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Summary 

The paper presents the smoothed particle hydrodynamics (SPH) method, a numerical 
method for simulating fluid dynamics phenomena, based on particle systems. The SPH 
method approximates continuum with a finite number of particles which carry physical 
properties and serve as approximation points for spatial functions. Integral approximations of 
field functions and their derivatives are described using smoothing kernel functions which 
have to satisfy a number of conditions to ensure consistency with a given order. Particle 
approximations are also shown. This method can be used for simulating either compressible 
or incompressible flows if the special equation of state, proposed by Morris et al., is applied. 
A computer algorithm is developed for two standard benchmarking cases, the Poiseuille and 
the Couette flow. It is shown that the simulation results agree fairly well with the analytical 
series solution. Nevertheless, some combinations of time step for numerical integration and 
sound speed can lead to non-physical phenomena. Like any other numerical method, SPH has 
its advantages and disadvantages noted through practical use and theoretical considerations, 
which are briefly described in this paper. 

Key words: computational fluid dynamics, smoothed particle hydrodynamics, kernel 
smoothing functions, Poiseuille flow, Couette flow 

1. Introduction 

Numerical simulations have become a very important approach for solving complex 
problems in engineering and science. With continuously increasing computer power, they 
have become a tool of scientific investigation used instead of expensive and time-consuming 
experiments. Computational fluid dynamics (CFD) comprises grid- or mesh-based numerical 
methods that solve basic field equations subject to boundary conditions by approaches 
involving a large number of elements leading to a large number of unknowns. Basic CFD 
techniques are the boundary element method (BEM), the finite element method (FEM), the 
finite difference method (FDM) and the finite volume method (FVM). Based on a properly 
pre-defined mesh, the governing equations can be converted to a set of algebraic equations 
with nodal unknowns for the field variables. Currently, these methods are dominant in 
numerical simulations for solving practical problems in engineering and science. Despite the 
great success, they suffer from difficulties in dealing with problems with a free surface, the 
deformable boundary, a moving interface, and extremely large deformation and crack 
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propagation. Moreover, for problems with complicated geometry, the generation of quality 
mesh has become a difficult, time-consuming and costly process [1, 2]. 

Solutions to the Navier – Stokes equations for various low Reynolds laminar flows are of 
great importance for both theoretical considerations and practical use. Since there are few 
analytical solutions to such equations, one often seeks help within numerical methods. 
Numerical methods such as the finite difference method, the finite volume method and the 
finite element method are often used in order to simulate fluid dynamics. Even though they are 
well established and have strong practical foundations, these methods have their disadvantages 
along with advantages. For example, fluid phenomena with the free surface effect as well as 
with moving boundary conditions are very hard to handle with such methods. The most often 
used finite volume method numerically solves the Navier-Stokes equations that are derived for 
the Eulerian, i.e. a fixed coordinate system. These equations are nonlinear due to convective 
terms [3]. To overcome these problems, the Smoothed Particle Hydrodynamics (SPH) method 
was introduced, which is Lagrangian in nature. Governing equations in Lagrangian form are 
linear, which facilitates implementation. SPH approximates continuum with a finite number of 
arbitrarily distributed particles which carry physical properties such as density, velocity, etc. 
Since the method does not need predefined connectivity between those particles, it is 
considered meshless. For instance, in the VOF (volume of fluid) method, the flow is defined 
with a non-linear conservative system of Navier-Stokes equations, and the computational 
domain is presented with a structured grid. Such a process of structured grid generation is 
time-consuming and requires a lot of user attention. In meshless methods, such as SPH, there is 
no need to worry about the quality of a mesh in regards to orthogonality, smoothness, 
skewness of volumes, etc. This quality of the SPH method results in an increase in the required 
CPU time, that is to say the simulation is slower. Even though it is considered that meshless 
methods are to become superior to the above-mentioned mesh-based methods [2], they are still 
in their development stage and are immature. As already mentioned, mesh-based methods 
demand nodal connectivity, which requires tedious pre-processing often done by trained 
engineers. In the SPH method, or any other meshless method, the time reserved for pre-
processing is replaced by the CPU time which becomes cheaper on daily basis. One should 
bear in mind that this also extends the simulation time. 

