Circles in barycentric coordinates

Vladimir Volenec*

Abstract

Let $A B C$ be a fundamental triangle with the area \triangle. For a circle \mathcal{K} the powers of vertices A, B, C with regard to \mathcal{K} divided by $2 \triangle$ are said to be the barycentric coordinates of \mathcal{K} with respect to triangle $A B C$. This paper gives some theory and applications of these coordinates.

Key words: barycentric coordinates, circle
AMS subject classifications: 51N20
Received February 6, 2004
Accepted April 20, 2004
In [4] the most important facts about metrical relations in barycentric coordinates are proven. Some of these facts are necessary in the present paper and we enumerate them.

Let $A B C$ be the fundamental triangle with sidelengths $a=|B C|, b=|C A|$, $c=|A B|$, measures A, B, C of the opposite angles and with area \triangle. Every (finite) point has the absolute barycentric coordinates x, y, z for which the equality $x+y+z=1$ holds and we write $P=(x, y, z)$. For any $k \in \mathbb{R} \backslash\{0\}$ numbers $x^{\prime}=k x$, $y^{\prime}=k y, z^{\prime}=k z$ are the relative barycentric coordinates of point P and we write $P=\left(x^{\prime}: y^{\prime}: z^{\prime}\right)$.

Fact 1 ([1, Cor.3]). Two points $P_{i}=\left(x_{i}, y_{i}, z_{i}\right)(i=1,2)$ have the distance $\left|P_{1} P_{2}\right|$ given by

$$
\left|P_{1} P_{2}\right|^{2}=2 \triangle\left[\alpha\left(x_{1}-x_{2}\right)^{2}+\beta\left(y_{1}-y_{2}\right)^{2}+\gamma\left(z_{1}-z_{2}\right)^{2}\right]
$$

where $\alpha=\cot A, \beta=\cot B, \gamma=\cot C$.
Fact 2 ([1, Cor.4]). For any point $P=(x, y, z)$ we have the equalities

$$
\begin{aligned}
& |A P|^{2}=2 \triangle\left[\alpha(1-x)^{2}+\beta y^{2}+\gamma z^{2}\right] \\
& |B P|^{2}=2 \triangle\left[\alpha x^{2}+\beta(1-y)^{2}+\gamma z^{2}\right] \\
& |C P|^{2}=2 \triangle\left[\alpha x^{2}+\beta y^{2}+\gamma(1-z)^{2}\right] .
\end{aligned}
$$

[^0]Fact 3 ([1, Th.2]). For the point $P=(x, y, z)$ and any point S we have

$$
|S P|^{2}=x \cdot|S A|^{2}+y \cdot|S B|^{2}+z \cdot|S C|^{2}-a^{2} y z-b^{2} z x-c^{2} x y
$$

Fact $4([1$, Cor.6]). For any point $P=(x, y, z)$ and the circumcircle (O, R) of triangle $A B C$ we have the equality $|O P|^{2}=R^{2}-2 \triangle \Pi$, where $2 \triangle \Pi=a^{2} y z+$ $b^{2} z x+c^{2} x y$.

Fact 5 ([1, Th.4]). Let points $P_{i}=\left(x_{i}: y_{i}: z_{i}\right)(i=1,2)$ have the sums $s_{i}=x_{i}+y_{i}+z_{i}$ of coordinates. If the point $P=(x: y: z)$ satisfies the equality $P=\mu P_{1}+\nu P_{2}$, then these three points have the ratio

$$
\frac{P_{1} P}{P_{2} P}=\left(P_{1} P_{2} P\right)=-\frac{\nu}{\mu} \cdot \frac{s_{2}}{s_{1}}
$$

Any straight line \mathcal{P} has the barycentric coordinates X, Y, Z determined up to proportionality and we write $\mathcal{P}=(X: Y: Z)$. The point $(x: y: z)$ lies on the line $(X: Y: Z)$ iff $x X+y Y+z Z=0$. The line at infinity is the line $\mathcal{N}=(1: 1: 1)$ and every point at infinity is of the form $(x: y: z)$, where $x+y+z=0$. The line $(X: Y: Z)$ has the point at infinity $((Y-Z):(Z-X):(X-Y))$. The line through two points $P_{i}=\left(x_{i}, y_{i}, z_{i}\right)(i=1,2)$ has the point at infinity $\left(\left(x_{1}-x_{2}\right)\right.$: $\left.\left(y_{1}-y_{2}\right):\left(z_{1}-z_{2}\right)\right)$.

Fact 6 ([1, Cor.16]). Two lines with the points at infinity $\left(x_{i}: y_{i}: z_{i}\right)(i=1,2)$ are orthogonal iff $\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}=0$.

Fact 7 ([1], formulas (21) and (8)). If $\alpha=\cot A, \beta=\cot B, \gamma=\cot C$, then

$$
\beta \gamma+\gamma \alpha+\alpha \beta=1
$$

and

$$
a^{2}=2 \triangle(\beta+\gamma), \quad b^{2}=2 \triangle(\gamma+\alpha), \quad c^{2}=2 \triangle(\alpha+\beta)
$$

Fact 8 ([1, Th.7]). The fundamental triangle $A B C$ has the orthocenter $H=$ $(\beta \gamma, \gamma \alpha, \alpha \beta)$.

