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Quartics in E3 which have a triple point and touch

the plane at infinity through the absolute conic

Sonja Gorjanc∗

Abstract. This paper gives the classification of the 4th order
surfaces in E3 which have a triple point and touch the plane at infinity at
the absolute conic. The classification is made according to the type of the
tangent cubic cone at a triple point. Three types with sixteen subtypes are
obtained. For these surfaces the homogeneous and parametric equations
are derived and each type is illustrated with Mathematica graphics.
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1. Introduction

In the real three-dimensional projective space P 3(R), in homogeneous Cartesian
coordinates (x : y : z : w) �= (0 : 0 : 0 : 0), (x, y, z ∈ R, w ∈ {0, 1}), equation

Fn(x, y, z, w) = 0, (1)

where Fn is a homogeneous algebraic polynomial of degree n, defines a two-dimen-
sional extent of points Φn, which is called an nth order surface.

According to [8, p. 268], we can also use the following notation

un + un−1w + ... + un−iw
i + ... + u1w

n−1 + u0w
n = 0, (2)

where uj, j ∈ {0, 1, ..., n} are homogeneous polynomials in x, y and z of degree j.
Some properties of surfaces Φn, according to [8], [9], [13], [5], are the following:

• Any straight line meets surface Φn at n points or lies entirely on the surface.
Any plane cuts surface Φn into the nth order plane curve.

• If the polynomial Fn can be factorized

Fn(x, y, z, w) = Fn1(x, y, z, w) · ... · Fnk
(x, y, z, w), n1 + ... + nk = n, (3)

surface Φn splits into the surfaces Φn1 ,...,Φnk
.
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• Every homogeneous equation in x, y and z:

Fn(x, y, z) = 0 or un = 0, (4)

represents the nth order cone whose vertex is the origin (0 : 0 : 0 : 1)

• Point T = (xT : yT : zT : wT ) which satisfies conditions

Fn(xT , yT , zT , wT ) = 0,

∂Fn

∂x
(T ) �= 0 ∨ ∂Fn

∂y
(T ) �= 0 ∨ ∂Fn

∂z
(T ) �= 0 ∨ ∂Fn

∂w
(T ) �= 0, (5)

is called the regular point of surface Φn. All tangent lines to a surface at its
regular point form a pencil of lines (T ) in the tangent plane which is given by
the following equation:

(x−xT )
∂Fn

∂x
(T )+ (y− yT )

∂Fn

∂y
(T )+ (z− zT )

∂Fn

∂z
(T )+ (w−wT )

∂Fn

∂w
(T ) = 0. (6)

If the origin O = (0 : 0 : 0 : 1) is the regular point of surface Φn, then

un + .... + u1w
n−1 = 0 (7)

is its equation, and
u1 = 0 (8)

is the equation of the tangent plane of surface Φn at the origin O.

• Point S = (xS : yS : zS : wS) which satisfies conditions

Fn(xS , yS, zS , wS) = 0,

∂Fn

∂x
(S) =

∂Fn

∂y
(S) =

∂Fn

∂z
(S) =

∂Fn

∂w
(S) = 0, (9)

is called the singular point of surface Φn. All tangent lines to a surface at
its singular point form an algebraic cone (called the tangent cone) with the
vertex S. If k(1 < k < n) is the order of a tangent cone, a singular point S is
the k-ple point of surface Φn.

If the origin O = (0 : 0 : 0 : 1) is the k-ple point of surface Φn, then

un + ... + ukwn−k = 0 (10)

is its equation, and
uk = 0 (11)

is the equation of a tangent cone at a singular point O.
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2. Quartics with a triple point

In this paper we use the term “quartic” for the 4th order algebraic surfaces. Quartics
with singular lines can be classified ([9, pp. 200-252], [6, pp. 1537-1787]) in the
following way:

- quartics with a triple straight line (the class contains only ruled quartics);

- quartics with a double twisted cubic (the class contains only ruled quartics);

- quartics with a double conic section (the class contains cyclides);

- quartics with a double conic section and a double line (the class contains only
ruled quartics);

- quartics with three double lines (the class contains ruled and Steiner’s quar-
tics);

- quartics with two double straight lines (the class contains only ruled quartics);

- quartics with one double straight line (the class contains ruled quartics and
the surfaces considered in [2] and [3]).

In addition to quartics with singular lines, there are quartics with isolated sin-
gularities [9, pp. 238-251]:

- quartics with one triple point;

- quartics with double points (at most sixteen double points - conical points,
binodes or unodes).

Quartics with a triple point are studied in detail by Rohn [7]. If the origin
O = (0 : 0 : 0 : 1) is the triple point of quartic Φ4, it is defined by the following
equation:

u4 + wu3 = 0, (12)

where u4, u3 are homogeneous polynomials in x, y and z with degrees 4 and 3,
respectively. u3 = 0 is the equation of the tangent cone at the triple point O and
u4 = 0, w = 0 are equations of the curve at infinity.

