A note on the root subspaces of real semisimple Lie algebras

Hrvoje Kraljević*

Abstract. In this note we prove that for any two restricted roots α , β of a real semisimple Lie algebra \mathfrak{g} , such that $\alpha + \beta \neq 0$, the corresponding root subspaces satisfy $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$.

Key words: real semisimple Lie algebra, root systems, reduced roots, root subspaces

AMS subject classifications: 17B20

Received February 26, 2004

Accepted March 31, 2004

Let \mathfrak{g} be a real semisimple Lie algebra, \mathfrak{a} a Cartan subspace of \mathfrak{g} and R the (restricted) root system of the pair $(\mathfrak{g},\mathfrak{a})$ in the dual space \mathfrak{a}^* of \mathfrak{a} . For $\alpha \in R$ denote by \mathfrak{g}_{α} the corresponding root subspace of \mathfrak{g} :

$$\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g}; [h, x] = \alpha(h)x \ \forall h \in \mathfrak{g}\}.$$

The aim of this note is to prove the following theorem:

Theorem. Let $\alpha, \beta \in R$ be such that $\alpha + \beta \neq 0$. Then either $[x, \mathfrak{g}_{\alpha}] = \mathfrak{g}_{\alpha+\beta}$ $\forall x \in \mathfrak{g}_{\beta} \setminus \{0\}$ or $[x, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta} \ \forall x \in \mathfrak{g}_{\alpha} \setminus \{0\}$.

Although the proof is very simple and elementary, the assertion does not seem to appear anywhere in the literature. The argument for the proof is from [2], where it is used to prove $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\alpha}]=\mathfrak{g}_{2\alpha}$ (a fact which is also proved in [3], 8.10.12), as well as that the nilpotent constituent in an Iwasawa decomposition is generated by the root subspaces corresponding to simple roots.

Let B be the Killing form of \mathfrak{g} :

$$B(x, y) = \operatorname{tr} (\operatorname{ad} x \operatorname{ad} y), \qquad x, y \in \mathfrak{g}.$$

Choose a Cartan involution ϑ of \mathfrak{g} in accordance with \mathfrak{a} , i.e. such that $\vartheta(h) = -h$, $\forall h \in \mathfrak{a}$. Denote by $(\cdot|\cdot)$ the inner product on \mathfrak{g} defined by

$$(x|y) = -B(x, \vartheta(y)), \qquad x, y \in \mathfrak{g}.$$

^{*}Department of Mathematics, University of Zagreb, Bijenička 30, HR-10 000 Zagreb, Croatia, e-mail: hrk@math.hr

We shall use the same notation $(\cdot|\cdot)$ for the induced inner product on the dual space \mathfrak{a}^* of \mathfrak{a} . Let $\|\cdot\|$ denote the corresponding norms on \mathfrak{g} and on \mathfrak{a}^* . For $\alpha \in R$ let h_{α} be the unique element of \mathfrak{a} such that

$$B(h, h_{\alpha}) = \alpha(h) \quad \forall h \in \mathfrak{a}.$$

Lemma. Let $\alpha, \beta \in R$ be such that $(\alpha | \alpha + \beta) > 0$. Then

$$[x, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta} \qquad \forall x \in \mathfrak{g}_{\alpha} \setminus \{0\}.$$

Proof. Take $x \in \mathfrak{g}_{\alpha}, x \neq 0$. We can suppose that $||x||^2 ||\alpha||^2 = 2$. Put

$$h = \frac{2}{\|\alpha\|^2} h_{\alpha}$$
 and $y = -\vartheta(x)$.

Then

$$[h, x] = 2x, \quad [h, y] = -2y, \quad [x, y] = h$$

([3], 8.10.12). Therefore, the subspace $\mathfrak s$ of $\mathfrak g$ spanned by $\{x,y,h\}$ is a simple Lie algebra isomorphic to $\mathfrak s\mathfrak l(2,\mathbb R)$. From the representation theory of $\mathfrak s\mathfrak l(2,\mathbb R)$ ([1],1.8) we know that if π is any representation of $\mathfrak s$ on a real finite dimensional vector space V, then $\pi(h)$ is diagonalizable, all eigenvalues of the operator $\pi(h)$ are integers, and if for $n \in \mathbb Z$ V_n denotes the n-eigenspace of $\pi(h)$, then

$$n \ge -1 \qquad \Longrightarrow \qquad \pi(x)V_n = V_{n+2}.$$

Put

$$V = \sum_{j \in \mathbb{Z}} \mathfrak{g}_{\beta + j\alpha}.$$

Then V is an $\mathfrak s-$ module for the adjoint action and

$$\mathfrak{g}_{\beta+j\alpha} = V_{n+2j}$$
 where $n = 2\frac{(\beta|\alpha)}{\|\alpha\|^2} \in \mathbb{Z}$.

Especially,

$$V_n = \mathfrak{g}_{\beta}, \qquad V_{n+2} = \mathfrak{g}_{\alpha+\beta}.$$

Now

$$n+2=2\frac{(\alpha|\alpha+\beta)}{\|\alpha\|^2}>0 \implies n\geq -1 \implies (\operatorname{ad} x)V_n=V_{n+2}.$$

Proof of Theorem. It is enough to notice that if $\alpha + \beta \neq 0$ then

$$0 < (\alpha + \beta | \alpha + \beta) = (\alpha | \alpha + \beta) + (\beta | \alpha + \beta),$$

hence, either $(\alpha | \alpha + \beta) > 0$ or $(\beta | \alpha + \beta) > 0$.

Let m_{α} denote the multiplicity of $\alpha \in R$ ($m_{\alpha} = \dim \mathfrak{g}_{\alpha}$). An immediate consequence of the Theorem is:

Corollary. If $\alpha, \beta \in R$, $\alpha + \beta \neq 0$, then $m_{\alpha+\beta} \leq \max(m_{\alpha}, m_{\beta})$.

References

- [1] J. Dixmier, Algebres enveloppantes, Gauthier-Villars, Paris, 1974.
- [2] J. LEPOWSKY, Conical vectors in induced modules, Trans. Amer. Math. Soc. **208**(1975), 219-272.
- [3] N. Wallach, *Harmonic Analysis on Homogeneous Spaces*, Marcel Dekker, New York, 1973.