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Abstract

We present an interior-point method (IPM) for Cartesian Pi(x)- Linear Complementarity Prob-
lems over Symmetric Cones (SCLCPs). The Cartesian P#(k)- SCLCPs have been recently introduced
as the generalization of the more commonly known and more widely used monotone SCLCPs. The
IPM is based on the barrier functions that are defined by a large class of univariate functions called
eligible kernel functions which have recently been successfully used to design new IPMs for various
optimization problems. Eligible barrier (kernel) functions are used in calculating the Nesterov-Todd
search directions and the default step-size which leads to very good complexity results for the method.
For some specific eligible kernel functions we match the best known iteration bound for the long-step
methods while for the short-step methods the best iteration bound is matched for all cases.

Keywords: linear complementarity problem, Cartesian P,(k) property, Euclidean Jordan algebras and
symmetric cones, interior-point method, kernel functions, polynomial complexity.

1 Introduction

Let (V. o) be an n-dimensional Euclidean Jordan Algebra (EJA) with rank r equipped with the standard
inner product (z,y) = tr(r oy). Let K be the corresponding symmetric cone. We consider the Linear
Complementarity Problem over Symmetric Cone (SCLCP) in the standard form: Given an n-dimensional
EJA (V,0) and its associated symmetric cone of squares K, find (z,s) € K x K such that

s=Mz+q, (r,y)=0, (1)

where M € R™*" and ¢ £ R". The second equation can be replaced by x o y = 0 due to the important
fact that (x,4) =04 zoy=0. (Lemma 2.2 in [7]).

Although SCLCP is not an optimization problem, it is closely related to the optimization problems. One
of the reasons is that the optimality conditions of several important optimization problems can be written
in the form of SCLCP. For example, the solution of a Linear Optimization (LO) problem over symmetric
cones (SCLO) can be formulated as SCLCP.

The algebraic structure of EJA has been known for quite same time. However, only in recent years it
has been established [11] that symmetric cones, which are cones of squares of EJAs, serve as a unifying
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framework to which the important cases of cones used in optimization such as nonnegative orthant,
second order cone, and positive semidefinite cone belong. The classical monograph of Faraut and Korany
[6] provides a wealth of information on Jordan algebras, symmetric cones and related topics.

It is well known that SCLCP is an NP-hard problem for a general matrix M, even in the case when
K = R%, ie. nonnegative orthant (see [3]). Thus, we need to restrict ourselves to classes of matrices
for which polynomial IPMs exist. The class of monotone LCP where matrix M is positive semidefinite
matrix appears most frequently in practice and therefore IPMs to solve this class were most frequently
analyzed. Kojima et al. introduced in [12] a class of P.(k)-LCP (over nonnegative orthant) established
the existence of the central path and desipned IPM for solving this class of problems. The theoretical
importance of this class lays in the fact that this is the largest class for which polynomial convergence
of IPMs can be proved without additional conditions (such as boundedness of the level sets). They also
discussed how is this class related to other classes of LCP. See also the monographs of Cottle et al. [4]
and Fachinei and Pang [5].

While there is an extensive literature on IPMs for LCPs over the nonnegative orthant, there are fewer
results on LCPs over the cone of semidefinite matrices, and even less so for LCP over general symmetric
cones. Faybusovich was the first to analyze a short-step path-following IPM for SCLO and SCLCP
[7. 8]. Rangarajan [20] proposed the first infeasible IPM for SCLCP. Yoshise [24, 25] was the first to
analyze IPMs for Nonlinear Complementarity Problems (NCP) over symmetric cones. All these results
are obtained for monotone complementarity problems. Luo and Xiu in [16] introduced Cartesian P, (£)-
SCLCP as the generalization P, (x)-LCP over nonnegative orthant, proved the existence and uniqueness
of the central path under the strict feasibility condition and analyzed short- and long- step IPMs obtaining
favorable convergence results. Other classes of SCLCP were considered by Kong et al. [13] and Gowda
et al. [9, 10].