Fact 9 ([1, Th. 8$])$. The oriented angle ϑ of oriented lines $\mathcal{P}_{i}=\left(X_{i}: Y_{i}: Z_{i}\right)$ $(i=1,2)$ is given by

$$
\cot \vartheta=\frac{1}{k}\left(\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}\right)
$$

where $x_{i}=Y_{i}-Z_{i}, y_{i}=Z_{i}-X_{i}, z_{i}=X_{i}-Y_{i}(i=1,2)$ and

$$
k=\left|\begin{array}{ccc}
1 & 1 & 1 \\
X_{1} & Y_{1} & Z_{1} \\
X_{2} & Y_{2} & Z_{2}
\end{array}\right|
$$

Using Fact 1 for the distance of two points $S=\left(x_{o}, y_{o}, z_{o}\right)$ and $P=(x, y, z)$ we obtain the equation of the circle \mathcal{K} with the center S and the radius ϱ in the form

$$
\begin{equation*}
\alpha\left(x-x_{o}\right)^{2}+\beta\left(y-y_{o}\right)^{2}+\gamma\left(z-z_{o}\right)^{2}-\frac{\varrho^{2}}{2 \triangle}=0 \tag{1}
\end{equation*}
$$

If $P=(x, y, z)$ is any point, then $p_{P, \mathcal{K}}=|S P|^{2}-\varrho^{2}$ is the power of point P with respect to the circle \mathcal{K}. Numbers

$$
\begin{equation*}
\lambda=\frac{1}{2 \triangle} p_{A, \mathcal{K}}, \quad \mu=\frac{1}{2 \triangle} p_{B, \mathcal{K}}, \quad \nu=\frac{1}{2 \triangle} p_{C, \mathcal{K}} \tag{2}
\end{equation*}
$$

are said to be the barycentric coordinates of the circle \mathcal{K} with respect to the fundamental triangle $A B C$. According to Facts 3 and 7 and the equalities $x+y+z=1$ and (2) we obtain

$$
\begin{equation*}
p_{P, \mathcal{K}}=|S P|^{2}-\varrho^{2} \tag{3}
\end{equation*}
$$

$$
=x\left(|S A|^{2}-\varrho^{2}\right)+y\left(|S B|^{2}-\varrho^{2}\right)+z\left(|S C|^{2}-\varrho^{2}\right)-a^{2} y z-b^{2} z x-c^{2} x y
$$

$$
=x \cdot 2 \triangle \lambda+y \cdot 2 \triangle \mu+z \cdot 2 \triangle \nu-2 \triangle(\beta+\gamma) y z-2 \triangle(\gamma+\alpha) z x-2 \triangle(\alpha+\beta) x y
$$

$$
=2 \triangle[(\lambda x+\mu y+\nu z)(x+y+z)-(\gamma+\alpha) y z-(\alpha+\beta) z x-(\alpha+\beta) x y]
$$

The point P lies on the circle \mathcal{K} iff $p_{P, \mathcal{K}}=0$. Therefore the following theorem holds.

Theorem 1. The circle with the barycentric coordinates λ, μ, ν has the equation

$$
\begin{equation*}
(\lambda x+\mu y+\nu z)(x+y+z)-(\beta+\gamma) y z-(\gamma+\alpha) z x-(\alpha+\beta) x y=0 \tag{4}
\end{equation*}
$$

and the point $P=(x, y, z)$ has the power $p_{P, \mathcal{K}}$ with respect to this circle given by

$$
\begin{equation*}
\frac{1}{2 \triangle} p_{P, \mathcal{K}}=\lambda x+\mu y+\nu z-(\beta+\gamma) y z-(\gamma+\alpha) z x-(\alpha+\beta) x y \tag{5}
\end{equation*}
$$

i.e. $p_{P, \mathcal{K}}=2 \triangle(\lambda x+\mu y+\nu z)-a^{2} y z-b^{2} z x-c^{2} x y$.

Because of Theorem 1 it follows that any circle \mathcal{K} is uniquely determined by its barycentric coordinates λ, μ, ν and we write $\mathcal{K}=(\lambda, \mu, \nu)$.

The equation of the circle \mathcal{K} in the form (1) gives immediately the coordinates of the center $S=\left(x_{o}, y_{o}, z_{o}\right)$ and the radius ϱ and the equation in the form (4) gives the barycentric coordinates of the circle $\mathcal{K}=(\lambda, \mu, \nu)$. Therefore, it is useful to know how to pass from the first equation to the second and vice versa. These passages are given by Theorems 2 and 3 .

Theorem 2. If the circle (λ, μ, ν) has the center $S=\left(x_{o}, y_{o}, z_{o}\right)$ and the radius ϱ, then we have

$$
\begin{align*}
& \lambda=\alpha\left(1-x_{o}\right)^{2}+\beta y_{o}^{2}+\gamma z_{o}^{2}-\frac{\varrho^{2}}{2 \triangle} \\
& \mu=\alpha x_{o}^{2}+\beta\left(1-y_{o}\right)^{2}+\gamma z_{o}^{2}-\frac{\varrho^{2}}{2 \triangle} \tag{6}\\
& \nu=\alpha x_{o}^{2}+\beta y_{o}^{2}+\gamma\left(1-z_{o}\right)^{2}-\frac{\varrho^{2}}{2 \triangle}
\end{align*}
$$

Proof. According to Fact 2 equalities (2) imply e.g.

$$
\lambda=\frac{1}{2 \triangle}\left(|S A|^{2}-\varrho^{2}\right)=\alpha\left(1-x_{o}\right)^{2}+\beta y_{o}^{2}+\gamma z_{o}^{2}-\frac{\varrho^{2}}{2 \triangle} .
$$

Corollary 1. Two circles (λ, μ, ν) and $\left(\lambda^{\prime}, \mu^{\prime}, \nu^{\prime}\right)$ with the radii ϱ and ϱ^{\prime} are concentric iff

$$
\lambda-\lambda^{\prime}=\mu-\mu^{\prime}=\nu-\nu^{\prime}=\frac{1}{2 \triangle}\left(\varrho^{\prime 2}-\varrho^{2}\right)
$$

Any circle concentric with the circumcircle $(0,0,0)$ of the triangle $A B C$ has the form (κ, κ, κ) for some $\kappa \in \mathbb{R}$.

