
Croatian Operational Research Review (CRORR), Vol. 3, 2012  

 
 
 

 176

USAGE OF INTERVAL CAUSE-EFFECT RELATIONSHIP 
COEFFICIENTS IN THE QUANTITATIVE MODEL OF STRATEGIC 

PERFORMANCE 
 
 

Dmitry M. Yershov 
E-mail: dmitreyyershov@mail.ru 

 
Ekaterina A. Babenko 

E-mail: dewdroping@gmail.com 
 

Stanislav V. Skorodumov 
E-mail: skorodum@gmail.com 

 
Moscow Aviation Institute (National Research University), Faculty of Applied Mathematics 

and Physics, Volokolamskoe Shosse 4, 125993, Moscow, Russia 
 
 

Abstract 

This paper proposes the method to obtain values of the coefficients of cause-effect relationships 

between strategic objectives in the form of intervals and use them in solving the problem of the 

optimal allocation of organization’s resources. We suggest taking advantage of the interval analytical 

hierarchy process for obtaining the intervals. The quantitative model of strategic performance 

developed by M. Hell, S. Vidučić and Ž. Garača is employed for finding the optimal resource 

allocation. The uncertainty originated in the optimization problem as a result of interval character of 

the cause-effect relationship coefficients is eliminated through the application of maximax and 

maximin criteria. It is shown that the problem of finding the optimal maximin, maximax, and 

compromise resource allocation can be represented as a mixed 0-1 linear programming problem. 

Finally, numerical example and directions for further research are given. 
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1.  INTRODUCTION 
 

Strategic performance management is a relatively young field of managerial science. It deals with 

problems of effective strategy implementation and validation of its contribution to organization’s 

success (De Wall, 2006). The most popular methodology in strategic performance management is the 

Balanced Scorecard (BSC) concept (Kaplan, Norton, 1996). 

The approach to strategic performance optimization suggested in (Hell, Vidučić, Garača, 2009) 

attracts special attention. On the basis of the BSC methodology they built the quantitative model of 

strategic performance (QMSP) and proposed an approach to optimization of organization effectiveness 

through the optimal allocation of available resources. Matrix algebra and linear programming were 

used for formal problem definition. Description of the approach to the optimal resource allocation with 

QMSP is presented in the following Section.  

 

2. OPTIMAL ALLOCATION OF AVAILABLE RESOURCES WITH THE QMSP 
 

According to the QMSP strategy is presented as a graph of objectives (let all objectives be enumerated 

from 1 to n). Objectives must be linked with cause-effect relationships. An example of a cause-effect 

relationships graph is shown in Fig. 1. 

 

 

Fig. 1. An example of a cause-effect relationships graph 

 

Each relationship has a weight coefficient ݇௜௝ ൒ 0 which indicates the maximum allowable 

accomplishment level of the j-th superior objective when the accomplishment level of the i-th 

subordinate one is equal to 1 (100%) and accomplishment levels of the other subordinate objectives 
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are equal to 0. It’s assumed that the weight coefficients are normalized to the sum of 1: 

∑ ݇௜௝ ൌ 1௜אேೕ
, ݆ ൌ 1, ݊തതതതത. 

where ௝ܰ is a set of numbers of the objectives which are subordinate to the j-th objective. 

Let an organization have s types of resources and vector ሺܴଵ, ܴଶ, … , ܴ௦ሻ் show an available amount 

of each resource. Let the technological coefficient ݎ௜௝ be an amount of the i-th resource that is needed 

to achieve 100% level of the j-th objective’s accomplishment. 

Under these assumptions the linear programming problem (LPP) (1.1)–(1.4) for finding the vector כݔ 

of strategic objectives’ accomplishment levels corresponding to the optimal resource allocation can be 

formulated: 

1. Criterion (maximization of the weight sum of strategic objectives’ accomplishment levels): 

ଵܫ ൌ ∑ ௝ݔ௝ݓ ՜ max௫,௡
௝ୀଵ     (1.1) 

where ݓ௝ is a weight coefficient of the j-th objective (it’s assumed that ݓ௝ ൒ 0, ∑ ௝ݓ ൌ 1௡
௝ୀଵ ). 

2. Resource constraints: 

∑ ௝ݔ௜௝ݎ ൑ ܴ௜,௡
௝ୀଵ  ݅ ൌ 1,  തതതത.    (1.2)ݏ

3. Structure constraints: 

௝ݔ ൑ ∑ ݇௜௝ݔ௜௜אேೕ
, ݆ ൌ 1, ݊തതതതത.    (1.3) 

4. Assumption that accomplishment levels belong to the interval [0,1]: 

0൑ ௝ݔ ൑ 1, ݆ ൌ 1, ݊തതതതത.     (1.4) 

It’s obvious that the optimal amount of the i-th resource which must be spent to achieve the j-th 

objective is equal to ݔ௝
݆ ,௜௝ݎכ ൌ 1, ݊തതതതത. 