All of the above mentioned results were obtained by using the classical logarithmic barrier function
adapted for the framework of symmetric cones. The only result for IPMs with other types of barrier
(kernel) functions, the eligible kernel functions, was obtained by Lesaja and Roos [15]. Vieira [23],
considered IPMs based on the same class of kernel functions; however, only for SCLO. The problem
under consideration in [15] was monotone SCLCP. In this paper we consider a generalization of kernel-
based IPM discussed in [15] to Cartesian P, (£)-SCLCP. The obtained complexity results match the best
known iteration bounds known for the small-update methods, O((1 + 2&)y/rlogZ), and large-update
methods, O((1 4 2k)y/rlogrlog ).

The outline of the paper is as follows. In Section 2 we describe P.(x)-SCLCP. In Section 3 we give a
Generic IPM to solve Pi(k)-SCLCP that is based on the use of a general barrier function. In Section 4
the definition and few basic facts about the class of eligible kernel functions and corresponding barrier
functions are mentioned. In Section 5 we outline the analysis and complexity of the Generic IPM stated
in Section 3 when the barrier function is the eligible barrier (kernel) function. In Section 6 the iteration
bounds are given for a number of specific eligible kernel functions. Concluding remarks are presented in
Section 7.

2 Cartesian P,(x)-SCLCP

In this section we define Cartesian P, (k)-SCLCP. In what follows we assume that the reader is familiar
with the basic concepts of EJA and symmetric cones. The detailed information can be found in the
monograph of Faraut and Korany [6] and in [7, 21, 23, 15] (related to optimization).

Let V' be a Cartesian product of a finite number of simple Euclidean Jordan algebras (Vj, o) with di-
mension n; and rank r; for j = 1....,m, that is, V = Vj x V5 x ... x V,;,, with its cone of squares
K=K x Ko x .- x Ky, where K; are corresponding cones of squares of V; for for j = 1,....m. The
dimension of V is n = Zf:l n; and the rank is r = an: ! r;. The bilinear map on V is defined as

T
O (ImDS(I)ﬂ___jf(m)OS{ml) , (2)
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207 = Z ,\k(I{J‘])cE)
k=1

be the spectral decomposition of 219} € V; with the Jordan frame c{lj ). , cg)

Then

and eigenvalues Ay (20)), ..., A, (209)).

i i

det(a?) = [[ ma?),  tra®) =Y @), a0 = /(a),20) = || 3 R(aW)),
k=1 k

=1

)\mm{xm) = min{)«k{xm] 1<k <}, )\mar(:r(j)] = max{)«k(:r(j)] 1<k <r}

T
The spectral decomposition of x = (3{1), ey :r(m)) € V is then defined accordingly. Furthermore, we
have

tr(z) =y _tr(x?),  det(x) = [[det(a?), |zllp= | I«D]3,
i=1 g=1 i=1

Amin(2) = min{Amin(29): 1< j <m}, Amaz(2) = max{Amaz(2"7)) : 1 < 5 < m}.

The index F for the Frobenius norm || || will be omitted in the sequel whenever there is no danger
of confusion. The Peirce decomposition of € V' can be defined in a similar manner by using Peirce
decompositions of components 217 € V;.

The multiplication, L(z), and quadratic representation, P(x). operators are defined as follows:
L(z) = diag (L{a:(”]._ . ,L(m{mn) . P(z) = diag (P(m(”), . P(m(m)]) .

The SLCP (1) is said to be Cartesian P.(x)-SCLCP if EJA V and the corresponding symmetric cone of
squares K are Cartesian products of simple EJAs V; and corresponding symmetric cones of squares IC;,
as described above. In addition, the following P, (k) property is satisfied for each z £ V' if

(1+4r) 3 <1:U)._{ﬂ-1w]m>+ 3 <ﬁ:(j),{ﬂ-fx]{j]>320._ 3)

JeTH(x) €T~ (x)

where & is a nonnegative constant and
je{t,omb THe) ={i : (29, (M)} >0} T-(2)={i : (a0, (M2)?) <0},

or equivalently

(0, Ma) > —4x Y <:::U),(ﬂ-1'z){”>.

jelt(z)

Furthermore, we define

P, = U Pi(k) .