Corollary 2. For a circle (λ, μ, ν) with the center $\left(x_{o}, y_{o}, z_{o}\right)$ we have the equalities

$$
\lambda-\alpha+2 \alpha x_{o}=\mu-\beta+2 \beta y_{o}=\nu-\gamma+2 \gamma z_{o}
$$

This Corollary can be used if three coordinates λ, μ, ν and one of three coordinates x_{o}, y_{o}, z_{o} are known, e.g. if we know that the center lies on one of the lines $B C, C A, A B$, or if all coordinates x_{o}, y_{o}, z_{o} and one of coordinates λ, μ, ν are known, e.g. if the circle passes through point A and therefore we have $\lambda=0$. If we have $x_{o}=1, y_{o}=z_{o}=0$, then $\lambda+\alpha=\mu-\beta=\nu-\gamma$, i.e. $\mu=\lambda+\alpha+\beta, \nu=\lambda+\gamma+\alpha$ and any circle with center A has the form $(\lambda, \lambda+\alpha+\beta, \lambda+\gamma+\alpha)$ for some $\lambda \in \mathbb{R}$. Analogously, any circle with center B has the form $(\mu+\alpha+\beta, \mu, \mu+\beta+\gamma)$ for some $\mu \in \mathbb{R}$ and any circle with center C has the form $(\nu+\gamma+\alpha, \nu+\beta+\gamma, \nu)$ for some $\nu \in \mathbb{R}$.

Theorem 3. The center $\left(x_{o}, y_{o}, z_{o}\right)$ and the radius ϱ of the circle (λ, μ, ν) are given by equalities

$$
\begin{gather*}
2 x_{o}=-(\beta+\gamma) \lambda+\gamma \mu+\beta \nu+1-\beta \gamma \\
2 y_{o}=\gamma \lambda-(\gamma+\alpha) \mu+\alpha \nu+1-\gamma \alpha \tag{7}\\
2 z_{o}=\beta \lambda+\alpha \mu-(\alpha+\beta) \nu+1-\alpha \beta \\
\frac{2}{\triangle} \varrho^{2}=\alpha(\mu-\nu)^{2}+\beta(\nu-\lambda)^{2}+\gamma(\lambda-\mu)^{2}-2(\lambda+\mu+\nu)+2(\beta \gamma \lambda+\gamma \alpha \mu+\alpha \beta \nu) \\
+\alpha+\beta+\gamma-\alpha \beta \gamma \tag{8}
\end{gather*}
$$

Proof. Because of Theorem 2 we must prove that substitutions of x_{o}, y_{o}, z_{o} and ϱ^{2} from (6) and (8) into the right-hand side of (5) give λ, μ, ν, respectively. But, we have at first

$$
\begin{equation*}
\alpha x_{o}^{2}+\beta y_{o}^{2}+\gamma z_{o}^{2}-\frac{\varrho^{2}}{2 \triangle}=\beta \gamma \lambda+\gamma \alpha \mu+\alpha \beta \nu-\alpha \beta \gamma \tag{9}
\end{equation*}
$$

because the coefficients of $\lambda^{2}, \mu \nu, \lambda$ and 1 after these substitutions are respectively

$$
\begin{aligned}
& \frac{1}{4}\left[\alpha(\beta+\gamma)^{2}+\beta \gamma^{2}+\gamma \beta^{2}-\beta-\gamma\right]=\frac{1}{4}(\beta+\gamma)[\alpha(\beta+\gamma)+\beta \gamma-1]=0 \\
& \frac{1}{4}[2 \alpha \beta \gamma-2 \alpha \beta(\gamma+\alpha)-2 \gamma \alpha(\alpha+\beta)+2 \alpha]=\frac{\alpha}{2}(1-\beta \gamma-\gamma \alpha-\alpha \beta)=0
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{4}[-2 \alpha(\beta+\gamma)(1-\beta \gamma)+2 \beta \gamma(1-\gamma \alpha)+2 \beta \gamma(1-\alpha \beta)+2-2 \beta \gamma] \\
& \quad=\frac{1}{2}(1+\beta \gamma-\gamma \alpha-\alpha \beta)=\beta \gamma, \\
& \frac{1}{4}\left[\alpha(1-\beta \gamma)^{2}+\beta(1-\gamma \alpha)^{2}+\gamma(1-\alpha \beta)^{2}-(\alpha+\beta+\gamma)+\alpha \beta \gamma\right] \\
& \quad=\frac{1}{4}\left(\alpha \beta^{2} \gamma^{2}+\alpha^{2} \beta \gamma^{2}+\alpha^{2} \beta^{2} \gamma-5 \alpha \beta \gamma\right)=\frac{1}{4} \alpha \beta \gamma(\beta \gamma+\gamma \alpha+\alpha \beta-5) \\
& \quad=-\alpha \beta \gamma,
\end{aligned}
$$

where we have used the equality $\beta \gamma+\gamma \alpha+\alpha \beta=1$ from Fact 7, and analogously the coefficients of $\mu^{2}, \nu^{2}, \nu \lambda, \lambda \mu, \mu, \nu$ are $0,0,0,0, \gamma \alpha, \alpha \beta$, respectively. After that, by (9) and (6) we get e.g.