One of the main issues concerning usage the QMSP in practice is a problem of estimation of the 

cause-effect relationship coefficients ሼ݇௜௝ሽ. There are several papers dealing with this question. In 

(Rodrigues, Alfaro, Ortiz, 2009) it’s proposed to use data-mining algorithm (principal components 

analysis with the least squares method) for identification and measuring relationships between key 

performance indicators which correspond to strategic objectives; in (Jassbi, Mohamadnejad, 

Nasrollahzadeh, 2011)  fuzzy Decision Making Trial and Evaluation Laboratory (DEMATEL) is 

employed as a framework for estimation of cause-effect relationships between strategic objectives; in 

(Suwignjo, Bititci, Carrie, 2000) analytic hierarchy process (AHP) is used for similar purpose. 

Approaches which were suggested in the last two papers can be used without historical data so they 

are suitable for preliminary evaluation of the relationship coefficients. The former have such an 
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advantage that it allows to deal with vague assessments and the latter conforms to the QMSP well. In 

this paper we present the method which combines both mentioned advantages. It is described in the 

next Section. Numerical example is demonstrated in Section 4.   

 

3.  THE METHOD PROPOSED 

 
The method proposed consists of two stages. In the first stage the interval analytic hierarchy process 

(IAHP) is employed in order to obtain variation intervals of the cause-effect relationship coefficients. 

In the second stage special criteria (maximin and maximax) are used for finding the optimal resource 

allocation.  

STAGE 1: obtaining estimates of cause-effect relationship coefficients’ values in the form of 

intervals. 

Step 1.1. Let ݌ ؔ 1. 

Step 1.2. Renumber objectives belonging to ௣ܰ with the numbers 1,2, … , ݊௣ (݊௣ ൌ ห ௣ܰห).  Let 

݊௣
ᇱ ؔ ݊௣ ൅ 2 and ݁௣ሺ·ሻ: ൛1,2, … , ݊௣

ᇱ ൟ ՜ ሼ ௣ܰ, ݊ ൅ 1, ݊ ൅ 2ሽ is such a function that ݁௣ሺ݅ሻ ൌ ݆, 

where j is an old (global) number of an objective, ݅ is a new (local) number of an objective; ݁௣൫݊௣ ൅

1ൌ݊൅1, ݁݌݊݌൅2ൌ݊൅2.  Note, that at the first stage of the method objectives are designated with 

the new numbers. 

Step 1.3. Form an expert group consisting of persons who can estimate an influence of an achievement 

of the objectives belonging to ௣ܰ, as well as other favorable and unfavorable factors, on an 

achievement of the p-th objective. Let this group include ݉௣ experts. 

Step 1.4. Estimate the competence of the experts: assign a coefficient of competence ܿ௤ to the q-th 

expert (ݍ ൌ 1, ݉௣തതതതതതത). We consider that ܿ௤ ൒ 0 and ∑ ܿ௤
௠೛
௤ୀଵ ൌ 1. This step is not necessary because it 

can be assumed that competence coefficients are uncertain. 

Step 1.5. For each pair of objectives ݅, ݆ ൌ 1, ݊௣തതതതതത, ݅ ൏ ݆ which are subordinate to the p-th one, ask each 

expert to answer the question: "How many times an achievement of the i-th objective is more 

important for an achievement of the p-th one than an achievement of the j-th objective?" The answer 

of the q-th expert (ݍ ൌ 1, ݉௣തതതതതതത) must be expressed as a number ܽ௜௝௣
௤ א ሼ1

9ൗ , 1
8ൗ , … , 1

2ൗ , 1, … , 8, 9ሽ in 

accordance with the fundamental scale proposed in (Saaty, 2008) (see Table 1). If the i-th objective 

has no less effect on the p-th one than the j-th objective, then ܽ௜௝௣
௤  value is taken from the table, 
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otherwise an expert estimates prevalence of the j-th objective over the i-th one in accordance with the 

table and reciprocal value is taken for ܽ௜௝௣
௤ . 

 
Table 1: The fundamental scale of absolute numbers (adapted from (Saaty, 2008)) 

Intensity of 
Importance Definition Explanation* 

1 Equal importance 
Accomplishments of the i-th and the j-th objectives contribute 
equally to the p-th one  

2 Weak or slight 

3 Moderate importance 
Experience and judgement slightly favour 
an accomplishment of the i-th objective over the j-th one 

4 Moderate plus 

5 Strong importance 
Experience and judgement strongly favour 
an accomplishment of the i-th objective over the j-th one 

6 Strong plus 

7 
Very strong or 
demonstrated importance 

An accomplishment of the i-th objective is favoured very strongly 
over the j-th one; its dominance demonstrated in practice 

8 Very, very strong 

9 Extreme importance The evidence favouring accomplishment of the i-th objective over 
the j-th one is of the highest possible order of affirmation 

*Explanation is given for the case when the i-th objective has no less effect on the p-th one than the j-th objective. 
 