]

The SCLCP has monotone property if for each 2 £ V' the following holds: (x, Mx) > 0. This is equivalent
with the fact that matrix M is positive semidefinite with respect to the inner product in V. It is easy
to see that Cartesian P.(0)-SCLCP represents the monotone SCLCP. It is also straight-forward to see
that in the case of nonnegative orthant, where V = R" and z 0 s = (z1sq,...,2,8,), the definition (3)
reduces to the original definition of P, (k) property given by Kojima et al. in [12] by taking V; = R and
W osl) =28 for j=1,...,n.
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3 Interior - Point Method for Cartesian P,(x)-SCLCP

In this section we present a generic IPM for Cartesian P, (x)-SCLCP (1). The standard approach is to
consider the perturbed system
s = Mzr+yq,
ros = e, (4)
(z,s) € intk x intk

The main question that arises is whether this system has a solution. It has been shown that if (1) has
a strictly feasible point, then the above system (4) has a unique solution, for each g > 0 (Lemma 3.2,
in [16]). The strict feasibility condition, or as it is often called the interior-point condition (IPC), means
that there exists a point (x, &) € intk x intkC such that s = Mx + ¢. Thus, in the sequel we will assume
that the Cartesian P, (x)-SCLCP (1) has IPC.

The unique solution of (4) for each p is denoted as (x(p)), s(pr)) and we call it the p-center of Cartesian
P, (k)-SCLCP. The set of p-centers gives a path, which is called the central path of Cartesian Pi(k)-
SCLCP. Hence, if p — 0, the limit of the central path exists and it is a solution of Cartesian P, (k)
SCLCP.

The limiting property of the central path, mentioned above, leads naturally to the main idea of the IPMs
for solving Cartesian P,(x)-SCLCP: trace the central path while reducing p at each iteration. However,
tracing the central path exactly would be too costly and inefficient. It has been shown that it is sufficient
to trace the central path approximately.

In the rest of the paper whenever possible we consider one component of the Cartesian structure of
SCLCP and we omit the component index (for example, (11) and (15)). The complete structure can he
built straightforwardly as described in Section 2.

Suppose that a strictly feasible point (x, s) that is ‘close’ to the p-center (z(p), s{p)), for some positive
1, 18 known. The ‘closeness’ is measured using a barrier function, as discussed later in the paper. We
then decrease p to py = (1 —8)p, for some # € (0, 1) and, redefining p ;== py calculate a search direction
using Newton’s method.

—MAr+As = 0,

soAx+xo0lAs = —mos+ pe (5)
As it was first discovered for Semidefinite Optimization (SDO) the above system unfortunately does not
have a unique solution. The reason is the fact that x and s do not operator commute in general, that is,
L{z)L(s) # L{s)L(x). In order to fix this problem a scaling scheme had to be applied. Several different
scaling schemes were proposed leading to different search directions. The generalization to the symmetric
cones case was first proposed by Faybusovich [7, 8] and then further discussed by Alizadeh and Schmieta
21, 22].
The scaling scheme is based on the following fact (Lemma 28 in [22]): Let u € intK. Then,

ros=pe < Plu)roPu™1)s=pe.

Now replacing the second equation of (4) by P(u)x o P(u~!)s = pe and applying Newton's method we
obtain the system

—MAx+As = 0,
PuYso P(u)Az + P(u)zo Plu=!)As = —P(u)zroPlu=!)s+ pe. (6)
The appropriate choices of u that lead to obtaining unique search directions from system (6) can be

generalized from the SDO case. We use the classical Nesterov-Todd scaling point to find unique Nesterov-

Todd direction (NT-direction)

— 1

u=w"%, w=P(x)T)(P(a?)s) T |=P(s 3)(P(s%)2)3|. (7)
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This sealing point was first proposed by Nesterov and Todd for self-scaled cones [19] and then adapted
by Faybusovich [8] for symmetric cones.

