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ON TIME COMPLEXITY OF SEMIDEFINITE PROGRAMS ARISING IN POLYNOMIAL
OPTIMIZATION *

IGOR KLEP!, JANEZ POVH?", AND ANGELIKA WIEGELE?

ABSTRACT. In this paper we investigate matrix inequalities which hold irrespective of the size of the matrices
invalved, and explain how the search for such inequalities can be implemented as a semidefinite program (SDP). We
pravide a comprehensive discussion of the time complexity of these SDPs.

1. INTRODUCTION

Starting with Helton’s seminal paper [Hel02], free real algebraic geometry is being established. Unlike
classical real algebraic geometry where real polynomial rings in commuting variables are the objects of study,
free real algebraic geometry deals with real polynomials in free noncommuting (nc) variables. Such polynomials
can be evaluated at tuples of matrices giving rise to various notions of positivity. We call an nc polynomial
FiX1.....Xy) positive if f(Aq,...,A,) is positive semidefinite for all tuples of matrices Aq,... A, (of all sizes!).

1.1. Motivation. Among the things that make free real algebraic geometry exciting are its many facets of
applications. Let us mention just a few. A nice survey on applications to control theory, systems engineering
and optimization is given by Helton, McCullough, Oliveira, Putinar [HMJdOPOS], applications to quantum
physics are explained by Pironio, Navascués, Acin [PNA10] who also consider computational aspects related to
noncommutative sum of squares. For instance, optimization of nc polynomials has direct applications in quantum
information science (to compute upper bounds on the maximal violation of a generic Bell inequality [PV09]),
and also in quantum chemistry (e.g. to compute the ground-state electronic energy of atoms or molecules,
cf. [Maz04]). Certificates of positivity via sums of squares are often used in the theoretical physics literature to
place very general bounds on quantum correlations (cf. [Gla63]). Doherty, Liang, Toner, Wehner [DLTW 08]
employ free real algebraic geometry to consider the quantum moment problem and multi-prover games.

We developed NCS0Stools [CKP11] as a consequence of this recent interest in free real algebraic geom-
etry. NCSDStools is an open source Matlab toolbox for optimization of nc polynomials using semidefinite
programming (SDP). As a side product our toolbox implements symbolic computation with noncommuting
variables in Matlab. Readers interested in optimization for commuting polynomials are referred to one of the
many great existing packages, such as GloptiPoly [HLL09], SOSTOOLS [PPSP05], SparsePOP [WKKT09], or
YALMIP [Lof0o4].

1.2. Contribution. The purpose of this article is twofold.

First, we will explain that every noncommutative (nc) polynomial that is positive on certain “semialgebraic”
sets of symmetric matrices of all sizes, admits a sum of hermitian squares representation (with weights) and tight
degree bounds (the so-called Nichtnegativstellensatz 4.6). Loosely speaking, every polynomial matrix inequality
which holds independent of the size of the matrices involved, admits a sum of squares certificate; cf. Example
2.1 below for a sample.

Second, by the existence of sharp degree bounds, optima (and even optimizers) for nc polynomials can be
computed exactly by solving a single semidefinite programming problem (SDP). We discuss the size of this SDP
and the time complexity for solving it in §5 below.
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1.3. Reader’s guide. The paper starts with a preliminary section fixing notation, introducing terminology and
stating some well-known classical results on positive nc polynomials (§2 and §3). We then in §4 explain the
Nichtnegativstellensatz and optimization of nc polynomials. That is, we present the construction and properties
of the SDP computing the minimum of an nc polynomial. Finally, time complexity of these SDPs is discussed in
§5. In Appendix §A we give some fundamental properties and background results on SDP.

We have implemented our algorithms in our open source Matlab toolbox NCSOStools freely available
athttp://ncsostools.fis.unm.si/. We refer the reader to [CKP11] and [CKP12] for further examples
illustrating the results presented here, and for the use of our computer algebra package.