 

An expert is able to give his/her answer in the form of interval if accurate estimation is difficult. For 

example, if the q-th expert believe that an achievement of the i-th objective is more important for an 

achievement of the p-th objective than an achievement of the j-th objective with the prevalence of the 

i-th objective over the j-th one varying from «Moderate» to «Strong» then his assessment can be fixed 

as interval ሾܽ௜௝௣
௤ , ܽ௜௝௣

௤ ሿ ൌ׷ ሾ3, 5ሿ. If the q-th expert gave an accurate assessment ܽ௜௝௣
௤  then  ܽ௜௝௣

௤ ൌ ܽ௜௝௣
௤

ൌ׷ ܽ௜௝௣
௤ .  An output of this step is a set of intervals ሾܽ௜௝௣

௤ , ܽ௜௝௣
௤ ሿ (݅, ݆ ൌ 1, ݊௣തതതതതത, ݅ ൐ ݆, ݍ ൌ 1, ݉௣തതതതതതതሻ.  

Step 1.6. Given that some favorable developments may occur (adjective “favorable” means that  

developments have a positive impact on an achievement of the p-th objective in addition to an 

achievement of its subordinate objectives), ask each expert to estimate an impact of such events on an 

achievement of the p-th objective in comparison with the influence of the i-th objective’s achievement 

(݅ ൌ 1, ݊௣തതതതതതሻ. A result of this step is a set of intervals ሾܽ
൫௡೛ାଵ൯௝௣
௤ , ܽ൫௡೛ାଵ൯௝௣

௤
ሿ (݆ ൌ 1, ݊௣തതതതതത,  ݍ ൌ 1, ݉௣തതതതതതതሻ. 

Step 1.7. Similarly to the previous step obtain estimates of impact of unfavorable developments 

(adjective “unfavorable” means that they limit an achievement level of the p-th objective) compared 

with its subordinate objectives and favorable events (if ௣ܰ ൌ  then it is only estimate that should be ׎

obtained). An output of this step is a set of intervals ሾܽ
൫௡೛ାଶ൯௝௣
௤ , ܽ൫௡೛ାଶ൯௝௣

௤
ሿ (݆ ൌ 1, ݊௣ ൅ 1തതതതതതതതതതത, ݍ ൌ 1, ݉௣തതതതതതതሻ. 
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Step 1.8. With data collected in Steps 1.5–1.7, given that ܽ௜௜௣
௤ ൌ ܽ௜௜௣

௤ ൌ 1, ܽ௜௝௣
௤ ൌ 1/ ௝ܽ௜௣

௤ , ܽ௜௝௣
௤ ൌ

1/ܽ௝௜௣
௤  (݅, ݆ ൌ 1, ݊௣

ᇱതതതതതത), for the p-th objective and the q-th expert (ݍ ൌ 1, ݉௣തതതതതതത) form an interval judgment 

matrix: 

௣ܣ
௤ ൌ ሺሾܽ௜௝௣

௤ , ܽ௜௝௣
௤ ሿሻ௡೛

ᇲ ൈ௡೛
ᇲ ൌ

ۉ

ۇ

ሾ1,1ሿ … ሾܽଵ௡೛
ᇲ ௣

௤ , ܽଵ௡೛
ᇲ ௣

௤
ሿ

ڭ ሾ1,1ሿ ڭ

ሾܽ௡೛
ᇲ ଵ௣

௤ , ܽ௡೛
ᇲ ଵ௣

௤
ሿ … ሾ1,1ሿ ی

 .ۊ

Remark 1. Possibility to give interval estimates is particularly relevant in Steps 1.6 and 1.7 because an 

expert has to deal with potential events precise evaluation of which may give unreliable results. 

Remark 2. If an expert is able to give variation intervals for estimated values without pairwise 

comparisons then Steps 1.5–1.8 should be omitted. 

Step 1.9.Calculate individual estimates for the weight coefficients’ variation intervals ሾ݇௝௣
௤ , ௝݇௣

௤
ሿሺ݆ ൌ

1, ݊௣
ᇱതതതതതത, ݍ ൌ 1, ݉௣തതതതതതതሻ. For the q-th expert (ݍ ൌ 1, ݉௣തതതതതതത): IF expert didn’t use the procedure of pairwise 

comparisons THEN individual intervals have already been obtained ELSE according to the method 

proposed in (Entani, 2009) obtain individual estimates of variation intervals as a solution of the 

following LPP: 

ଶܫ ൌ ∑ ቀ ௝݇௣
௤

െ ݇௝௣
௤ ቁ

௡೛
ᇲ

௝ୀଵ ՜ min௞,       (2.1)  

s.t.   ∑ ௝݇௣
௤

௝ୀଵ,௡೛
ᇲതതതതതത,௝ஷ௜ ൅ ݇௜௣

௤ ൒ 1, ݅ ൌ 1, ݊௣
ᇱതതതതതത,                            (2.2) 