For the formulation and analysis of the generic IPM that we want to present, the introduction of the
following variance vector is of critical importance

vi= —P(w) Iz {: #P(-w]l?s] . (8)

Note that z0s = pe & v = e (Proposition 5.7.2 in [23]). Thus, g-centers are obtained when v = e.
Using the variance vector v the following scaled search directions are introduced

dy = —P(w) Az,  ds = —P(w)3As. 9
(w) . 7i (w) (9)

Using (9) the system (6) can be rewritten as

_Hd;r + d3 = 0,
dy +d, = vl—u, (10)

where M := P(w)2MP(w)z. Given the fact that M has Cartesian P, (k) property (3), it follows from
(. ) = o (P 3P(@)¥) ) = (Plorbu b (Plaiu)

that M also has Cartesian P, (k) property.

Given the spectral decomposition of v with respect to the Jordan frame (eq,---¢,), v = ZLI Ai(v)e;, the
scaled logarithmic barrier function is defined as

r ()2 —
P (v):= ; (# — log)\i(tr}) . (11)

A crucial observation is that the second equation in (10) can be written as
v — v = -V, (v), {12)

where VU .(v) denotes the gradient of ¥,.(v). This means that the logarithmic barrier function essentially
determines the search direction. Another important observation is: since VW .(e) = 0, it follows that
U.{v) attains its minimal value at v = e, with ¥.(e) = 0, that is, at p-centers, (x(p), ¢(p)). In addition,
U.(v) is strictly convex function. The implication is that the function ¥.(v) essentially serves as a
‘prozimity’ measure of closeness for (x, s) with respect to the p-center.

QOur generalization follows the argument that ¥.(v) can be replaced by any function U(v), v £ intk,
with the same properties as the sealed logarithmic barrier function (11), that is, ¥{v) is strictly convex
and attains its minimum at v = e with U(e) = 0. The function ¥(v) is called a scaled barrier function.
Since ¥(v) =0« VU(v) =0« v = e, the function U(v) still serves as a proximity measure to the
p-center. Specifically, the inequality ¥(v) < 7 with 7 > 0 as a threshold value defines a T-neighborhood
of the p-center. In addition, the following norm-based proximity measure d(v) = % IV & ()| will play
an important role in the analysis of the algorithm:

The scaled centering equation in (10) becomes d, + d; = —V¥(v) and, hence, the search direction is
calculated from the following system

_Edm‘Fds = D:
dy+d, = —VU(v). (13)

The above discussion can be summarized in the form of the Generic IPM presented in Figure 1.
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Generic IPM for Cartesian P, (x)-SCLCP

Input:
A threshold parameter 7 > 1;
an accuracy parameter £ > 0;
a fixed barrier update parameter #, 0 < f < 1;
a starting point (2Y, s%) with u° = (2%)7s%/n such that ¥ (") < r
where v is calculated using (7) and (8).
begin
x:=2" s:= & pi=p"
while np > =do
begin
poo= (1= 0
calculate v using (7) and (8);
while ¥(v) =7 do
begin
caleulate search direction (Ax, As);
determine the step size a;
update (x, 8) = (2, 8) + a(Az, As).
end

end
end

Figure 1: Generic IPM for Cartesian P.(x)-SCLCP

In what follows we will refer to the Generic IPM for Cartesian P, (k)-SCLCP simply as the Algorithm.
The behavior of the Algorithm depends on the choice of the values for the input parameters as well as
the choice of the barrier function and the step size. It is now standard to call IPM a large-update method
if ¢ is a fixed constant, and # £ (0,1) is independent of the dimension n of the problem, i.e., # = O(1)

and T = O(n). If # depends on the dimension of the problem with # = O{ﬁ} and T = O(1), IPM is
called a small-update method.

4 Kernel-based barrier functions

As already observed in the previous section, the behavior of the Algorithm depends heavily on the choice
of the barrier function. We can look at the log-barrier function defined in (11) from another angle by
introducing the univariate function ¢, : (0,0c) — [0,2c) defined as

2 _
delt) = 5 ~logt. (14)

Then ¥.(v) in (11) can be written as ¥.(v) = Z::l a(A;(v)), that is, as a separable function with
identical univariate functions for each component. The univariate function 1. is called the logarithmic
kernel function.