$$
\begin{aligned}
\alpha x_{o}^{2}+\beta y_{o}^{2}+\gamma z_{o}^{2}-\frac{\varrho^{2}}{2 \triangle}-2 \alpha x_{o}+\alpha= & \beta \gamma \lambda+\gamma \alpha \mu+\alpha \beta \nu-\alpha \beta \gamma+\alpha(\beta+\gamma) \lambda \\
& -\gamma \alpha \mu-\alpha \beta \nu-\alpha+\alpha \beta \gamma+\alpha \\
= & (\beta \gamma+\gamma \alpha+\alpha \beta) \lambda=\lambda
\end{aligned}
$$

Specially, the circumcircle $(0,0,0)$ of triangle $A B C$ has the center

$$
O=\left(\frac{1}{2}(1-\beta \gamma), \frac{1}{2}(1-\gamma \alpha), \frac{1}{2}(1-\alpha \beta)\right)
$$

and the radius R given by the equality

$$
\begin{equation*}
\frac{2}{\triangle} R^{2}=\alpha+\beta+\gamma-\alpha \beta \gamma \tag{10}
\end{equation*}
$$

¿From (8) it follows immediately: the circle (λ, μ, ν) is real iff the sum on the right side of (8) is positive.

The following theorem is very useful.
Theorem 4. If $P_{i}=\left(x_{i}, y_{i}, z_{i}\right)(i=1,2)$, then the circle $\mathcal{K}_{P_{1} P_{2}}=(\lambda, \mu, \nu)$ with the diameter $P_{1} P_{2}$ is given by

$$
\begin{aligned}
& \lambda=\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}+\alpha\left(1-x_{1}-x_{2}\right), \\
& \mu=\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}+\beta\left(1-y_{1}-y_{2}\right) \\
& \nu=\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}+\gamma\left(1-z_{1}-z_{2}\right)
\end{aligned}
$$

Proof. The segment $\overline{P_{1} P_{2}}$ has the midpoint

$$
P_{o}=\left(\frac{1}{2}\left(x_{1}+x_{2}\right), \frac{1}{2}\left(y_{1}+y_{2}\right), \frac{1}{2}\left(z_{1}+z_{2}\right)\right)
$$

and Facts 1 and 2 imply e.g.

$$
\begin{aligned}
\lambda= & \frac{1}{2 \triangle}\left(\left|A P_{o}\right|^{2}-\frac{1}{4}\left|P_{1} P_{2}\right|^{2}\right) \\
= & \alpha\left(1-\frac{x_{1}+x_{2}}{2}\right)^{2}+\beta\left(\frac{y_{1}+y_{2}}{2}\right)^{2}+\gamma\left(\frac{z_{1}+z_{2}}{2}\right)^{2} \\
& -\alpha\left(\frac{x_{1}-x_{2}}{2}\right)^{2}-\beta\left(\frac{y_{1}-y_{2}}{2}\right)^{2}-\gamma\left(\frac{z_{1}-z_{2}}{2}\right)^{2} \\
= & \alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}+\alpha\left(1-x_{1}-x_{2}\right) .
\end{aligned}
$$

Corollary 3. If $P=(x, y, z)$, then we have

$$
\begin{aligned}
& \mathcal{K}_{A P}=(0, \alpha x+\beta(1-y), \alpha x+\gamma(1-z)) \\
& \mathcal{K}_{B P}=(\beta y+\alpha(1-x), 0, \beta y+\gamma(1-z)) \\
& \mathcal{K}_{C P}=(\gamma z+\alpha(1-x), \gamma z+\beta(1-y), 0)
\end{aligned}
$$

Corollary 4. If $D=\left(0, d, d^{\prime}\right), E=\left(e^{\prime}, 0, e\right), F=\left(f, f^{\prime}, 0\right)$, then we have $\mathcal{K}_{A D}=\left(0, \beta d^{\prime}, \gamma d\right), \mathcal{K}_{B E}=\left(\alpha e, 0, \gamma e^{\prime}\right), \mathcal{K}_{C F}=\left(\alpha f^{\prime}, \beta f, 0\right)$. Especially, $\mathcal{K}_{B C}=$ $(\alpha, 0,0), \mathcal{K}_{C A}=(0, \beta, 0), \mathcal{K}_{A B}=(0,0, \gamma)$.

Corollary 5. If $P_{i}=\left(0, y_{i}, z_{i}\right)$ resp. $P_{i}=\left(x_{i}, 0, z_{i}\right)$ resp. $P_{i}=\left(x_{i}, y_{i}, 0\right)$ for $i=1,2$, then we have

$$
\begin{aligned}
& \mathcal{K}_{P_{1} P_{2}}=\left(\alpha+\beta y_{1} y_{2}+\gamma z_{1} z_{2},(\beta+\gamma) z_{1} z_{2},(\beta+\gamma) y_{1} y_{2}\right) \\
& \mathcal{K}_{P_{1} P_{2}}=\left((\gamma) z_{1} z_{2}, \alpha x_{1} x_{2}+\beta+\gamma z_{1} z_{2},(\gamma+\alpha) x_{1} x_{2}\right) \\
& \mathcal{K}_{P_{1} P_{2}}=\left((\alpha) y_{1} y_{2},(\alpha+\beta) x_{1} x_{2}, \alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma\right)
\end{aligned}
$$