∑ ݇௝௣
௤

௝ୀଵ,௡೛
ᇲതതതതതത,௝ஷ௜ ൅ ݇௜௣

௤
൑ 1, ݅ ൌ 1, ݊௣

ᇱതതതതതത,          (2.3) 

݇௜௣
௤ ൑ ܽ௜௝௣

௤
௝݇௣
௤

, ݅, ݆ ൌ 1, ݊௣
ᇱതതതതതത,           (2.4) 

݇௜௣
௤

൒ ܽ௜௝௣
௤ ݇௝௣

௤ , ݅, ݆ ൌ 1, ݊௣
ᇱതതതതതത,           (2.5) 

݇௜௣
௤ ൒ ,ߝ ݅ ൌ 1, ݊௣

ᇱതതതതതത,            (2.6) 

where ߝ is a small constant (for example, ߝ ؔ 0.0001). 

Step 1.10. Calculate aggregated estimates for the weight coefficients’ variation intervals ሾ݇௝௣, ௝݇௣ሿሺ݆ ൌ

1, ݊௣
ᇱതതതതതത): IF coefficients of competence are assumed to be uncertain THEN go to Step 1.10.1 ELSE go to 

Step 1.10.2. 

Step 1.10.1. Calculate aggregated estimates for the weight coefficients’ variation intervals 

according to the formulae: ݇௝௣ ൌ min௤ୀଵ,௠೛തതതതതതത ݇௝௣
௤ , ௝݇௣ ൌ max௤ୀଵ,௠೛തതതതതതത ௝݇௣

௤
 (݆ ൌ 1, ݊௣

ᇱതതതതതതሻ. Go to the Step 

1.11. 

Step 1.10.2. Calculate aggregated estimates for the weight coefficients’ variation intervals 

according to the formulae: ݇௝௣ ൌ ∑ ܿ௤݇௝௣
௤௠೛

௤ୀଵ , ௝݇௣ ൌ ∑ ܿ௤ ௝݇௣
௤௠೛

௤ୀଵ  (݆ ൌ 1, ݊௣
ᇱതതതതതതሻ. 

So, the result of Steps 1.2–1.10 is a set of aggregated variation intervals for values of the coefficients 
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of cause-effect relationships between the p-th objective and its subordinates as well as aggregated 

interval values of an impact of other favorable and unfavorable factors which influence an 

achievement of the p-th objective: ൣ݇௝௣, ௝݇௣൧ (݆ ൌ 1, ݊௣
ᇱതതതതതത). 

Remark 3. For the obtained intervals the following inequalities are satisfied: 

 ∑ ௝݇௣
௡೛

ᇲ

௝ୀଵ ൒ 1, ∑ ݇௝௣
௡೛

ᇲ

௝ୀଵ ൑ 1. 

Step 1.11. IF ݌ ൏ ݊ THEN ݌ ؔ ݌ ൅ 1, go to Step 1.2 ELSE go to Stage 2. 

Remark 4. It can be assumed that the strategy map is "closed" (no external factors affect an 

achievement of the objectives). If so, we don’t have to obtain values of an impact of favorable and 

unfavorable factors to achievement of organizational objectives (they are equal to 0).  

STAGE 2: calculation of the optimal resource allocation on condition that interval values of the 

cause-effect relationship coefficients as well as interval values of an impact of other favorable and 

unfavorable factors are provided.  

Interval character of the model parameters introduces uncertainty to the resource allocation problem: it 

is given that ݇௘ೕሺ௜ሻ௝ א ሾ݇௜௝, ݇௜௝ሿ (݆ ൌ 1, ݊തതതതത, ݅ ൌ 1, ఫ݊
ᇱതതതതതത) and ∑ ݇௜௝௜אேೕ

൅ ݇ሺ௡ାଵሻ௝ ൅ ݇ሺ௡ାଶሻ௝ ൌ 1 (݆ ൌ 1, ݊തതതതത), 

but it isn’t known what value from the intervals the coefficients will possess. To eliminate uncertainty 

it is necessary to use special criteria. The first criterionwhich can be used is based upon extreme 

optimism principle (maximax criterion). According to this criterion resource allocation is optimal if it 

provides the best result (word "result" means the weight sum of strategic objectives’ accomplishment 

levels, see formula (1.1)), under the assumption that actual values of uncertain coefficients will be the 

most favorable. So, its usage gives an opportunity to evaluate the maximum possible result of the 

strategy developed (considering that resource amounts are limited) and allocate resources so that this 

result can be realized under favorable conditions. If decision maker isn’t satisfied with it, then the 

strategy has to be revised (or resource amounts have to be increased). 