We consider barrier functions of the same type as the logarithmic barrier function, that is, separable

functions
r

V() =Y d(hi(v)), (15)

i=1
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defined by the univariate function 2 : (0, o¢) — [0, o¢), called the kernel function. We require that 1 has
the same properties as the logarithmic kernel function, that is,

W) =$(1) = 0, (16-a)
() = 0, (16-b)
ltilnur.-,-":{t] = Ll—l.rﬁ, P(t) = oo (16-c)

In order to obtain favorable iterations bounds we introduce the following additional conditions on the
kernel function.

)+ () = 0, t<1, (17-a)

"t < 0, t=0, (17-b)

20" (1) — (B () > 0, t<l, (17-c)
(W (BE) — B (B (/) = 0, t=1,3>1. (17-d)

The kernel functions that satisfy conditions (16-a)-(16-c) and (17-a)-(17-d) are called eligible kernel
funetions. They were first introduced for LO by Bai ef al. in [1] and revisited for P.(k)-LCP over
nonnegative orthant in [2, 14]. They were adapted for SCLO by Vieira [23] and Lesaja and Roos for
monotone SCLCP [15].

Two inverse functions related to the kernel function have shown to be essential in the analysis of the
Algorithm and are defined below.

Definition 4.1 Given the kernel function &, we define
(i) o:[0,) — [1,00) is the inverse function of ¥(t) fort > 1;
(#t) p:[0,00) — (0,1] is the inverse funetion of—%-@.{"{t] fort <1.
In the first column of the Table 1 the ten frequently used eligible kernel functions are listed.

5 Analysis and complexity of the algorithm

The analysis of the Algorithm follows the same outline employed in papers on IPMs with eligible kernel
functions for LO [1] and for P,(k)-LCP [14]) over nonnegative orthant. In addition, the analysis builds
on the only work on [PMs with eligible kernel functions for SCLO [23] and monotone SCLCP [15]. The
analysis consists of three major steps: finding the upper bound on the increase of the barrier function
at the start of each outer iteration, determining the default step size, and finding the lower bound on
the decrease of the barrier function during each inner iteration. The statements and proofs of the results
can be adapted to the framework of Cartesian P.(k}-SCLCP without major difficulties from [14] and [15]
once the following key lemma is proved.

Lemma 5.1 The following inequalities hold:
|lde || < 261 + 2k, [[de|l < 28v/1 + 2k,
Proof. Since M has a Cartesian P, (k) property and, according to (5), As = M Az, it follows that

(Az,As) = (Ax. MAz) > —4r Y <QIU],(11-1&Z‘)U)>=—4.‘L 3 (miﬂ,as(ﬂ).

JET+(Ax) JET+H(Ax)

Because of (9) we have (Ax, As) = p (d,,ds). Hence, it follows that

(ed) > —tx 3 (d9),d9) (18)
JEIH(dz)
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Using the arithmetic-geometric mean inequality {a,b) < i {a +b,a + b) we obtain

Eser @) (4 d)

[A

I et (dn) <d¥) +dD g9 4 g

< 3T () v a4 d)

= Hde +d|P? =4 - VO =,
where we used (13) and the definition of 5. Substitution of this inequality into (18) yields

(dy.dy) > —4rd2. (19)

We may now write:

||{d_-,5:_d3)||2 = Z;_“:l{”dg)nﬁ_'_”(.Ig_?']”Q]

Iy (<d£” +d¥ 4P +d_{;'1> _2<ng, gj)>)
ldz + ds||* — 2 {de, ds)

< 462 + 8k62 = 4(1 + 2k)52.

The inequality above is due to (13) and (19). The inequalities in the statement of the lemma immediately
follow. O

Due to the page constraint the paper needs to satisfy, the rest of the analysis is omitted and reader is
referred to [14, 15] for details. We only state the final complexity result.

Theorem 5.2 (Theorem 6.2 in [15]) The total number of iterations N in the Algorithm is bounded
above by

1 T
N<—log—. (20)
83y "=

The ¥ is the value of the barrier function at the beginning of the outer iteration. This value is usually
not known; however, the upper bound can be found. The constants 3 and - are connected to the eligible
kernel functions and they assume different values for different kernel functions.