Since the fluid motion is described with a continuity equation and the Navier-Stokes 
equations, their SPH formulation is presented. These equations are used in a computer 
algorithm developed for the simulation of the time-dependant plane Poiseuille and Couette 
flow. It will be shown that obtained numerical results are in good agreement with analytical 
series solution provided by Morris et al. [12]. The method is still young, and has to overcome 
numerous problems in practical use, such as particle approximation consistency, faster and 
more robust simulation of incompressible flows using special equations of state, easier 
implementation of boundary conditions, etc. 

2. Formulation of SPH equations of motion 

The formulation of SPH is often divided into two key steps. The first step is the integral 
representation or the so-called kernel approximation of field functions. The second one is the 
particle approximation. As mentioned, continuum is discretized by a set of particles that need 
not to be connected. The SPH formulation is based on the integral representation of a field 
function using kernel functions instead of the Dirac delta function [4] as follows: 

   
Ω

( )  , di i i i if x f x W x x h x     (1) 
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where ( )if x  is the field function and   is the volume of integration which includes the 

position vector ix .  ,i iW x x h  is the kernel function which depends on the distance 

between two nodes and on the smoothing length, denoted h . Since the kernel function is used 
instead of the Dirac delta function, equation (1) is an approximation of a field function. Some 
conditions that the kernel function must satisfy in order to ensure consistency up to a given 
order will be discussed in the next section. If the kernel function is even, it can be easily 
shown that such approximation is of second-order accuracy. 

Approximation for the field derivative of a function (1) is expressed by: 

 
Ω

( ) ( )
  , di i

i i i
i i

f x f x
W x x h x

x x

 





 

   (2) 

Using the chain rule, one obtains: 

       
Ω Ω

,( )
  d ,   d

'

i i
i

i i i i i i
i ii

W x x hf x
f x W x x h dx f x x

x xx

           


 
   (3) 

If the divergence theorem [5] is applied to the first integral in equation (3), and since the 
kernel function vanishes on the boundaries of integration, the first integral equals zero if the 
kernel function is not truncated by the boundary. This truncation problem arises for particles 
that are near the boundary. Various virtual particles can be placed near the boundary to 
overcome this problem. In summary, if the distance from a particle to the boundary is at least 
h , equation (3) becomes: 

   
Ω

,( )
   d

'

i i
i

i i
i i

W x x hf x
f x x

x x

   
   (4) 

The above equation shows that the derivation of field function is transferred to the derivation 
of kernel function. This formulation is similar to the Galerkin weak formulation in the finite 
element method [6]. 

Since d ix   in the above equations represents the differential fluid volume, it is replaced by the 

finite volume V  of particle  , which is related to the particle mass m  by a well-known 

expression: 

  m V     (5) 

If the integral in equation (2) is replaced by summation over N  particles that are inside the 
smoothing length of position x , the particle approximation of a spatial function is obtained 
as: 

   
1

( )    ,
N m

f x f x W x x h
 

 

   (6) 

Note that x  still refers to the spatial vector. At particle  , the spatial function is calculated as: 

 
1

( )  
N m

f x f x W
  

 

  (7) 



V. Vukčević, A. Werner, N. Degiuli Application of Smoothed Particle Hydrodynamics Method 
 for Simulating Incompressible Laminar Flow 

4 TRANSACTIONS OF FAMENA XXXVI-4 (2012) 

where the term W  is the kernel function of particle  , evaluated at particle  , i.e. 

 ,W W x x h   . Equation (7) states that the value of a function at some particle   is 

obtained using the weighted average of N  particles that are near the particle  . By applying 
mathematical identities, Monaghan [4] derived the following approximations for the 
derivative of spatial function: 

   
1

( ) 1
    

N Wf x
m f x f x

x x


  
   

        
  (8) 

2 2
1

( )( ) ( )
     

N f x Wf x f x
m

x x
  

 
   


 

   
   

     
  (9) 

Expressions (8) and (9) are symmetrised since the spatial function is evaluated in the sense of 
interacting pairs of particles. They are considered to increase the accuracy and stability of 
simulation, and are therefore often used. The spatial derivative of kernel function is given by: 

    
W x x W x W

x r r r r
     

    

   
 

  
 (10) 

With the previously mentioned consideration, SPH approximations for the continuity equation 
and the Navier-Stokes equations can be derived. There are generally two approaches to 
approximating density: a summation density and a continuity density approach. In this paper, 
only the summation density approach is considered. It can be obtained straightforwardly by 
replacing the spatial function with density in equation (6): 

1

  
N

m W  





  (11) 

This approach is intuitive because it simply states that the density of particle   is obtained by 
the weighted average of the mass of particles that are inside of the support domain of particle 
 . 