It is obvious that for finding the optimal maximax resource allocation, structural constraints (1.3) in 

the problem (1.1)–(1.4) must be replaced by the following constraints: 

௝ݔ ൑ max௞ೕאொೕ
ሺ∑ ݇௜௝

௡ೕ

௜ୀଵ ௘ೕሺ௜ሻݔ ൅ ݇൫௡ೕାଵ൯௝ሻ, ݆ ൌ 1, ݊തതതതത,    (3.1) 

ܳ௝ ൌ ሼ ௝݇| ∑ ݇௜௝
௡ೕ

ᇲ

௜ୀଵ ൌ 1, ݇௜௝ ൑ ݇௜௝ ൑ ݇௜௝, ݅ ൌ 1, ఫ݊
ᇱതതതതതതሽ.     (3.2) 

The right side of inequality (3.1) can be interpreted as an LPP with respect to variables 

݇ଵ௝, ݇ଶ௝, … , ݇௡ೕ
ᇲ௝ provided that the point ௝݇ ൌ ሺ݇ଵ௝, ݇ଶ௝, … , ݇௡ೕ

ᇲ௝ሻ belongs to the polygon ܳ௝. Using the 

property of the LPP that the optimal ௝݇ is one of the extreme points of ܳ௝, constraints (3.1),(3.2) can 
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be replaced by the following ones: 

௝ݔ ൑ ௝ߜ
௣ ቀ∑ ݇௜௝

௣כ௡ೕ

௜ୀଵ ௘ೕሺ௜ሻݔ ൅ ݇
൫௡ೕାଵ൯௝
௣כ െ 1ቁ ൅ 1, ݆ ൌ 1, ݊തതതതത, ݌ ൌ 1,  ఫതതതതതത,  (4.1)ݍ

௝ߜ
௣ א ሼ0,1ሽ, ݆ ൌ 1, ݊തതതതത, ݌ ൌ 1,  ఫതതതതതത,       (4.2)ݍ

∑ ௝ߜ
௣௤ೕ

௣ୀଵ ൒ 1, ݆ ൌ 1, ݊തതതതത,        (4.3) 

where ሼ݇௝
௣כሽ௣ୀଵ

௤ೕ ൌ ܳ௝
௝ݍ) is the set of extreme points of the polygon ܳ௝ כ ൌ หܳ௝ห). 

The solution of (1.1),(1.2),(4.1)–(4.3),(1.4) with respect to variables ݔ and ߜ and the corresponding 

resource allocation satisfy the principle of extreme optimism. 

Another criterion which allows eliminating uncertainty is based upon extreme pessimism principle 

(maximin or Wald criterion). According to it resource allocation is optimal if it provides the best result 

in the assumption that the actual values of uncertain parameters will be the least favorable. Usage of 

this criterion thereby gives an opportunity to understand what is the maximum guaranteed result of the 

strategy developed (considering that resource amounts are limited) and allocate resources so that this 

result will be achieved under any conditions. 

To find the optimal maximin resource allocation, structural constraints (1.3) in (1.1)–(1.4) must be 

replaced by constraints like (3.1),(3.2), with maximization being replaced by minimization. They, in 

turn, can be transformed to the following constraints: 

௝ݔ ൑ ∑ ݇௜௝
௣כ௡ೕ

௜ୀଵ ௘ೕሺ௜ሻݔ ൅ ݇
൫௡ೕାଵ൯௝
௣כ , ݆ ൌ 1, ݊തതതതത, ݌ ൌ 1,  ఫതതതതതത.    (5)ݍ

The solution of (1.1),(1.2),(5),(1.4) with respect to variable ݔ and the corresponding resource 

allocation satisfy the principle of extreme pessimism. 

In view of these considerations the following actions must be performed within the scope of Stage 2. 

Step 2.1. Construct ܳ௝
݆) which is the set of the extreme points of the polygon ܳ௝ כ ൌ 1, ݊തതതതത). Thereto: 

1. Construct the set of points ܳ௝
ᇱ : 

ܳ௝
ᇱ ൌ ൛ ௝݇

ᇱห݇௜௝
ᇱ א ൛݇௜௝, ݇௜௝ൟൟ. 

2. For each ݅ ൌ 1, ఫ݊
ᇱതതതതതത  construct the set of points ܳ௜௝

ᇱᇱ : 

ܳ௜௝
ᇱᇱ ൌ ൛ ௝݇

ᇱᇱห݇ሺ௣ୀ௜ሻ௝
ᇱᇱ ൌ 1 െ ∑ ݇௤௝

ᇱ
௤ୀଵ,௡ണ

ᇲ,തതതതതത௤ஷ௜ , ݇ሺ௣ஷ௜ሻ௝
ᇱ ൌ ݇௣௝

ᇱ , ௝݇
ᇱ א ܳ௝

ᇱ , ݌ ൌ 1, ఫ݊
ᇱതതതതതതሽ. 

