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Abstract

This note deals with a semi-infinite optimization problem which is defined by infinitely many
inequality constraints. By applying a logarithmic barrier function, a family of interior point
approximations of the feasible set is obtained where locally the original feasible set and its
approximations are homeomaorphic. Under generic assumptions on the structure of the original feasible
set, strongly stable stationary points of the original problem are considered and it is shown that there is
a one-to-one correspondence between the stationary points (and their stationary indices) of the original
problem and those of its approximations. Corresponding convergence results, global aspects and a

relationship to a standard interior-point approach are discussed.

1 Introduction

In this note we consider semi-infinite optimization problems, that is, nonlinear
problems defined in a finite-dimensional space whose feasible sets are repre-
sented by an infinite number of inequality constraints. Semi-infinite program-
ming, its theory, numerical solution methods and applications have become a
very active research area within mathematical programming during the previ-
ous two decades. There is a broad range of applications where the semi-infinite
model can be used; for more details we refer to [2, 7, 16, 20] as well as to the
compilations [3, 17].

As a starting point of this paper, we consider a semi-infinite optimization prob-
lem (SIP) of the form
SIP minimize f(z)s.t. x € M

with the feasible set
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and the index set

Y={yeR |uly)=0, Ie A, w(y) <0, ke B},

where A = {1,...,a},a < rand B = {1,...,b}. The tunctions f : B* — R,
g:R" xR — Rand w,vp. : R — R, [ € A, k € B are assumed to be twice
continuously differentiable. The index set ¥ < K" is assumed to be compact
(and, in general, it is an infinite set) and, obviously, each index 7 € ¥ represents
a corresponding inequality constraint g (-, %) = 0. For a feasible point T & M,
we define the set of active constraints at T as

Yo(T)={veY |g(z,y) =0}

and it is obvious that each 7 € Y (T) 1= a global minimizer of the so-called lower
level problem

LL(x) minimize g(T,y) st. y €Y. (1-1)

The latter one is a finite parameter-dependent (where T is the parameter vector)
problem. Note that ¥; (T) can be an infinite set. A point T € M is called a
stationary point of SIP if T — D f (T) € Nz, where

and the row vector D) f (T) denotes the gradient of f at T (the gradients, partial
derivatives and Hessians Dg (T), Dzg (T.y). Dyg (T.y), D*f (T),... are analo-
gously defined).

In this paper we will consider a strongly stable stationary point T of SIP. The
concept of strong stability was introduced by Kojima [15] and it refers to local
existence and uniqueness of stationary points where perturbations up to sec-
ond order are allowed. We will have a brief view on this concept in Section 2.
Furthermore, we recall in Section 3 that under the generic assumption of the
reduction approach at the point under consideration T, the semi-infinite prob-
lem SIP can locally around T be transformed into a problem whose feasible set
is described by finitely many continuously differentiable functions.

Now, the main goal of this paper is to show that, having this local finite de-
seription of SIP, we can locally apply a logarithmic smoothing approach which
was introduced in [4, 10] for finite problems. There we use a logarithmic barrier
function and consider a parametric family of interior point approximations of an
intersection of the feasible set M with an appropriate neighbourhood of . This
family is controlled by an approximation parameter v = 0 and there exists a
corresponding solution curve of stationary points converging to T as v — (0. We
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will see that this parametric family is closely related to a standard interior-point
approach.

This paper is organized as follows. Section 2 contains some auxiliary results
which will be used later. In particular, we present several constraint qualifi-
cations and we recall the concept of strong stability of a stationary point. In
Section 3 we discuss the reduction approach under which a semi-infinite problem
can locally be described by finitely many constraints. Then, Section 4 contains
the main results: we generalize an interior logarithmic smoothing approach to
our semi-infinite setting. We present the existence of a solution curve and discuss
topological properties and global aspects of the involved feasible sets. Finally,
Section 5 presents some brief conclusions.

At the end of this section we explain some notations. If 7 C B™ is an open set
and if the function h : U — R is k-times continuously differentiable (k = 1
or k = 2), then we write h € C*(U,R). For § > 0 and T € R" define
Bs(x) = {z e R" | ||z —Z|| £ 4} where |-|| denotes the Euclidean norm un-
less stated otherwise. Let R, = {a € R|a > 0} and let the components of
T < R" be denoted by T, i = 1,..., n. Finally, by an (n,m)-matrix we mean a

real matrix with n rows and m columns.

2 Auxiliary results

In this section we recall several notations and auxibary results which will be
used later.
Constraint qualifications

The following two constraint qualifications are appropriate extensions (see e.g.
[11]) of the well-known linear independence constraint qualification (LICQ)) and
Mangasarian-Fromovitz constraint qualification (MFCQ)).

The Extended Linear Independence Constraint Qualification (ELIC(Q) is said to
hold at T € M if the gradients D.g (T,y). y € Y, (T) are linearly independent.