The symmetrised Navier-Stokes equation is used, while others can be found in literature [4]: 

   

 

 

 

 

 

 

 

( )
( ) 2 2

1 ( )

( ) ( ) ( )
( ) 2 2

1 ( )

D
     

D

     

N
i

i

N
ij ij

j

v p p W
m

t x

W
m

x

   


  

   


  

 

   

 





  
    
   
  
  
   




 (12) 

where  iv   is the velocity,  p   is the pressure, ( )  is the dynamic viscosity and  ij   is the 

strain rate tensor of particle  . Note that indices for the Cartesian coordinates  ,i j  are 

written outside the brackets, while particle indices  ,   are written inside the brackets for 

simplicity. Approximation for the strain rate tensor is given by [3] as: 
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 
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 
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    

 


  


 




 



 
  

 

 
 
  

 


 (13) 

where  iv   is the velocity difference between particles   and  , i.e.      i i iv v v    , and 

the Kronecker delta symbol [7] is denoted by ij . Note that instead of using approximations 

that include the second derivative of kernel function in order to represent viscous fluid forces, 
two first derivatives are used, since the strain rate tensor at particle   (13) is evaluated before 
the acceleration of particle   (12). This leads to the possibility of using lower order kernel 
functions. 

3. Kernel functions 

In order to ensure consistency up to a given order and to approximate the spatial function, as 
well as its first and second derivatives, the kernel function must satisfy a number of 
conditions [4]: 

 0

Ω

 , d 1i i iM W x x h x      

 1

Ω

 ( ) , d 0i i i i iM x x W x x h x        

 2
2

Ω

 ( )  , d 0i i i i iM x x W x x h x        




 (14) 

 
Ω

 ( )  , d 0n
n i i i i iM x x W x x h x        

and 

 
Ω

, 0i iW x x h


    

 
Ω

, 0i iW x x h


     

where W   denotes the gradient of kernel function and nM  stands for the n -th momentum of 

kernel function. These conditions can be easily derived using the Taylor expansion of  if x   

about ix , assuming that  if x   is sufficiently smooth. 

It should be noted that these are conditions that the kernel function has to satisfy in order to 
approximate spatial functions and their derivatives by means of integral representation. 
Consistency conditions for particle approximations are generally not satisfied, especially for 
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particles near the boundary and irregularly distributed particles. Some techniques have been 
developed in order to satisfy those conditions, such as Reproducing Kernel Particle Method [4]. 

Many different kernel functions can be easily found in literature [4]. In this paper, B – spline, 
the cubic kernel function, see Fig. 1, is used: 

   

2 3

3

2 1
     , for 0 1

3 2

,    2   , for 1 2
6

 0,  for 2

d

d

R R R

W R h R R

R





        


   






 (15) 

where R  is the relative distance between interacting pairs of particles, defined as: 

  
i ix xr

R
h h





  (16) 

Coefficient d  is determined from first equation in (14), which ensures zero order 

consistency. For two dimensional cases, d  is 215 7πh , and the kernel function can be 

visualized as shown in Fig. 2. This kernel function is often used in the applied SPH method 
due to its resemblance with the Gauss bell curve. Although, it should be noted, that its second 
derivative is a piecewise linear function, which can cause some stability issues. 

 

Fig. 1  B – Spline kernel function (15) and its derivative 
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Fig. 2  Graphical representation of two dimensional kernel function 

4. Numerical examples 

The following section deals with the applications of the SPH method to incompressible 
flows to examine its effectiveness and to provide foundations for more complex problems. Two 
standard benchmarking cases, the Poiseuille and the Couette flow are studied in this paper. 

4.1 Poiseuille flow 

The Poiseuille flow is a fundamental problem of modern fluid dynamics. Fluid flows 
between two fixed parallel plates at 2 0x   and 2x l , where 2x  is the Cartesian coordinate 

perpendicular to plates, Fig. 3. The body force 1F , which represents the longitudinal pressure 

gradient, starts to act on stationary fluid, and the flow reaches the steady state after a while. 