2. NOTATION AND PRELIMINARIES

2.1. Words, free algebras and nc polynomials. Fix n € W and let (X} be the monoid freely generated by
X :=(X.....X,). ie., (X) consists of words in the n noncommuting letters X... ., X, (including the empty word

denoted by 1). We consider the free algebra R{X}. The elements of [R{(X') are linear combinations of words in
the n letters X and are called noncommutative (nc) polynomials. An element of the form aw where a € R\ {0}
and w € (X) is called a monomial and a its coefficient. Thus words are monomials with coefficient 1. The length
of the longest word in an nc polynomial f € R{X} is the degree of f and is denoted by deg f. The set of all
words and nc polynomials with degree < d will be denoted by (X}, and R(X } 4, respectively. If we are dealing
with only two variables, we shall use X.¥ instead of X; . X>.

By 5y we denote the set of all symmetric k x & real matrices and by S;_—'O we denote the set of all real positive

semidefinite k x k real matrices. Moreover, S := | Jzen Si and S7%:=J oy SED. If a real symmetric matrix A is
positive semidefinite we denote this by A = 0.

2.1.1. Sums of hermitian squares. We equip B(X) with the involution + that fixes RU{X } pointwise and thus
reverses words, e.g. (X{X7X3 — 2XJ)* = X3X3X; — 2X;. Hence R(X} is the #-algebra freely generated by n
symmetric letters. Let SymR{X) denote the set of all symmetric polynomials,

SymR(X) := {f € R(X) | f = /*}.

An nc polynomial of the form g*g is called a hermitian square and the set of all sums of hermitian squares will
be denoted by I% Clearly, £ ¢ SymR(X). The involution * extends naturally to matrices (in particular, to
vectors) over R(X). For instance, if V = (vi) is a (column) vector of nc polynomials v; € R(X). then V* is the
row vector with components v;. We use V' to denote the row vector with components v;.

We can stack all words from (X}, using the graded lexicographic order into a column vector Wy. The size
of this vector will be denoted by o (d), hence

d it

old):=|Wy|= Y nf=—. (1
=0 n—1

Every f € R(X}2 can be written (possible nonuniquely) as f = WG Wy, where G € S, 4y is called a Gram
matrix for f.

Example 2.1. Consider f =24+ XYXY +YXYX € SymR{X}. Let
w,=[1 X ¥ X* x¥ vx y7.
Then there are many Gy € 87 satisfying f =W, GyW>: for instance

Gelu,v) = 1 ifu*'v=XYXY vV u'v=YXYX VvV u*'v=1,
579 0 otherwise.

Obviously f & E” but we have
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F=XY+YX) (XY +YX)+ (1 =X 4+Y(1=XIY +(1 =Y 4+ X(1 -Y9)X. 2)

IfA,B € S, then
f(A.B) =2l + ABAB + BABA.

o) -k

flA.B) = [_06 _06] )

For example, given
we have

We point out that (2) certifies positivity of f on the nc polydisc, i.e., if A and B are symmetric contractions (i.e.,
they satisfy ||A]]. ||B|| < I, orequivalently, I —A2 I —B* = 0), then

fIA,B)=(AB+BA)* (AB+AB)+ (I —A*) + B(I —A*)B+ (I —B*) +A(I —B*)A ~ 0.

Hence for all symmetric contractions A, B, we have 21 + ABAB + BABA = (. In fact, as one of the main goals
of this note we shall explain that the same type of positivity certificate holds for every (polynomial) matrix
inequality which holds irrespective of the size of the matrices; see §4 for details.

3. POSITIVITY OF NC POLYNOMIALS AND QUADRATIC MODULES

In this section we extend the notion of positivity introduced in the previous section.

Definition 3.1. Fix a subset S C SymR(X}. The n-tuples of symmetric matrices A € 5" satisfying s(A) = 0
for all s € § we denote by %5. When considering symmetric matrices of a fixed size k € N, we shall use
Ds(k) := Y5 NS}, We note that ¥ is usually called an nc semialgebraic set.

Definition 3.2. Given a subset § C SymR (X}, we introduce
Eg = {Zh}‘s;h; | eRX). 5 € S}.
i

T3, = { Y hitsihi | s € R(X). 5; € S, deg(h}shy) < Ed},
i

N (3)
Ms:= { Y aisia |N €N, s € SU{1},q, emm},

=1

My y:= { Y hfsihi | hi € R(X), s € SU{1}, deg(hfshi) < 2;1}.
i

and call My and Ms 4 the quadraric module and truncated quadratic module generated by S, respectively. Note
Mg, = Eﬁ +Z?s',a‘ C R{X )24, where E;} := Mg 4 denotes the set of all sums of hermitian squares of polynomials
of degree at most d. Observe that Ms 4 is a convex cone in the R-vector space SymR (X},

Example 3.3.