3. Construct the required set of the extreme points of the polygon ܳ௝: 

ܳ௝
כ ൌ ܳ௝ ת ሺڂ ܳ௜௝

ᇱᇱሻ
௡ೕ

ᇲ

௜ୀଵ . 
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Step 2.2. Formulate the problem (6.1)–(6.8): 

ଷܫ ൌ ߙ ∑ ௝ݔ௝ሺݓ
ீ ൅ ௝ݔ

ைሻ ௡
௝ୀଵᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ

ூయ
ೀ

൅ ሺ1 െ ሻߙ ∑ ௝ݔ
௝ݓீ

௡
௝ୀଵᇣᇧᇧᇤᇧᇧᇥ

ூయ
ಸ

൅ ߝ ∑ ∑ ௝ߜ
௣௤ೕ

௣ୀଵ
௡
௝ୀଵ ՜ max௫ೀ,௫ಸ,ఋ,  (6.1) 

s.t. ∑ ௝ݔ௜௝ሺݎ
ீ ൅ ௝ݔ

ைሻ ൑ ܴ௜
௡
௝ୀଵ , ݅ ൌ 1,   തതതത,       (6.2)ݏ

௝ݔ
ீ ൑ ∑ ݇௜௝

௣כ௡ೕ

௜ୀଵ ௜ݔ
ீ ൅ ݇

൫௡ೕାଵ൯௝
௣כ , ݆ ൌ 1, ݊തതതതത, ݌ ൌ 1,  ఫതതതതതത,     (6.3)ݍ

௝ݔ
ீ ൅ ௝ݔ

ை ൑ ௝ߜ
௣ ቀ∑ ቀ݇௜௝

௣כ൫ݔ௜
ீ ൅ ௜ݔ

ை൯ቁ ൅
௡ೕ

௜ୀଵ ݇
൫௡ೕାଵ൯௝
௣כ െ 1ቁ ൅ 1, ݆ ൌ 1, ݊,തതതതത ݌ ൌ 1,  ఫതതതതതത,  (6.4)ݍ

௝ߜ
௣ א ሼ0,1ሽ, ݆ ൌ 1, ݊തതതതത, ݌ ൌ 1,  ఫ,തതതതതത        (6.5)ݍ

∑ ௝ߜ
௣௤ೕ

௣ୀଵ ൒ 1, ݆ ൌ 1, ݊തതതതത,         (6.6) 

0 ൑ ௝ݔ
ீ, ௝ݔ

ை, ݆ ൌ 1, ݊തതതതത,         (6.7) 

௝ݔ
ீ ൅ ௝ݔ

ை ൑ 1, ݆ ൌ 1, ݊തതതതത,         (6.8) 
where ߝ is a small constant (for example, ߝ ൌ׷ 0.0001). 

Step 2.3. Find the maximax result solving the problem (6.1)–(6.8) in which the parameter α is taken 

near to 1, but 1 െ ߙ ,for example) ߝ is much greater than ߙ ൌ׷ 0.99 if ߝ ൌ 0.0001) 1. Fix the obtained 

optimal values of sub-criteria ܫଷ
ை and ܫଷ

ீ  as a pair (ܫଷሺఈୀଵିሻ
ைכ , ଷሺఈୀଵିሻܫ

כீ ), where ܫଷሺఈୀଵିሻ
ைכ  is the maximax 

result, ܫଷሺఈୀଵିሻ
כீ  is a result which will be obtained at the worst actual values of the coefficients ሼ݇௜௝ሽ, if 

resources are allocated so as to provide the maximax result. 

Technique for solving the problem (6.1)–(6.8) is quite simple. Constraints (6.4) are converted to linear 

ones with the method proposed in (Glover, 1975): each product of binary and continuous variable ݔߜ 

 :is replaced by continuous variable z constrained with linear inequalities (is binary, x is continuous ߜ)

ߜܮ ൑ ݖ ൑  ,ߜܷ

ݔ െ ܷሺ1 െ ሻߜ ൑ ݖ ൑ ݔ െ ሺ1ܮ െ  ,ሻߜ

where L and U are the lower and upper bounds for x, respectively (in our case ܮ ൌ 0, ܷ ൌ 1). 

Derived mixed 0-1 LPP can be solved, for example, with the branch and bound method or some 

specialized algorithm (see, for example (Eckstein, Nediak, 2007), (Wilbaut, Hanafi, 2009)). 

Step 2.4. Find maximin result, solving the problem (6.1)–(6.8) in which the parameter ߙ is taken near 

to zero, but it is much greater than ߝ (for example, ߙ ൌ׷ 0.01 if ߝ ൌ 0.0001). Fix the obtained optimal 

values of sub-criteria ܫଷ
ை and ܫଷ

ீ  as a pair (ܫଷሺఈୀ଴ାሻ
ைכ , ଷሺఈୀ଴ାሻܫ

כீ ), where ܫଷሺఈୀ଴ାሻ
כீ  is maximin (maximum 

guaranteed) result, ܫଷሺఈୀ଴ାሻ
ைכ  is the result which will be obtained at the best actual values of the 

coefficients ሼ݇௜௝ሽ, if resources are allocated so as to provide the maximin result. 