 

Fig. 3  Geometry and steady state velocity profile of the Poiseuille flow 

The Navier-Stokes equation that describes such a flow at low Reynolds number is given by 
[8]: 

2
1 1

2
1 2

d dd
  

d d d

v vp

t x x
    (17) 

Steady velocity profile can be easily obtained if one inserts  1 1v tv  into (17): 

2
2

1 2 2
1

1 d
( )   

2 d 4

p l
v x x

x
 

  
 

 (18) 

-2
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Integration constant 2 4l  is obtained using standard boundary conditions for viscous flows, 
i.e. the fluid velocity on fixed walls is equal to zero. The gradient pressure term can be 
replaced by the body force. 

A solution to the unsteady flow problem is provided by Morris et al. [4]: 

   

 
   

1 2 2 2

2 22
2

3 23
0

,   
2

2 1 π4 π
sin 2 1 exp

π 2 1n

F
v x t x x l

nFl x
n t

l ln










  

          


 (19) 

The following parameters are taken in order to simulate the considered flow: 

310 ml                         - distance between fixed plates, 

3310 kg m                 - density of water, 

6 210 m s                   - kinematic viscosity of water, 

4 22 10 m sF               - body force in 1x  direction, 

5
0 2.5 10 m sv               - peak velocity. 

The code was written in C++ programming language. The fluid domain is rectangular, from 

1 2 0x x  , to 1 0.0 m005x   and 2 0. 0 m0 1x l  . The domain is represented by a total of 

861 particles, 41 in vertical direction, and 21 in longitudinal. The number of particles in 

vertical direction is greater than that in longitudinal since the velocity profile against the 

vertical axis is observed. Also, the use of periodic boundary condition in longitudinal 

direction justifies a lesser number of particles in longitudinal direction. The smoothing 

length h  is 2.2 times greater than the initial distance of particles in 2x  direction. Boundary 

condition is implemented by the so-called virtual particles [4] presented by solid circles in 

Fig. 4. Velocity is zero for those particles at all time steps, and their position is not updated, 

which means they do not actually move. Periodic boundary condition is also used in order 

to shrink the modelled domain. It basically means that if some particles exceed a 

predetermined value of 1x  (leave the fluid domain in that direction), they are moved back to 

the inlet boundary. Also, particles near the inlet and outlet boundaries do not have enough 

neighbours to ensure the consistency of second order. To overcome this problem, particles 

on the inlet boundary are influenced by some particles on the outlet boundary and vice 

versa. Hatched circles shown in Fig. 4 represent the neighbouring particles of the crossed 

particle at the inlet. 
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Fig. 4  Virtual particles and periodic boundary condition 

In the standard SPH method for compressible flows, particles are moving due to the pressure 
gradient, while the pressure is calculated using the equation of state. Using the equation of 
state for incompressible flows leads to prohibitively small time steps. In reality, every fluid is 
slightly compressible, which leads to the artificial compressibility concept. Morris et al. [12] 
used the following equation of state in order to evaluate particle pressure: 

2 p c   (20) 

where c  represents the speed of sound. Nevertheless, if one uses the real speed of sound for 
water, 1480m sc  , density variation becomes insignificant. Therefore, much lower values 

of speed of sound are admissible. The value of 2 12 2 25 10 m sc    is taken for this simulation. 
This coefficient depends on the balance of pressure, viscous and body forces [12], and is 
related to the Mach number and thus to the compressibility of a fluid. 

Particle motion is determined by the XSPH model [4] which takes the velocity of 
neighbouring particles into account: 

 

 
   

( )
( )

1

d
  

d

N
i

i i

mx
v v W

t


  
 




    (21) 

where   represents the constant with values from 0 to 1. The use of this method causes more 
coherent motion of particles. Constant   has a value of 0.3 for this simulation. 

Time integration is performed by a leapfrog scheme [9] which is simple, second-order 
accurate and easy to implement. The particle position is updated twice in each time step, 
while the velocity is evaluated only once as follows: 

1
 

2

1
  

2n
n nx x v t



    

 1 1
 

2

  n n
n

v v a t


    (22) 

 1 1  1
 

2

1
  

2n n
n

x x v t 


     
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The number of iterations is denoted by n , while a  represents the particle acceleration.  