respectively.
In the proof of Corollary 5 we used e.g. the equalities
$\beta y_{1} y_{2}+\gamma z_{1} z_{2}+\beta\left(1-y_{1}-y_{2}\right)=\beta\left(1-y_{1}\right)\left(1-y_{2}\right)+\gamma z_{1} z_{2}=\beta z_{1} z_{2}+\gamma z_{1} z_{2}=(\beta+\gamma) z_{1} z_{2}$.
The points $B=(0,1,0)$ and $C=(0,0,1)$ have the midpoint $D=\left(0, \frac{1}{2}, \frac{1}{2}\right)$ whereas the point $A=(1,0,0)$ and the orthocenter $H=(\beta \gamma, \gamma \alpha, \alpha \beta)$ from Fact 8 have the midpoint $D^{\prime}=\left(\frac{1}{2}(1+\beta \gamma), \frac{1}{2} \gamma \alpha, \frac{1}{2} \alpha \beta\right)$. Let us find the coordinates of the circle $\mathcal{K}_{D D^{\prime}}$ using Theorem 4. With $x_{1}=0, y_{1}=z_{1}=\frac{1}{2}$ and $x_{2}=\frac{1}{2}(1+\beta \gamma)$, $y_{2}=\frac{1}{2} \gamma \alpha, z_{2}=\frac{1}{2} \alpha \beta$ we obtain $\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}=\frac{1}{2} \alpha \beta \gamma$ and therefore

$$
\begin{aligned}
& \lambda=\frac{1}{2} \alpha \beta \gamma+\alpha\left[1-\frac{1}{2}(1+\beta \gamma)\right]=\frac{\alpha}{2} \\
& \mu=\frac{1}{2} \alpha \beta \gamma+\beta\left(1-\frac{1}{2}-\frac{1}{2} \gamma \alpha\right)=\frac{\beta}{2}
\end{aligned}
$$

and analogously $\nu=\frac{\gamma}{2}$. Because of symmetry of coordinates of this circle $\mathcal{E}=$ $\left(\frac{\alpha}{2}, \frac{\beta}{2}, \frac{\gamma}{2}\right)$ it follows that this circle has diameters $\overline{D D^{\prime}}, \overline{E E^{\prime}}, \overline{F F^{\prime}}$, where D, E, F and $D^{\prime}, E^{\prime}, F^{\prime}$ are the midpoints of segments $\overline{B C}, \overline{C A}, \overline{A B}$ and $\overline{A H}, \overline{B H}, \overline{C H}$. The
obtained circle \mathcal{E} is the nine-point circle of triangle $A B C$ and it passes obviously through the feet $A H \cap B C, B H \cap C A, C H \cap A B$ of the altitudes $A H, B H, C H$ of this triangle. For the center $\left(x_{o}, y_{o}, z_{o}\right)$ of circle \mathcal{E} by Theorem 3 we obtain e.g.
$2 x_{o}=-(\beta+\gamma) \frac{\alpha}{2}+\gamma \frac{\beta}{2}+\beta \frac{\gamma}{2}+1-\beta \gamma=1-\frac{1}{2}(\gamma \alpha+\alpha \beta)=1-\frac{1}{2}(1-\beta \gamma)=\frac{1}{2}(1+\beta \gamma)$.
Therefore, this nine-point center O_{9} of triangle $A B C$ has the form

$$
O_{9}=\left(\frac{1}{2}(1+\beta \gamma), \frac{1}{2}(1+\gamma \alpha), \frac{1}{2}(1+\alpha \beta)\right) .
$$

This point is the midpoint of the orthocenter $H=(\beta \gamma, \gamma \alpha, \alpha \beta)$ and the circumcenter $O=\left(\frac{1}{2}(1-\beta \gamma), \frac{1}{2}(1-\gamma \alpha), \frac{1}{2}(1-\alpha \beta)\right)$ of the same triangle. The homothety ($H, \frac{1}{2}$) maps the circumcircle (O, R) through points A, B, C onto the nine-point circle through points $D^{\prime}, E^{\prime}, F^{\prime}$ and therefore the nine-point circle has the radius $\frac{R}{2}$.

Now, we shall prove a statement which gives another interpretation of barycentric coordinates of a circle.

Theorem 5. The circles $(\lambda, 0,0)$ resp. $(0, \mu, 0)$, resp. $(0,0, \nu)$ are the sets of points P such that
$\cot \angle(B P, C P)=\alpha-\lambda$ resp. $\cot \angle(C P, A P)=\beta-\mu$ resp. $\cot \angle(A P, B P)=\gamma-\nu$.

Proof. If $P=(x: y: z)$, then we have $B P=(z: 0:-x), C P=(-y: x: 0)$,

$$
k=\left|\begin{array}{ccc}
1 & 1 & 1 \\
z & 0 & -x \\
-y & x & 0
\end{array}\right|=x(x+y+z)
$$

and with $\cot \vartheta=\cot \angle(B P, C P)=\alpha-\lambda$ Fact 9 implies $x(x+y+z)(\alpha-\lambda)=$ $\alpha x^{2}-\beta(z+x) y-\gamma z(x+y)$, i. e.

$$
\begin{equation*}
\lambda x(x+y+z)-(\beta+\gamma) y z-(\gamma+\alpha) z x-(\alpha+\beta) x y=0 \tag{11}
\end{equation*}
$$

But, this is the equation of the circle $(\lambda, 0,0)$.
Corollary 6. The set of points P with the given oriented angle of lines AP and $B P$ for two given points A and B is a circle through these points A and B.

This is the famous theorem on angles inscribed in the same arc in the version for directed angles as developed by R. A. Johnson [2] and [3, numbers 16-19]; for a modern approach see [1].

With $P=(x, y, z)$ formula (11) takes the form $\lambda x=\Pi$, where

$$
\begin{equation*}
\Pi=(\beta+\gamma) y z+(\gamma+\alpha) z x+(\alpha+\beta) x y=\frac{1}{2 \triangle}\left(a^{2} y z+b^{2} z x+c^{2} x y\right) \tag{12}
\end{equation*}
$$

Therefore, Theorem 5 implies two more corollaries.