(a) If S= {1} or S = @, then Mg = £} = £? is exactly the cone containing nc polynomials which allow sum
of hermitian squares (sohs) decompositions. Furthermore, &5 = 8" is the set of all n-tuples of symmetric
matrices. Clearly, f € My implies f| g, = 0.

(b)y IfS=D:={1 —Xlz.. S X,;—’} then M 4 contains exactly the polynomials f which have a sohs decompo-
sition over the polydisc, i.e., can be written as

f=2g;‘g,-+ZZ#;;j(l—xf)sx,-J. )
7 =T

where deg(g;) <d, deg(h;;) <d—1foralli,j. We call Zp the nc polydisc. It consists of all n-tuples A
of symmetric contractions, i.e.. matrices A; € 5 satisfy |A;|| < 1. or equivalently, / —Af = 0.
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) fS=B:={1-%; X,—E} then Mg 4 contains exactly the polynomials f which have a sohs decomposition
over the ball, i.e., can be written as

f=Zg?‘gs+Zh}‘(l —ZXf)h;_ (5)
i i i
where deg(g;) <d, deg(h;) <d—1 forall i. We call @ the nc ball. It consists of all n-tuples A € 8" of
row contractions, i.e., matrices A; € S satisfy || [A] A”] || < 1, or equivalently, / —EJ,-AJE,- = 0.
We also call a decomposition of the form (4) or (5) a sohs decomposition with weights.
Example 3.4. Note the the polynomial f from Example 2.1 has a sohs decomposition (2) over the polydisc.
Example 3.5. Let f =2 —X>4+XY?X —Y? € SymR{X}. Obviously f & I but
F=1+FX)¥YX +(1 -X>-Y?%) (6)

is its sohs decomposition over the ball.

We conclude this section with an obvious but important observation:
Proposition 3.6. Ler S C SymR.(X). If f € Mg, then f|g, = Q.

The converse of Proposition 3.0 is false in general, i.e., positivity on an nc semialgebraic set does not imply
the existence of a weighted sum of squares certificate, cf. [K507, Example 3.1]. However, as we shall see below,
the converse dees hold for S € {@, Ik, D}.

4. SEPARATION FOR QUADRATIC MODULES AND OPTIMIZATION OF NC POLYNOMIALS

In this section we present the core theoretical aspects of the positivity certificates for nc polynomials. The
main technical tool employed are linear functionals or, via duality, Hankel matrices, which are the subject of
64.1. In §4.2, §4.3 and §4.4 these technique is then applied to study optimization of nc polynomials.

4.1. Hankel matrices.

Definition 4.1. To each linear functional L : R(X}za‘ — B we associate a matrix Hy, (called an nc Hankel matrix)
indexed by words u,v € (X )4, with
(HL)uy = L{u*v). (7)

If L is positive, i.e., L(p*p) = 0 for all p € R{X},. then H. = 0. Given g € SymR(X), we associate to L the
localizing matrix HE‘T&‘,& indexed by words u,v € (X }4_deg(e)/2 With

{Hz{gﬂju,v - L(u*.?v)- (3)
If L(h*gh) = 0 for all h with h*gh € R(X )24 then H"" = 0.

We say that L is unital it L{1) = 1.

Remark 4.2. Note that a matrix H indexed by words of length < d satisfying the nc Hankel condition H,, ,,
H,, ., whenever ujv; = u3v,, gives rise to a linear functional L on R(X ),y as in (7). If H = 0, then L is positive.

Definition 4.3. Let A € B™' be a symmetric matrix. A (symmetric) extension of A is a symmetric matrix
A ¢ RUHO%(+) of the form

i— A B

S BC

for some B € R**! and C € R**!, Such an extension is flar if rankA = rank A, or, equivalently, if B =AZ and
C =Z'AZ for some matrix Z.
For later reference we record the following easy linear algebra fact.