6 Iteration bounds

The iteration bound for the specific eligible kernel function can be calculated using the above Theorem
5.2 and overall analysis. The process can be streamlined into the scheme similar to the one developed in
[14, 15]. Sometime the skill and effort is needed in using the scheme for specific eligible kernel function.
The obtained iteration bounds are listed in the Table 1.

For large-update methods, the resulting iteration bounds are summarized in the third column of the
Table 1. For v2 and ¢/7 the bound is minimal if we choose g = % log n, and for 1’1p the bound is minimal
if we choose p=1 and g = %log n. This gives the best bound known so far for large-update IPMs:

Q ((1 + 2k)/7 (log n) log ;) .

For the small-update methods the resulting iteration bounds all have the same order of magnitude. Thus,
the best iteration bound is the same as the iteration bound for the logarithmic kernel function: namely

0 ({1+2x.]ﬁ10g£)

which is the best known iteration bound for these types of methods.
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i kernel functions 1/ small-update methods large-update methods

1 —logt O((1+2£)\/F]og:'_‘} O((1+‘2r;]rlog£]

2| £ +‘q‘[q—“’1§ 1(t-1), ¢>1|0((1+2k)gy/Flogt) o(|[1+2ﬁ)qv~52771 1ogg)
3 el 1 el O((1+2k)yrlogZ) | © ((1 +26)r 1og§)

4 -7 0 ((1+2k)yrlog L) o((1+2n)r§ mgg)

5 132_1 +et7! =1 O( + 2K \/_]og:':} o ((1+2n]ﬁlog2rlog§)
6 ZoL o [tetlag O ((1+26)y/Flog Z) |0 ((1 + 2w)/Tlog rlog L)
7 %-I—t:_#, g=>1 C-"((l+2nq VrlogZ ) O((l+2ﬁ)qr52_71]og§)
8 b—1+ 00 > O((1+2x)g?yrlogZ)| O ((1+2x)grlogX)

9 L=l —logt, pe[0.1] 0 ((1+2k)y/Trlog L) O ((1+2k)rlog Z)

10 f";+‘1—1 “:;1, pel0.1, q>10((1+2x)q’y7 log£) O((1+2£)q‘r;ﬁi—qﬁ logg)

Table 1: Complexity results for ten eligible kernel functions

7 Concluding Remarks

In this paper the large- and small-update versions of the IPM for Cartesian P, (x)-SCLCP, described in
Figure 1 are presented. The method is based on the large class of separable barrier functions defined
by univariate eligible kernel functions. The class of eligible kernel functions is important because it is
very general and includes the classical logarithmic kernel function, the self-regular kernel function, and a
number of non-self-regular kernel functions as special cases.

The paper generalizes results obtained in two of our papers, [14] where we consider the same type of
IPMs for P,(k)-LCPs over the nonnegative orthant, and [15] where we consider monotone SCLCP. It
turns out that the iterations bounds are the same as for the nonnegative orthant except that n is replaced
by r, the rank of the EJA. Although expected, this was not obvious and required the proof of the key
Lemma 5.1 in the context of P,(k)-SCLCP . For the large-update methods the best iteration bound
is O (y/r(logr)log E] and for the small-update methods all iteration bounds have the same order of
magnitude, namely, O (\/F log E) In both cases we were able to match the best known iteration bounds
for these types of methods. Thus, the iteration bounds are as good as they can be in the current state-
of-the-art.

The Cartesian P. (k) property, as defined in (3), essentially depends on having more than one simple EJA
V;. Interesting topic for further research may be to look for the alternate definition of P.(k) property
that would be defined on one simple EJA. One possible direction in developing such property may be to
consider eigenvalues of spectral decompositions of elements in EJA.

The other issue that deserves a comment is the assumption of strict feasibility of SCLCP. Strict feasibility,
or as it is often called the Interior Point Condition (IPC), can be assumed without loss of generality for
LCPs over nonnegative orthant (Kojima et al. [12]). For the LO case the same is true not only for the
nonnegative orthant but also in general; Luo, Sturm and Zhang in [17] discussed self dual embedding
for LO over symmetric cones. However, we are not aware of similar results for SCLCP. It certainly is a
worthwhile research topie. Alternative direction for further research may be the development of infeasible

kernel-based IPMs for SCLCP.
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