 

                                                 
1 The above combination of parameters ensures that the resources will be distributed such that: in the first place, provide the 
maximax result, in the second place (if there are variety resource allocations which ensure the maximax result), provide the 
maximum guaranteed result, in the third place, ensure that the maximax result will be achived at the maximum number of 

combinations of points from the sets  n
1j

*
jQ


 . 
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Step 2.5. Find the set of compromise results in which there is a balance between maximum possible 

and guaranteed results. To do this, for each ݍ ൌ 1, ݀ െ 1തതതതതതതതതത, where d is the number of segments in 

partition of the interval [ܫଷሺఈୀ଴ାሻ
ைכ , ଷሺఈୀଵିሻܫ

ைכ ], formulate and solve the problem (6.1)–(6.8),(7.q) with 

ߙ ൌ׷ 0. Constraint (7.q) has the following form: 

∑ ሺݔ௝
ீ ൅ ௝ݔ

ைሻݓ௝
௡
௝ୀଵ ൒ ଷሺఈୀ଴ାሻܫ

ைכ ൅ ݍ
ூయሺഀసభషሻ

ೀכ ିூయሺഀసబశሻ
ೀכ

ௗ
,   (7.q) 

Similarly to Steps 2.3 and 2.4 fix the set of pairs ሺܫଷሺఈୀ଴ሻ
ைሺ௤ሻכ , ଷሺఈୀ଴ሻܫ

ீሺ௤ሻכ ሻ௤ୀଵ
ௗିଵ. 

Step 2.6. Plot the points (ܫଷሺఈୀ଴ାሻ
ைכ , ଷሺఈୀ଴ାሻܫ

כீ ), ሺܫଷሺఈୀ଴ሻ
ைሺ௤ሻכ , ଷሺఈୀ଴ሻܫ

ீሺ௤ሻכ ሻ௤ୀଵ
ௗିଵ, (ܫଷሺఈୀଵିሻ

ைכ , ଷሺఈୀଵିሻܫ
כீ ) on the plane, 

drawing a two-dimensional graph in axes "Best possible result"–"Guaranteed result". Select the points 

for which closed north-east corner is empty (Pareto set). Decision maker based on his/her own 

preferences (willingness to sacrifice guaranteed result for better results at the favorable values of the 

coefficients) has to select some Pareto-optimal point. The optimal resource allocation is calculated 

with the formula  ݎ௜௝൫ݔ௝
כீ ൅ ௝ݔ

ைכ൯ (݆ ൌ 1, ݊തതതതത), where ݔ௝
௝ݔ and כீ

ைכ are solutions corresponding to the 

point selected. 

 

4. NUMERICAL EXAMPLE 
 

To demonstrate the application of the method proposed we will use the cause-effect relationships 

graph suggested in (Hell, 2008) (see Fig. 2). M. Hell optimized an allocation of resources of three 

types considering that ݇௜௝ ൌ 1/ห ௝ܰห (݆ ൌ 1, ݊തതതതത).  

Suppose that the system is closed and there is no information about values of the cause-effect 

relationship coefficients (it’s known only that if ห ௝ܰห ൐ 1 then ݇௜௝ א ሾ0, 1ሿ, ݆ ൌ 1, ݊തതതതത,) 14F2. What is the 

optimal resource allocation in this case? With the method proposed we calculated ten Pareto-optimal 

points (see Fig. 3)15F3 

 

                                                 
2Of course, during the real examination, it is unlikely that the aggregated expert opinions would be the intervals [0, 1]. This 
would increase the maximin result, but reduce the maximax one. 
3All calculations were performed with the C#-program developed in Microsoft Visual Studio 2010. To solve mixed 0-1 LPP 
open-source library lpsolve was employed. 
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X1=98%
Xopt=100%
Xgar=89%