Lemma 4.4, [;. ?‘] = 0ifand only if A = 0, and there is some Z with B=AZ and C = Z'AZ.
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Suppose L : R(X)24+2 — IR is a linear functional and let L: R(X)24 — R denote its restriction. As in
Definition 4.1 we associate to L and I. the Hankel matrices Hj and Hy, respectively. In block form,

Hp = [Hl B} . 9)

If Hy is flat over Hy, we call L (1-step) flar.
The following technical proposition is a variant of a Powers-Scheiderer result [PSO1, §2].

Proposition 4.5. If S € {&@. B, D}, then Ms 4 is a closed convex cone in the real vector space SymIR(X) 4.

4.2. Separation and optimization of nc polynomials via SDP. In this section we explain how SDPs relate
to eigenvalue optimization of an nc polynomial. The following theorem encompasses the main results about
separation for cones My 4, Mp 4 and Mp 4. Proofs can be found in [KP10, HKM12, CKP12].

Theorem 4.6. Let f € R(X )2y and let S be one of @, B, . Then
flaz =0 <= fE€Msap. (10)

Separation problems for the cones M5z where S =@, S=B or § =D are instances of semidefinite
programming feasibility problems. Indeed, f € My 4 if and only if there exists a positive semidefinite matrix &
of size o(d) such that f = W7 GW,. For the proof see [KP10] or the references therein. Similar results hold for

Mp g and Mp 4. as is explained in the following subsections.
Let S C SymR (X} be finite and let f € SymR(X)>;. We are interested in the smallest eigenvalue f, € R
the polynomial f can attain on %y, i.c.,

foi= inf{(f(ﬂ)é,é) | A € %. & aunit V-E:CIOI'}. (11)

Hence f, is the greatest lower bound on the eigenvalues of f{A) for tuples of symmetric matrices A € %s. i.e.,
(f—f)(A) = Oforall A € 9, and f, is the largest real number with this property. From Proposition 3.6 it
follows that we can bound f, from below as follows

{s) . _ 3
= L= A
.f* - f:;D.}';:.: ?-IE ‘:1. E ‘MS‘S, (SPSDPe]g—nuu)
for s = d. For each fixed s this is an SDP and leads to the noncommutative version of the Lasserre relaxation
scheme, cf. [PNA10]. However, as a consequence of the Nichtnegativstellensatz 4.6, if S = &, IV or B then we
do not need sequences of SDPs, a single SDP suffices: the first step in the noncommutative SDP hierarchy is
already exact, see [CKP11, CKP12].

How to compute f, when § = @ is explained in [CKP11, Section 2.3]. In the following subsections we
present the eigenvalue optimization for the case of the nc ball and polydisc.

4.3. Optimization of nc polynomials over the ball. In this subsection we consider S = {1 —Y"_, X7} and the
corresponding nc semialgebraic set B = %, the so-called ne ball. From Theorem 4.6 it follows that we can
rephrase f, the greatest lower bound on the eigenvalues of f € [R{X 24 over the ball I, as follows:

fo = Joohs = sup A - -
s. t. f—AEMpaq1. (PSDPeig—min)

Remark 4.7. We note that f, > —eo since positive semidefiniteness of a polynomial f € R{X}:7 on B only
needs to be tested on the compact set B(N) for some N > o(d) [HMO4].

Verifying whether f € Mg 4 is a semidefinite programming feasibility problem:

130



Croatian Operational Research Review (CRORR), Vol. 3, 2012

Proposition 4.8 ([CKP12, Proposition 4.2]). Let f = Ewegm fww. Then f € My 4 if and only there exist
positive semidefinite matrices H and G of order o (d) and o (d — 1), respectively, such that for all w € (X )24,

n

fw= Z Hu,v)+ Z G(u,v) — Z Z Glu,v). (12)
ey wveilly_ J=1wrsXly_ )
wrv=w = ,,4)(}21-=“-

Remark 4.9. Proposition 4.8 (or its proof) explains how to construct the sohs decomposition with weights

for f € My 4. First we solve semidefinite feasibility problem in the variables H £ SE(DJJ’ Ge S}G—_?d_]) subject

to constraints (12). Then we compute by Cholesky or eigenvalue decomposition vectors H; € R%“ and
G e B9 guch that H = Z;H;H{ and G=Y%; G;Gf. Polynomials #; and g; from (5) are then computed as
hy = H!W; and g; = GiW,_1.