Some properties of these surfaces according to [7] are:

• There is only one triple point on surface Φ4. (Quartics with two triple points
must possess a singular line, which joins triple points.)

• There are 12 straight lines (g1, g2, ...., g12) through the triple point, which
entirely lie on surface Φ4. They are the intersection of the cones which are
given by equations u4 = 0 and u3 =. Some of those lines can coincide or be
imaginary in pairs.

• There are 66 =
(
12
2

)
planes (determined by the pairs of lines gi) which cut

surface Φ4 into the conics through the triple point.
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• There are 792 =
(
12
5

)
2-order cones (each cone is determined by five lines

gi) which cut surface Φ4 into the cubics through the triple point.

• In addition to the triple point, surface Φ4 can possess at most 6 real double
points. Those points lie on coinciding lines gi. Double points can be of type
C2 (conical points) or Bk (binodes), where k is the number of coinciding lines
gi. The points of type U (unodes) exist only in the case when coinciding lines
gi are the singular generator of the tangent cone (u3 = 0) at the triple point.

3. Classification of cubic cones

According to the Newton’s classification of plane cubics [10, pp. 162-179], [11,
pp. 51-61], there are five types of divergent parabolas, which in Cartesian coordinates
(x, y), (x, y ∈ R), can be represented by the equation

y2 = ax3 + bx2 + cx + d. (13)

The classification of those parabolas corresponds to the roots of the following
equation:

ax3 + bx2 + cx + d = 0. (14)

1. If equation (14) has three real and different roots, then a curve has an oval
and a parabolic branch (Figure 1.1).

2. If equation (14) has one real and two imaginary roots, then a curve has a
parabolic branch (Figure 1.2).

3. If equation (14) has two equal real roots which are greater than another real
root, then a curve has a self-intersecting parabolic branch (crunodal cubic)
(Figure 1.3).

4. If equation (14) has two equal real roots which are less than another real root,
then a curve has a parabolic branch and an isolated singular point (acnodal
cubic) (Figure 1.4).

5. If equation (14) has three equal real roots, then a curve has a parabolic branch
with a cusp (cuspidal cubic) (Figure 1.5).

1. 2. 3. 4. 5.

Figure 1.
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According to the Newton’s theorem [10, p. 163], every cubic may be projected
into one of the five divergent parabolas. Therefore, every cubic cone can be regarded
as the system of lines which join its vertex with points of a divergent parabola and
its equation may be brought to the following form:

zy2 = ax3 + bx2z + cxz2 + dz3. (15)

Now we have the following classification of cubic cones given by equation (15):

1. If equation (14) has three real and different roots, then a cone has a twin-pair
sheet and a single sheet (Figure 2.1).

2. If equation (14) has one real and two imaginary roots, then a cone has a single
sheet only (Figure 2.2)

3. If equation (14) has two equal real roots which are greater than another real
root, then a cone has a crunodal singular generator - a crunodal cubic cone
(Figure 2.3).

4. If equation (14) has two equal real roots which are less than another real
root, then a cone has an acnodal singular generator - an acnodal cubic cone
(Figure 2.4).

5. If equation (14) has three equal real roots, then a cone has a cuspidal singular
generator - a cuspidal cubic cone (Figure 2.5).

Figure 2.

4. Quartics in E3 which have a triple point and touch the
plane at infinity through the absolute conic

In real projective space P 3(R) the Euclidean metric defines the absolute conic in
the plane at infinity and it is given by the formulas: x2 + y2 + z2 = 0, w = 0.

Theorem 1. In the 3-dimensional Euclidean space the following equation

F (x, y, z, w) = (x2 + y2 + z2)2 + wu3 = 0, (16)

where u3 �= (x2+y2+z2)u1, and u3, u1 are homogeneous polynomials in x, y and z
of degree 3 and 1 respectively, defines a quartic which has a triple point and touches
the plane at infinity through the absolute conic.

Proof. Since u3 �= (x2 + y2 + z2)u1, the polynomial F (x, y, z, w) is irreducible
over the field R, then surface Φ4 (defined by equation (16)) is a proper quartic. (If
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u3 = (x2 + y2 + z2)u1, a quartic splits into the isotropic cone and a sphere through
the origin.)

According to equations (10) and (11), equation (16) defines a quartic with a
triple point at the origin and the equation u3 = 0 defines a tangent cone at a triple
point.

In the plane at infinity quartic Φ4 has the absolute conic ((x2 + y2 + z2)2 =
0, w = 0) counted twice. It is not a singular line, since for the points of the
absolute conic it holds that ∂F

∂x = ∂F
∂y = ∂F

∂z = 0, ∂F
∂w = u3 �= 0, because we assume

u3 �= (x2 + y2 + z2)u1. Therefore, according to equation (6), the tangent plane at
points on the absolute conic is defined by the equation w = 0. ✷

About straight lines and double points on surfaces Φ4

On surface Φ4 there are 3 pairs of coinciding isotropic lines which lie in 3 planes.
They are the intersection of the isotropic cone and the 3-degree tangent cone with
vertex O (x2 + y2 + z2 = 0, u3 = 0). Since double points always lie on coinciding
lines, we can conclude that there are no real double points on the surfaces given by
equation (16).