X2=100%
Xopt=100%
Xgar=100%

X3=96%
Xopt=100%
Xgar=89%

k=0.5, kopt=0

X4=90%
Xopt=100%
Xgar=89%

X6=100%
Xopt=100%
Xgar=100%

X8=98%
Xopt=100%
Xgar=89%

k=0.333, kopt=0

X5=90%
Xopt=100%
Xgar=89%

k=1

X7=90%
Xopt=100%
Xgar=89%

X9=97%
Xopt=100%
Xgar=89%

k=0.5,
kopt=1

X10=83%
Xopt=89%
Xgar=89%

k=0.5,
kopt=0

X11=96%
Xopt=100%
Xgar=89%

X12=98%
Xopt=100%
Xgar=89%

X13=96%
Xopt=100%
Xgar=89%

X14=100%
Xopt=100%
Xgar=100%

X17=100%
Xopt=100%
Xgar=89%

X18=100%
Xopt=89%
Xgar=89%

X21=100%
Xopt=100%
Xgar=100%

k=0.5,
kopt=1

k=0.333, kopt=1

k=1

k=0.333, kopt=0
k=0.333, kopt=1

k=0.5,
kopt=0

k=0.5,
kopt=1

X15=96%
Xopt=100%
Xgar=89%

1

k=0.5,
kopt=0

k=0.333,
kopt=0

X16=100%
Xopt=89%
Xgar=89%

k=0.25,
kopt=1

X19=100%
Xopt=100%
Xgar=100%

X20=100%
Xopt=100%
Xgar=100%

k=0.5,
kopt=1

k=0.25,
kopt=0

k=0.25,
kopt=0

k=0.5,
kopt=1

k=0.5,
kopt=1

k=0.5,
kopt=0

k=1
X22=100%
Xopt=100%
Xgar=100%

k=1

X23=83%
Xopt=89%
Xgar=89%

1

k=0.25,
kopt=0

k=0.5, kopt=1

k=0.5,
kopt=1

k=0.5,
kopt=0

k=0.5,
kopt=0

k=0.5,
kopt=0

k=0.333,
kopt=0

Resource amounts:

R1=15180,
R2=2300,
R3=180000

IH*=0.25*(x1+x4+x6+x8)=96.5%

r1(20)=30
r3(20)=12000

r2(18)=920
r3(18)=64000

r2(10)=920

r1(16)=10250 r1(17)=2050

r3(23)=125000

Optimal result:

Results obtained in (Hell, 2008):

Xi – optimal level of the i‐th 
objective accomplishment;
k – weight coefficients’ values 
used;

Results obtained with the 
method proposed:

I*O=100%

I*G=91,7%

Optimistic result:

Xgar – guaranteed  level of an 
objective accomplishment;

Xopt – optimistic level of an 
objective accomplishment;

kopt – weight coefficient’s value 
corresponding to some 
optimistic scenario;

Guaranteed result:

Result in the case kij=1/|Nj|:
I*=96,4%

IHG*=87.3%
Optimistic result:
IHO*=100%

Guaranteed result:

 
 

Figure 2: The cause-effect relationships graph (adapted from (Hell, 2008)) 

 

The graph shows that at the most favorable values of the coefficients ሼ݇௜௝ሽ result can reach 100% and 

if resources are allocated so as to provide this result, guaranteed result will be equal to 91,7% (point 

"A"). 
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Figure 3: Pareto-optimal points 

 

The graph shows that at the most favorable values of the coefficients ሼ݇௜௝ሽ result can reach 100% and 

if resources are allocated so as to provide this result, guaranteed result will be equal to 91,7% (point 

"A"). On the other hand, resources can be allocated so as to ensure guaranteed result which is equal to 

92,2%, however, at the most favorable values of the relationship coefficients, the result will be only 

97,4% (point “B”). 

Thus the strategy proposed in (Hell, 2008) is balanced so good that  

1) if resources are allocated according to some of the found points then the result will be more 

than 91,7% at any permissible values of the cause-effect relationship coefficients; 

2) if resources are allocated in such a way to give maximum guaranteed result then the result will 

differ from the potential one if resources are allocated under full awareness (all coefficients 

are defined precisely) not more then by 7,8% = 100% – 92,2% (in fact, it’s very crude 

estimation). 

Losing 0.5% of guaranteed result in point “A” versus “B” we can win 2,6% under the most favorable 

circumstances, so we take point “A” as the optimal point (respective objectives’ achievement levels, 

resource allocation and the values of the cause-effect relationship coefficients under some optimistic 

scenario are shown in Fig. 2). It’s interesting that the resource allocation calculated in (Hell, 2008) 

will give the guaranteed result is equal to 87,3% (less than our guaranteed result by 4,4%)  and best 

possible is equal to 100% (equal to our best possible result), whereas our allocation will give the result 

which is equal to 96,4% under the assumption that ݇௜௝ ൌ 1/ห ௝ܰห (less than the result of M. Hell only 

by 0,1%). 
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5. CONCLUSIONS AND FURTHER RESEARCH 

This paper proposes the method to obtain values of the coefficients of cause-effect 

relationships between strategic objectives in the form of intervals and uses them in solving the 

problem of the optimal allocation of organization’s resources. It should be noted that variation 

intervals can be obtained for the other parameters of QMSP (amounts of available resources 

ሼܴ௝ሽ and technological coefficients ሼݎ௜௝ሽ) and used in planning of strategy’s implementation. 

Further research, in our opinion, should be associated with employing 1) Savage criterion 

which is based upon loss profit minimization principle; 2) stochastic programming methods 

that allow finding such resource allocation that maximizes the probability of the event  

A={result will be more than the fixed threshold ܫ א ଷሺఈୀ଴ାሻܫൣ
כீ , ଷሺఈୀଵିሻܫ

ைכ ൧}. 
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