By Proposition 4.8 and Remark 4.9, the problem (PSDF,j;_,;;;) is an SDP; it can be reformulated as

Soohs = sup fl_(El,l.-H)_iEl.].-G} .,
5.t fw = Z H{uv)+ Z G(H_.v)—z Z Glu,v),

avelX) aveX) =1 wreiX) .
kg =2y e} (PSDPig—min)
forall 1 £we (X)2ar2,
=0 =0
H €S,  Gesl .

The dual semidefinite program to (PSDP,j,_ i) and (PSDP o) is:

Lschs = illfL(f )
5. t. L:SymB{X)s3» =+ R islinear
L(]) =1 (DSDPeLg—min)d+1
Lig*q) =0 forallg e R{(X)zy
Lik*(1 —EJ,-XJ;)E:) =0 forall heR{X),.

Proposition 4.10 ([CKP12]). (DSDPyj,_pin)a+1 admits Slater points.

Remark 4.11. Having Slater points for (DSDP.;;_in )¢ is important for the clean duality theory of SDP to
kick in [VB96, dK02]. In particular, there is no duality gap, so Lgns = fions(= f.)- Since also the optimal value
Ssohs = —oa (cf. Remark 4.7), feons is attained. Furthermore, Lsons is attained. This is important as it enables us to
extract optimizers A, £ for f, (see [CKPI12, §5] for details).

4.4, Optimization of NC polynomials over the polydisc. In this section we consider § = {1— Xlz. | —X,f}
and the corresponding nc semialgebraic set

D=@s=|J{A=(A.....A,) €SI |1-AT = 0,...,1 —A; = 0},
kM
the so-called nc polydisc.

The truncated quadratic module tailored for this 5 is

Mpg = {Z htsihi | by €R(X)Y, s; € SU{1}. deg(h?sih;) < 2d}.
!.

Consider

fe = faohs = sup A o
5. t. f—AEMpgy. (PSDPjg_min)

Remark 4.12. As in Remark 4.7, fi > —ee since positive semidefiniteness of a polynomial f € R(X}27 on D
only needs to be tested on the compact set I(N) for N = o (d) [HMO4].
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Theorem 4.6 implies that the problem (PSDP,;;_,i;) yields also the greatest lower bound on the eigenvalues
of an nc polynomial f over the polydisc. Furthermore, verifying whether f € Mp, 4 is a semidefinite programming
feasibility problem [CKP12, Proposition 4.6].

Proposition 4.13. Ler f = Ewe-z'nz s fww. Then f € Mp g if and only there exists a positive semidefinite matrix
H of order o (d), and positive semidefinite matrices Gy, 1 <i < n of order o(d — 1) such that

n
fw = Z Hiu,wv) —|—Z Z Gilu, v)—z Z Gi(u.v), forallwe (X)ay. (13)
u:f-'x]‘, iouvella_ i=1 wreXly_)
=w v ";xF21=“.

Remark 4.14. Proposition 4.13 (or its proof, cf. [CKP12, Proposition 4.6]) explains how to construct the sohs
decomposition with weights for f € Mpg. First we solve semidefinite feasibility problem in the variables
Hc Sg(nd), G;e Sggi_]) subject to constraints (13). Then we compute by Cholesky or eigenvalue decomposition
vectors H; € R@ and G; ; e R~V such that H = Y, H;H! and G; =Y; G; jG; j- Defining polynomials /; and
gijas hy =H{Wy and g; ; = G’ Wd 1 yields (4).

By Proposition 4.13, the problem of computing f. over the polydisc is an SDP. Its dual SDP is:

Loons = infL(f)
s. t. L:SymR(X}ysy>»— R islinear
L(]) =1 (DSDPeig—min)d—H
Lig*q) =0 forallg eR{X)41,
Lih*(1 —Xj?)h) =0 forall he R{X), 1<j<n

For implementational purposes, problem (DSDPei; —min)s41 is more conveniently given as

Lsohs mf(HL G }
s.t. Hi(u,v) = Hp(w,z), lfa v = w z, where u,v,w, 2z € (X )at1 ,
HL(] ) _ 1 HL € S d+l S;(Dd). \.v.'jI (DSDP eig—]l]in}d+1
H_,f(u v) =Hp(u.v)—H(X; u,XJ,-v). forallu,ve {(Xyy, 1 <j<n

where Gy is a Gram matrix for f, and HE represents L acting on nc polynomials of the form u*(1 —Xj’*)v, ie.,

Hj is what we call a localizing matrix for | —Xj?‘.