Corollary 7. For any point $P=(x, y, z)$ we have the equalities

$$
\cot \angle(B P, C P)=\alpha-\frac{\Pi}{x}, \quad \cot \angle(C P, A P)=\beta-\frac{\Pi}{y}, \quad \cot \angle(A P, B P)=\gamma-\frac{\Pi}{z}
$$

where Π is given by (12).
Corollary 8. For any point $P=(x, y, z)$ the circles $B C P, C A P, A B P$ are the circles

$$
\left(\frac{\Pi}{x}, 0,0\right),\left(0, \frac{\Pi}{y}, 0\right),\left(0,0, \frac{\Pi}{z}\right),
$$

respectively, where Π is given by (12).
Now, let \mathcal{K}_{1} and \mathcal{K}_{2} be any two circles with centers S_{1} and S_{2} and radii ϱ_{1} and ϱ_{2}. If these two circles intersect each other, then let ϑ be the angle of these circles, i.e. the directed angle of their tangents at one of their common point P. But this angle is equal to the angle of the lines $S_{1} P$ and $S_{2} P$. Therefore, we have

$$
\begin{equation*}
\cos \vartheta=\frac{1}{2 \varrho_{1} \varrho_{2}}\left(\varrho_{1}^{2}+\varrho_{2}^{2}-\left|S_{1} S_{2}\right|^{2}\right) \tag{13}
\end{equation*}
$$

Specially, if $\vartheta=0$ or $\vartheta=\pi$, i.e. if $\left|S_{1} S_{2}\right|=\left|\varrho_{1}-\varrho_{2}\right|$ resp. $\left|S_{1} S_{2}\right|=\varrho_{1}+\varrho_{2}$, then the circles \mathcal{K}_{1} and \mathcal{K}_{2} touch each other inwardly resp. outwardly. If $\vartheta=\frac{\pi}{2}$, i.e. if

$$
\begin{equation*}
\left|S_{1} S_{2}\right|^{2}=\varrho_{1}^{2}+\varrho_{2}^{2} \tag{14}
\end{equation*}
$$

then the circles \mathcal{K}_{1} and \mathcal{K}_{2} are orthogonal.
Theorem 6. Two circles $\mathcal{K}_{i}=\left(\lambda_{i}, \mu_{i}, \nu_{i}\right)(i=1,2)$ are orthogonal iff

$$
\begin{align*}
& \alpha\left(\mu_{1}-\nu_{1}\right)\left(\mu_{2}-\nu_{2}\right)+\beta\left(\nu_{1}-\lambda_{1}\right)\left(\nu_{2}-\lambda_{2}\right)+\gamma\left(\lambda_{1}-\mu_{1}\right)\left(\lambda_{2}-\mu_{2}\right) \\
& -(1-\beta \gamma)\left(\lambda_{1}+\lambda_{2}\right)-(1-\gamma \alpha)\left(\mu_{1}+\mu_{2}\right)-(1-\alpha \beta)\left(\nu_{1}+\nu_{2}\right) \\
& +\alpha+\beta+\gamma-\alpha \beta \gamma=0 \tag{15}
\end{align*}
$$

Proof. Let $S_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ be the centers of \mathcal{K}_{i} for $i=1,2$. According to Fact 1 and Theorem 3 we obtain

$$
\begin{aligned}
\frac{2}{\triangle}\left|S_{1} S_{2}\right|^{2}= & 4\left[\alpha\left(x_{1}-x_{2}\right)^{2}+\beta\left(y_{1}-y_{2}\right)^{2}+\gamma\left(z_{1}-z_{2}\right)^{2}\right] \\
= & \alpha\left[-(\beta+\gamma)\left(\lambda_{1}-\lambda_{2}\right)+\gamma\left(\mu_{1}-\mu_{2}\right)+\beta\left(\nu_{1}-\nu_{2}\right)\right]^{2} \\
& +\beta\left[\gamma\left(\lambda_{1}-\lambda_{2}\right)-(\gamma+\alpha)\left(\mu_{1}-\mu_{2}\right)+\alpha\left(\nu_{1}-\nu_{2}\right)\right]^{2} \\
& +\gamma\left[\beta\left(\lambda_{1}-\lambda_{2}\right)+\alpha\left(\mu_{1}-\mu_{2}\right)-(\alpha+\beta)\left(\nu_{1}-\nu_{2}\right)\right]^{2}
\end{aligned}
$$

i.e.

$$
\begin{equation*}
\frac{2}{\triangle}\left|S_{1} S_{2}\right|^{2}=\alpha\left(\mu_{1}-\nu_{1}-\mu_{2}+\nu_{2}\right)^{2}+\beta\left(\nu_{1}-\lambda_{1}-\nu_{2}+\lambda_{2}\right)^{2}+\gamma\left(\lambda_{1}-\mu_{1}-\lambda_{2}+\mu_{2}\right)^{2} \tag{16}
\end{equation*}
$$

because the coefficients of e.g. $\left(\lambda_{1}-\lambda_{2}\right)^{2}$ and $2\left(\mu_{1}-\mu_{2}\right)\left(\nu_{1}-\nu_{2}\right)$ are

$$
\begin{aligned}
\alpha(\beta+\gamma)^{2}+\beta \gamma^{2}+\gamma \beta^{2} & =(\beta+\gamma)[\alpha(\beta+\gamma)+\beta \gamma]=\beta+\gamma \\
\alpha \beta \gamma-\alpha \beta(\gamma+\alpha)-\alpha \gamma(\alpha+\beta) & =-\alpha(\beta \gamma+\gamma \alpha+\alpha \beta)=-\alpha
\end{aligned}
$$