Using a time step t  of 610 s , error can be very roughly estimated with 2t . Since the 
program operates with very small numbers, the accuracy of computer arithmetic also comes 
into question [10]. 

4.2 Couette flow 

The Couette flow is similar to the Poiseuille flow. The geometry is the same, with the 
same parameters from the previous chapters. Fluid is initially stationary and the fluid motion 
is caused by a sudden movement of the upper plate with a constant velocity of 

5
0 2.5 10 m sv   . At about 1st  , the fluid reaches a steady state, Fig. 5. The time- 

dependant series solution is also provided by Morris et al. [4] as: 

 
2 2

0 0 2
1 2 2 2

1

2 π π
,  ( 1) sin   exp

π
n

n

v v n x n
v x t x t

l n l l






          
  (23) 

Simulation parameters and procedures are the same as the ones used in the simulation of the 
Poiseuille flow. 

 

Fig. 5  Geometry and steady state velocity profile of the Couette flow 

5. Results 

Numerical results are in good agreement with analytical solutions (19) and (23), 
especially for the steady state flow, as can be seen in Figs. 6 and 7. The results are also in good 
agreement with those provided in literature [4]. By decreasing the time step, the simulation 
becomes extremely long, but the solution becomes more accurate and stable, as expected. It 
should be noted that there are small oscillations of velocity profile for both the Poiseuille and 
the Couette flow. This is probably caused by the inconsistency of particle approximations as 
well as by using the special equation of state (20). Better results should be obtained if one used 
a truly incompressible model for the simulation of incompressible flows [11]. These equations 
are obtained by forcing the solenoid velocity field in each time step and they are a bit more 
difficult to implement. Since the mentioned equations are implicit, the resulting linear system 
needs to be solved in every time step, which extremely prolongs the simulation. It can be seen 
that the obtained numerical solutions for the Poiseuille and the Couette flow are more erroneous 
for smaller values of t , as well as near the boundary, due to the particle deficiency or the 
inconsistency of integral representation via kernel functions. Steady state is reached roughly at 

1st   as shown in Figs. 6 and 7. Also, it seems that the accuracy of simulation is shown to be 
better for higher values of t , with the above mentioned oscillations of velocity profile. One can 
remedy that problem by the least-squares polynomial fitting, if necessary. 
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Fig. 6  Comparison between the SPH solution and the analytical solution  
provided by Morris et al. [12] for the Poiseuille flow 

 

Fig. 7  Comparison between the SPH solution and the analytical solution  
provided by Morris et al. [12] for the Couette flow 

6. Concluding remarks and ideas for future work 

This paper presents the essentials of the SPH method, such as the integral representation 
of a spatial function and particle approximations. The consistency conditions for the integral 
representation via kernel function are shown, while the consistency of particle approximation 
is only mentioned. An interested reader is advised to see more details and other simulations in 
[4], which is the first book on the SPH method, simple and easy to read. The code for 
simulating two dimensional flows for low Reynolds numbers is developed and tested on the 
Poiseuille and the Couette flow. 
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As mentioned, the SPH method is a Lagrangian meshless method, i.e. the fluid domain is 
represented by particles. These attributes ensured the use of SPH in computer graphics. Since 
the accuracy in that area is not of vital importance, SPH is becoming more and more popular. 

In future, the authors would like to develop models for turbulence based on a pseudo-random 
number generator and to test them with analytical solutions for simple flows or the finite 
volume method for arbitrary geometry. Although it is just an idea at this stage, a kind of 
model for impenetrability of rigid boundaries is considered. This model should be based on 
collisions modelling for solid mechanics with restitution coefficients. 

It is known that meshless methods, such as SPH, use a lot more CPU time. Even though they 
are immature in comparison with the finite element method or the finite volume method, it 
can be expected that such methods will be used more widely in computational physics, 
especially for engineering problems. The time that engineers have to spend in order to 
generate a mesh in the well established grid based methods is becoming more and more 
expensive in comparison with the relatively cheap CPU time. The CPU time can be shortened 
by using parallel processors and corresponding algorithms. The SPH method is expected to 
mature over time through both theoretical considerations and practical implementation. Much 
more work has to be done to provide methods and algorithms which ensure effective particle 
approximation consistency up to a given order. Also, virtual particles for generating the 
boundary condition can sometimes be cumbersome to deal with, so other methods that could 
offset boundary effects should be taken into consideration. 
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