Proposition 4.15 ([CKP12]). (DSDF.jg—yin)ag+1 admits Slater points.

As before, having Slater points for (DSDP.i;_yip )41 1s important from both practical and theoretical point
of view, cf. Remark 4.11 above.

5. COMPUTATIONAL COMPLEXITY

In this section we present the complexity of: (i) detecting if f is a member of My ; for § =2, B or I; (ii)
finding the minimum eigenvalue of f.

5.1. Complexity of separation for Mg ;. Verifying if f is positive on 8", i.e., testing membership of f in Mg 4
amounts to solving an instance of a semidefinite programming problem, as mentioned in the paragraph after
Theorem 4.6 (or see [CKPI1 1, §2.2]). This problem is a SDP feasibility problem with matrix variable of order
o(d), see (1). If for example # = 4 and d = 5 then &(d) = 1365 which is already on the feasibility edge for
all general SDP solvers. We point out that these problems also have lots of constraints, i.e., the number of
constraints m is exactly

m = card{w € Woy | w* =w}+ %card{u-‘ € Wag | w* #Fw}.
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Since Wy contains all words in ()_C) of degree < d, we have

pld+l _q 1 pld+l _q
—— =—0(2d)<m<o(2d) = —
2in—1) 2 (2d) <m (2d) n—1

so m = n°?. Fortunately, detecting if f € M 4 can be done much faster. The Newton chip method presented in
[KP10] constructs a basis vector W which can replace Wy and has length at most kd, where k is the number of
hermitian squares appearing in f.

Unfortunately, for the other two separation instances (that is, testing membership f EMp g or f € Mpg) we
have to solve the semidefinite programs in full dimension. Finding sohs decomposition with weights is for the
case of the nc ball an SDP feasibility problem with one matrix variable of order & (d) and one of order o{d — ).
For the case of the nc polydisc it is even more demanding: the corresponding SDP feasibility problem (13)
consists of one matrix variable of order o (d) and n matrix variables of order o{d —1).

The number of linear constraints is equal for both problems: m = card{w € Wy | w* =w} + %carcl{u-‘ €
Wy | w* # w}. The only meaningful reduction of the size of matrix variables and the number of constraints for
the case of the nc polydisc and ball we are aware of is the following: if there is a word w of degree d such that
w*w does not appear in f, then w can be eliminated from Wy,

5.2. Eigenvalue optimization of NC polynomials. Finding the minimum eigenvalue f. and the corresponding
minimizer of f over the set of all n-tuple of symmetric matrices, i.e., solving (11) for the case § = & amounts to
solving an instance of a semidefinite programming problem, as mentioned in the paragraph after Theorem 4.6 and
in [CKPL1, Subsection 2.3.1]. This SDP in primal form has one matrix variable of order ¢ (d) with the number
of constraints being card{w € Wy | w* =w} + %card{u-' € Wy | w* # w} — 1. Unfortunately — for extracting
optimizers — we cannot employ the Newton chip method for these problems, so this is the real complexity that
can not be reduced.

The complexity of solving the semidefinite program in primal form (PSDP,;,— i) underlying f. for the
case of B is determined by the size of two matrix variables: the first variable is of order o(d+ 1) while the
second is of order o(d) (recall that we are actually operating above My 4, 1. The number of linear constraints in
this semidefinite program is card{w € Wazya | w* = w}+ Lcard{w € Wagya | w* # w} — 1. When we compute
[ for the case I we obtain semidefinite programming problem with # 4 1 matrix variables, one of order o{d + 1)
and n variables of order ¢ (d). The number of linear constraints is the same as for B..