As we have e.g.

$$
\alpha\left(\mu_{1}-\nu_{1}\right)^{2}+\alpha\left(\mu_{2}-\nu_{2}\right)^{2}-\alpha\left(\mu_{1}-\nu_{1}-\mu_{2}+\nu_{2}\right)^{2}=2 \alpha\left(\mu_{1}-\nu_{1}\right)\left(\mu_{2}-\nu_{2}\right)
$$

so by formula (8) for ϱ_{1}^{2} and ϱ_{2}^{2} and by (16) it follows

$$
\begin{aligned}
\frac{2}{\triangle}\left(\varrho_{1}^{2}+\varrho_{2}^{2}-\left|S_{1} S_{2}\right|^{2}\right)= & \alpha\left(\mu_{1}-\nu_{1}\right)\left(\mu_{2}-\nu_{2}\right)+2 \beta\left(\nu_{1}-\lambda_{1}\right)\left(\nu_{2}-\lambda_{2}\right) \\
& +2 \gamma\left(\lambda_{1}-\mu_{1}\right)\left(\lambda_{2}-\nu_{2}\right)-2(1-\beta \gamma)\left(\lambda_{1}+\lambda_{2}\right) \\
& -2(1-\gamma \alpha)\left(\mu_{1}+\mu_{2}\right)-2(1-\alpha \beta)\left(\nu_{1}+\nu_{2}\right) \\
& +2(\alpha+\beta+\gamma-\alpha \beta \gamma)
\end{aligned}
$$

and equality (14) is equivalent to equality (15).
If $\mathcal{K}_{1}=\mathcal{K}=(\lambda, \mu, \nu)$ and $\mathcal{K}_{2}=(0,0,0)$, then Theorem 6 implies the following corollary.

Corollary 9. The circle $\mathcal{K}=(\lambda, \mu, \nu)$ is orthogonal onto the circumcircle of triangle $A B C$ iff

$$
\begin{equation*}
(1-\beta \gamma) \lambda+(1-\gamma \alpha) \mu+(1-\alpha \beta) \gamma=\alpha+\beta+\gamma-\alpha \beta \gamma \tag{17}
\end{equation*}
$$

The powers $p_{P, \mathcal{K}_{i}}$ of any point $P=(x, y, z)$ with respect to the $\operatorname{circles} \mathcal{K}_{i}=$ $\left(\lambda_{i}, \mu_{i}, \nu_{i}\right)(i=1,2)$ are given by (because of Theorem 1)

$$
\frac{1}{2 \triangle} p_{P, \mathcal{K}_{i}}=\lambda_{i} x+\mu_{i} y+\nu_{i} z-\Pi \quad(i=1,2)
$$

where Π is given by (12). The set of points P such that $p_{P, \mathcal{K}_{1}}=p_{P, \mathcal{K}_{2}}$ is given by the equation $\left(\lambda_{1}-\lambda_{2}\right) x+\left(\mu_{1}-\mu_{2}\right) y+\left(\nu_{1}-\nu_{2}\right) z=0$. This set is a line, the radical axis of the circles \mathcal{K}_{1} and \mathcal{K}_{2}. We have the following theorem.

Theorem 7. Two circles $\mathcal{K}_{i}=\left(\lambda_{i}, \mu_{i}, \nu_{i}\right)(i=1,2)$ have the radical axis $\mathcal{P}_{12}=$ $\left(\left(\lambda_{1}-\lambda_{2}\right):\left(\mu_{1}-\mu_{2}\right):\left(\nu_{1}-\nu_{2}\right)\right)$.

Specially, a circle (λ, μ, ν) and the circumcircle $(0,0,0)$ have the radical axis ($\lambda: \mu: \nu)$.

According to Theorem 3 the point at infinity of the line $S_{1} S_{2}$ has the coordinates

$$
\beta(\nu-\lambda)+\gamma(\mu-\lambda), \quad \gamma(\lambda-\mu)+\alpha(\nu-\mu), \quad \alpha(\mu-\nu)+\beta(\lambda-\nu),
$$

where $\lambda=\lambda_{1}-\lambda_{2}, \mu=\mu_{1}-\mu_{2}, \nu=\nu_{1}-\nu_{2}$. On the other hand, from Theorem 7 it follows that the radical axis of the circles \mathcal{K}_{1} and \mathcal{K}_{2} has the point at infinity $((\mu-\nu):(\nu-\lambda):(\lambda-\nu))$. Obviously we have

$$
\begin{aligned}
& \alpha(\mu-\nu)[\beta(\nu-\lambda)+\gamma(\mu-\lambda)]+\beta(\nu-\lambda)[\gamma(\lambda-\mu)+\alpha(\nu-\mu)] \\
& +\gamma(\lambda-\mu)[\alpha(\mu-\nu)+\beta(\lambda-\nu)]=0
\end{aligned}
$$

and by Fact 6 there follows the well-known fact that the radical axis of two circles is orthogonal to the join of their centers. If two circles have common points, then these points lie on their radical axis.