4.1. Classification of surfaces Φ4

According to the type of the tangent cone T3 (u3 = 0) at the triple point, surfaces
given by equation (16) are classified in the following way:

Type I T is a proper 3-order cone.

I1 T has a twin-pair sheet and a single sheet (Figure 3).

I2 T has a single sheet only (Figure 4).

I3 T is a crunodal cubic cone (Figure 5).

I4 T is an acnodal cubic cone (Figure 6).

I5 T a cuspidal cubic cone (Figure 7).

Type II T splits into a 2-order cone C and a real plane P .

II1 C is a real cone and P cuts it into two real and different lines (Figure 8).

II2 C is a real cone and P is its tangent plane (Figure 9).

II3 C is a real cone and P cuts it into a pair of imaginary lines (Figure 10).

II4 C is an imaginary cone (Figure 11).

Type III T splits into three planes P1, P2 and P3.

III1 P1, P2 and P3 are real and different planes with one common point
(Figure 12).

III2 P1 is real and P2, P3 are a pair of imaginary planes and they have one
common point (Figure 13).

III3 P1, P2 and P3 are real and diferent planes with one common line (Fig-
ure 14).
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III4 P1 is real and P2, P3 are a pair of imaginary planes and they have one
common line (Figure 15).

III5 Two of the planes P1, P2, P3 coincide (Figure 16).
III6 The planes P1, P2, P3 coincide (Figure 17).

4.2. Parametric equations of surfaces Φ4

For w = 1 equation (16) takes the following form:

u4 + u3 = 0. (17)

If we write u3 = T3(x, y, z) and use spherical coordinates (ρ, u, v):

x = ρ cosu sin v, y = ρ sinu sin v, z = ρ cos v,

equation (17) takes the form ρ3(ρ + T3(cosu sin v, sinu sin v, cos v)).
For every point on surface Φ4, which is not its triple point O (ρ = 0), the

following relation holds:

ρ = −T3(cosu sin v, sinu sin v, cos v). (18)

Therefore, the parametric equations of surface Φ4 are:

x(u, v) = −T3(cosu sin v, sinu sin v, cos v) cosu sin v

y(u, v) = −T3(cosu sin v, sinu sin v, cos v) sinu sin v (19)
z(u, v) = −T3(cosu sin v, sinu sin v, cos v) cos v, u, v ∈ [0, π]× [0, π].

In a general case ten real numbers define the tangent cone (T3(x, y, z) = 0) at
triple point O(0 : 0 : 0 : 1).

T3(x, y, z) = a1x
3 + a2x

2y + a3x
2z + a4xy2 + a5xz2 + a6xyz + a7y

3

+a8y
2z + a9yz2 + a10z

3, ai ∈ R, ∃ai �= 0. (20)

4.3. Drawing of surfaces Φ4 with Mathematica

The following Mathematica graphics have been created by using formula (20) and
parametric equations (19).

Figure 3. An example of the type I1 (x2 + y2 + z2)2 + (−x3 + 3xz2 − y2z)w = 0
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Figure 4. An example of the type I2 (x2 + y2 + z2)2 + (x3 − 3y2z + z3)w = 0

Figure 5. An example of the type I3 (x2 + y2 + z2)2 + (x3 + 4x2z − 2y2z)w = 0.

Figure 6. An example of the type I4 (x2 + y2 + z2)2 + (x3 − 5x2z − 5y2z)w = 0

Figure 7. An example of the type I5 (x2 + y2 + z2)2 + (x3 − y2z)w = 0
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Figure 8. An example of the type II1 (x2 + y2 + z2)2 + x(x2 + y2 − 2z2)w = 0

Figure 9. An example of the type II2 (x2 + y2 + z2)2 + (x − z)(x2 + y2 − z2)w = 0

Figure 10. An example of the type II3 (x2 + y2 + z2)2 − z(x2 + y2 − z2)w = 0

Figure 11. An example of the type II4 (x2 + y2 + z2)2 − z(3x2 + 3y2 + z2)w = 0
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Figure 12. An example of the type III1 (x2 + y2 + z2)2 + xyzw = 0

Figure 13. An example of the type III2 (x2 + y2 + z2)2 − z(x2 + y2)w = 0

Figure 14. An example of the type III3 (x2 + y2 + z2)2 + x(x2 − 3y2)w = 0

Figure 15. An example of the type III4 (x2 + y2 + z2)2 − z(3y2 + z2)w = 0



Quartics in E3 77

Figure 16. An example of the type III5 (x2 + y2 + z2)2 − y2zw = 0

Figure 17. An example of the type III6 (x2 + y2 + z2)2 − z3w = 0
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