Semidefinite programming problems are tractable problems, see Appendix for details about the theoretical
complexity for semidefinite programming. As mentioned there we can efficiently deal with semidefinite programs
if the matrix variables are of order up to 1 000 and if there is not more than 10 000 linear constraints. This
implies that in the case of separation over M ; we can find sohs decompositions for polynomials with many
variables and with reasonable degree, i.e., with more than 10 variables and with degree higher than 10, if the
number of hermitian square is below 100. For the other problems listed in this paper we are currently very
limited with the number of variables and with the degree, e.g. we can manage problems with degree d less that 5
and with less than 5 variables.

6. CONCLUDING REMARKS

In this paper we have shown how to effectively detect if given noncommutative (nc) polynomial is sum of
hermitian squares (with weights) and how to compute the smallest (or biggest eigenvalue) the nc polynomial can
attain on the set of all # tuples of symmetric matrices or on the ball B or polydisc Il. Our algorithm is based
on sums of hermitian squares and yields an exact solution with a single semidefinite program (SDP). To prove
exactness, we investigated the solution of the dual SDP and used to compute the exact bound.

It is clear that the Nichtnegativstellensatz 4.6 works not only for S being one of @, B, 1D, but also for all nc
semialgebraic sets obtained from these via invertible linear change of variables. What is less clear (and has been
established after we have obtained Theorem 4.6), is that this result can be slightly strengthened. Namely, its

conclusion holds for all convex nc semialgebraic sets (or, equivalently [HM12], nc LM! domains %p). However,
this requires a different and more involved proof. For details we refer the reader to [HKM12].
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APPENDIX A. SEMIDEFINITE PROGRAMMING (SDP)

Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization
of a linear objective function over the intersection of the cone of positive semidefinite matrices with an affine
space [Nem(7, BTNO1, VB96]. Linear programming is included as a special case of semidefinite programming,
or said differently, semidefinite programming is a generalization of linear programming. As opposed to linear
programming, the feasible set of a semidefinite problem is not polyhedral and there is no method like the simplex
algorithm that could be applied to solve semidefinite programs. The duality theory of linear programming carries
over naturally to SDP, but becomes more profound. Weak duality always holds. Strong duality, however, does
not hold in general but requires some sort of regularity of the feasible regions. The same requirements are needed
to guarantee attainment of the optima. For a thorough discussion we refer to the handbook of semidefinite
programming [WSV00].

The importance of semidefinite programming was spurred by the development of efficient methods which
can find an £-optimal solution in a polynomial time in s,m and loge, where s is the order of the matrix variables,
and m is the number of linear constraints. The most prominent methods for solving semidefinite programs
nowadays are interior-point methods. Several variants of this Newton-method based algorithm have been
developed over the past few decades ([dKO2, NT08]) and several open sources packages are available, e.g.,
SDPT3 [TTT], SeDuMi [Stu99], CSDP [Bor99]. Interior-point methods are capable of solving semidefinite
programs of medium size (i.e., s < 1000 and m < 10.000). Solving large-scale programs (matrix dimension s
being huge or having a vast number of linear constraints) is not practical using interior-point algorithms due to
dense linear algebra operations.

Various applications lead to large-scale semidefinite programming relaxations. This advanced in the past
few years the development of algorithms for solving larger semidefinite programs. Several ideas to get rid of the
semidefiniteness constraint have been investigated and some variants of first order methods have been developed.
The spectral bundle method [HRO0] transforms the SDP into an Eigenvalue optimization problem. This method
can be applied to semidefinite programs for which the so-called constant trace property holds. Matrices of sizes
around 5 = 10000 can be handled by this method. Projection methods rely on the fact that a symmetric matrix
can be projected onto the cone of semidefinite matrices through a spectral decomposition. This has been done
in different ways by several authors ([BV06, MPRWO09, WGY 10, JIR08, Z5TO8]). Another idea for solving
an SDP is by exploiting the factorization X = RR' that holds for any positive semidefinite matrix X. Methods
from non-linear programming can then be used to solve the optimization problem in R. However, note that the
resulting problem is non-convex. SDPLR [BMO3] is an implementation of this low-rank method.

For a comprehensive list of state of the art SDP solvers see [Mit03]. However, in contrast to linear
programming where algorithms are easily accessible even for non-ex perts, using algorithms for solving SDP
still requires insight into the theory of semidefinite programming. There are no standard methods for solving
an SDP in a routine way and one has to carefully choose the right tool depending on the characteristics of the
semidefinite programs to be solved.
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