessary for maintaining resources’ flows (trading 

costs). After taking into account (76) the capital dissipation can be rewritten as the following 

quadratic form 
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 
 


n

ji

m

ijijija
1, 1,2

1



 . (78) 

If all matrices Aij with elements 

ija  are positive then the matrix of this quadratic form is 

positive and   0. After taking into account the reciprocity relations the condition of 

minimum of  on ip  (i = 2, ..., n – 1) is 

 mnjiaa ijij ...,,1,;...,,1,,   . (79) 

This condition and equality 
ijij pp   lead to the equalities 

 mnia
n

j

m

ijij ...,,1;1...,,2,0
1 1


 




 . (80) 

which coincide with balance equations (75) if the flows have the form (76). Therefore the 

following statement holds: stationary regime in an open microeconomic system that consists 

of internally equilibrium subsystems with flows that depend linearly on the estimates' 

differentials corresponds to such a distribution of resources between subsystems that capital 

dissipation is minimal 

This is the economic analogy of Prigogine minimal dissipation principle in irreversible 

thermodynamics. 

CAPITAL EXTRACTION IN OPEN MICROECONOMIC SYSTEM WITH AN 
INTERMEDIARY 

Consider economic system with an intermediary, two markets (economic reservoirs) and 

subsystems (Fig. 2). 

The markets are described by the resources price vectors p+ and p-, linear resource exchange 

kinetics (linear dependence of flows on differentials of resources’ prices (estimates)) 

 

Figure 2. The structure of an open microeconomic system with an intermediary. 

 njag
m

k

kjikjjij ...,,1,,)(
1

 


 . (81) 

Here gij is the flow of i-th resource between j and  subsystems, kj = pk - pkj. If one of the 

contacting subsystems is an intermediary which sets the price ckj for buying k-th resource 

from i-th subsystem then kjf = ckf – ckj. We denote the matrix of exchange coefficients 

between j-th and -th subsystems as Aj and between j-th subsystem and economic 

intermediary as Ajf. The flow of resource-exchange then is 

 ifififjjj AgAg  , . (82) 

The flow of capital extracted from the system is 
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jc

n

j

jfjf

T

j Acm max
1




, (83) 

where cj is the price vector with components ckj. The flow of capital m attains maximum on cj 

subject to the condition of non-accumulation of resources by the intermediary 

 



n

j

jfjfA
1

0 . (84) 

The condition (84) is the system of linear equations k = 1, ..., m that links the prices to the 

resource estimates pkj for each of the passive subsystems. The problem (83) and (84) is 

convex and has a unique solution. 

The resource estimates pj, in turn, depend on the endowments resources Nj and capital N0j as 

well as on the wealth function Sj(Nj, N0j) of each economic system. They can be found from 

the condition that in a stationary state for any price vector c = (c1, ..., cj, ..., cn), the values of 

pkj (estimates of the k-th resource in j-th subsystem) minimise the capital dissipation 

  
 


n

j

n

j
p

jfjf

T

jfjj

T

j AA
1, 1

min
2

1



 . (85) 

Solution of the problems (85) and (83), (84) allows us to find the maximal flow of profit m, 

the corresponding resources’ estimates pj, j = 1, ..., n and, if the wealth function is known, the 

distribution of resources between subsystems. The problem (85) should be solved subject to 

the condition of non-negativity of stocks Nj and N0j in all subsystems that constraint the 

feasible set of estimates p. 

CONCLUSION 

In this paper we considered economic analog of the classical macro- system problem of 

extraction of an organized resource from a macro-system. In particular, we were concerned 

with the problem of extracting maximal capital from an economic system in infinite and finite 

times and with the problem of determining the maximal rate of capital extraction. 

Conditions for the extraction of maximal capital from an open and a closed system with 

multi-component linear resource-exchange kinetics were obtained. The conditions that must hold 

for a stationary state in economic macrosystem with and without an intermediary were obtained. 
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SAŽETAK 

U radu su proučena svojstva funkcije bogatstva ekonomskog sustava. Izveden je ekonomski analogon jednadžbe 

Gibbs-Duhem. Ravnotežna stanja i granični režimi izdvajanja dobiti iz neravnotežnog ekonomskog sustava su 

dobiveni za Cobb-Douglas funkciju bogatstva. 
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