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Abstract 

This note deals with a semi-infinite optimization problem which is defined by infinitely many 

inequality constraints. By applying a logarithmic barrier function, a family of interior point 

approximations of the feasible set is obtained where locally the original feasible set and its 

approximations are homeomorphic. Under generic assumptions on the structure of the original feasible 

set, strongly stable stationary points of the original problem are considered and it is shown that there is 

a one-to-one correspondence between the stationary points (and their stationary indices) of the original 

problem and those of its approximations. Corresponding convergence results, global aspects and a 

relationship to a standard interior-point approach are discussed. 
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