Theorem 8. Three circles $\mathcal{K}_{i}=\left(\lambda_{i}, \mu_{i}, \nu_{i}\right)(i=1,2,3)$ have in pairs the radical axes $\mathcal{P}_{12}, \mathcal{P}_{13}, \mathcal{P}_{23}$ which have a common point

$$
P=\left(\left|\begin{array}{ccc}
1 & 1 & 1 \tag{18}\\
\mu_{1} & \mu_{2} & \mu_{3} \\
\nu_{1} & \nu_{2} & \nu_{3}
\end{array}\right|:\left|\begin{array}{ccc}
1 & 1 & 1 \\
\nu_{1} & \nu_{2} & \nu_{3} \\
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right|:\left|\begin{array}{ccc}
1 & 1 & 1 \\
\lambda_{1} & \lambda_{2} & \lambda_{3} \\
\mu_{1} & \mu_{2} & \mu_{3}
\end{array}\right|\right),
$$

the radical center of the circles $\mathcal{K}_{1}, \mathcal{K}_{2}, \mathcal{K}_{3}$.
Proof. The point P from (18) can be written in the form
$P=\left(\left[\mu\left(\nu_{1}-\nu_{3}\right)-\nu\left(\mu_{1}-\mu_{3}\right)\right]:\left[\nu\left(\lambda_{1}-\lambda_{3}\right)-\lambda\left(\nu_{1}-\nu_{3}\right)\right]:\left[\lambda\left(\mu_{1}-\mu_{3}\right)-\mu\left(\lambda_{1}-\lambda_{3}\right)\right]\right)$,
where again $\lambda=\lambda_{1}-\lambda_{2}, \mu=\mu_{1}-\mu_{2}, \nu=\nu_{1}-\nu_{2}$ and by Theorem 7 we have $\mathcal{P}_{12}=(\lambda: \mu: \nu)$. Because of
$\lambda\left[\mu\left(\nu_{1}-\nu_{3}\right)-\nu\left(\mu_{1}-\mu_{3}\right)\right]+\mu\left[\nu\left(\lambda_{1}-\lambda_{3}\right)-\lambda\left(\nu_{1}-\nu_{2}\right)\right]+\nu\left[\lambda\left(\mu_{1}-\mu_{3}\right)-\mu\left(\lambda_{1}-\lambda_{3}\right)\right]=0$ point P lies on line \mathcal{P}_{12}. Analogously, this point lies on lines \mathcal{P}_{13} and \mathcal{P}_{23}.

Two points P and P^{\prime} are said to be inverse to each other with respect to the circle (S, ϱ) if these points are collinear with the center S and if $\overrightarrow{S P} \cdot \overrightarrow{S P^{\prime}}=\varrho^{2}$.

Theorem 9. A point $P(x, y, z)$ has the inverse point

$$
\begin{equation*}
P^{\prime}=\left(\frac{1}{s^{\prime}}\left(2 R^{2} x-\alpha a^{2} \Pi\right), \frac{1}{s^{\prime}}\left(2 R^{2} y-\beta b^{2} \Pi\right), \frac{1}{s^{\prime}}\left(2 R^{2} z-\gamma c^{2} \Pi\right)\right) \tag{19}
\end{equation*}
$$

with respect to the circumcircle of the triangle $A B C$, where $s^{\prime}=2 R^{2}-4 \triangle \Pi$ and Π is given by (12).

Proof. Owing to Fact 7 we obtain

$$
\begin{aligned}
& 2 R^{2} x-\alpha a^{2} \Pi+2 R^{2} y-\beta b^{2} \Pi+2 R^{2} z-\gamma c^{2} \Pi \\
& =2 R^{2}(x+y+z)-2 \triangle \Pi[\alpha(\beta+\gamma)+\beta(\gamma+\alpha)+\gamma(\alpha+\beta)] \\
& =2 R^{2}-4 \triangle \Pi=s^{\prime}
\end{aligned}
$$

and the point (19) has the sum of coordinates equal to 1 . The circumcenter of the triangle $A B C$ can be written in the form

$$
O=\left(\frac{\alpha a^{2}}{4 \triangle}, \frac{\beta b^{2}}{4 \triangle}, \frac{\gamma c^{2}}{4 \triangle}\right)
$$

We have the equality $2 R^{2} \cdot P-s^{\prime} \cdot P^{\prime}=4 \triangle \Pi \cdot O$ because of e.g. $2 R^{2} x-\left(2 R^{2} x-\right.$ $\left.\alpha a^{2} \Pi\right)=\Pi \cdot \alpha a^{2}$. Therefore Fact 5 implies the equalities

$$
\left(P P^{\prime} O\right)=\frac{s^{\prime}}{2 R^{2}}=\frac{R^{2}-2 \triangle \Pi}{R^{2}}=\frac{|O P|^{2}}{R^{2}}
$$

because of the equality $R^{2}-2 \triangle \Pi=|O P|^{2}$ implied by Fact 4. Hence

$$
\overrightarrow{O P}=\frac{|O P|^{2}}{R^{2}} \overrightarrow{O P^{\prime}}
$$

and scalar multiplication by $\overrightarrow{O P}$ gives $\overrightarrow{O P} \cdot \overrightarrow{O P^{\prime}}=R^{2}$.
The author is indebted to the referee for many useful remarks.

References

[1] R. Fritsch, Ein axiomatischer Zugang zu einigen Winkelsätzen der ebenen Geometrie, Schr. Sudet.dtsch. Akad. Wiss. Künste Forsch.beitr. Nat.wiss. Kl.16(1995), 41-57.
[2] R. A. Johnson, Directed angles in elementary geometry, Amer. Math. Monthly 24(1917), 313-317.
[3] R. A. Johnson, Advanced Euclidean Geometry, Dover Publ. Inc., New York, 1960.
[4] V. Volenec, Metrical relations in barycentric coordinates, Math. Commun. 8(2003), 55-68.

[^0]: *Department of Mathematics, University of Zagreb, Bijenička 30, HR-10 000 Zagreb, Croatia, e-mail: volenec@math.hr