The Erxtended Mangasarian-Fromovitz Constraint Qualification (EMFCQ) is
said to hold at T € M if there exists a vector £ € R™ such that

DIH{EEF}E}. = D; = nl:f}

It is easy to see that if ELICC) holds at T € M, then EMFCQ holds at T € M
as well. Furthermore, we know from [11] that if EMFCQ holds at all T € M,

then the feasible set M 1s a topological manifold and its boundary dM can be
described as

aM = {I €M | min g(r,y)= EI} .

ws¥o(T)

We refer to [5, 20] for a broader discussion on constraint qualifications.
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Throughout this paper we assume for the index set (and feasible set of the lower
level problem (1-1)) ¥ the following

Assumption (A1). LICQ holds at all 7 € Y, that is, the gradients Duy (7).
l£ A, Du (7)), k € By (y) are linearly independent, where

Bo(y)={ke B |v(y)=0}.
Note that Assumption (Al) is a generic condition (briefly: that is, under an
appropriately induced topology, there exists a generic subset of functions u;, vy,

l £ A, k € B such that Assumption (Al) is fulfilled for the corresponding set
Y'; for more details see [8, 11]).

Strongly stable stationary points

As mentioned in Section 1, Kojima [15] introduced the concept of a strongly sta-
ble stationary point for a finite optimization problem. Roughly speaking, strong
stability refers to the local existence and uniqueness of a stationary point where
perturbations up to second order of the describing functions (objective fune-
tion, constraints) are considered and where the (locally uniquely determined)
stationary point of the perturbed problem depends continuously on these per-
turbations. Under the linear independence constraint qualification Kojima's
concept of strong stability was proven to he equivalent to Robinson’s concept
[18] of strong regularity (see [9] for more details).

In the following we will recall Kojima's definition of a strongly stable stationary
point of a finite optimization problem. Since we will apply this definition to
both the lower level problem (1-1) and the original problem SIP, we will present
it for a general finite optimization problem of the form

(P) minimize h(x) st. gi(z)=0, jeS={1,...,5}

where h,g; € C*(R",R), j € S. A feasible pomt T € R" of (P) 15 called a
stationary point of (P) if there exist A; = 0, j € Sy (T) such that

Dh(m)— Y NDg;(T) = (2-1)

JES(T)

where 5y (T) ={j € 5| g;(T) =0}. For aset ' CR" let

norm ((h,g1,....9s).U) =
- { sup ey max {|h(z)| . [ Dh(z)]|. [|D*h(z)]}, }
sup; s sup,cp max {|g;(z)| . [ Dgs(a)l|. [[D;(x)|[}

where ||@Q| = max {||Qz| | x € BR", ||z|| =1} for an (n,n)-matrix Q).

Definition 2.1 ([15]) A stationary point T of (P) is called strongly stable if for
some § € R, and each 4§ € [D,E}I there exists an & € B, such that whenever

h,§; € C2(R"R), j € § and

norm ((h g1, ) BE-I:I;'I)
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B; (T) contains a stationary point of the problem
minimize h(z) + h(z) s.t. g;(z) +§;(z) =0, j€ S
which is unique in By (T).

In [19], this concept was generalized to semi-infinite problems. Furthermore,

it 1s shown in [1] that if a stationary point T of SIP is strongly stable, then
EMFCQ) holds at T.

Besides this topological characterization of strong stahility, Kojima presented
an equivalent algebraic characterization which will be recalled in the following
lemma. For this let T be a stationary point of (P) and consider the following
two cases.

If LICQ holds at T, then the multipliers A; = 0, j € S; (T) in (2-1) are uniquely
determined. In that case let

H=D%h(z) - ¥ M\D%; (3,
JE8(T)

Sy (@) = {j € So (@) | %; > 0}

and for each index set § with §, (F) C 'S C S, (T) denote the corresponding
tangent space as

T(S)={zcR"|Dg;(T)xz=0, jcS}.
It MFCQ holds at T (that is, there exists £ € R"™ such that Dg; (T)£ = 0,
j € Sy(T)), then for any A € RIS (|| denotes the cardinality) satisfying
(2-1) let

H(X)=D*h(z) - > X\iD%;(®)
FE50(T)

and

T(A)={zeR"|Dg;(@z=0, je{icS(T)|A >0}}.

For the algebraic characterization of strong stability we need the following no-
tation. Let ¢ be an (n,n)-matrix and W < K" be an m-dimensional subspace
of R™. An (n,m)-matrix K whose columns form a basis of W is called a basis
matriz of W. By Sylvester’s law, the numbers of negative, positive and zero
eigenvalues of K" QK does not depend on the particular choice of the basis
matrix and, hence, we can write

sign det (Q|W) = sign det {KTQK]

(where det denotes the determinant ) and the number of negative (positive, zero)
eigenvalues of QW refers to the number of negative (positive, zero) eigenvalues

of KTQK.
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Lemma 2.1 (algebraic characterization of strong stability [15])

Let T be a stationary point of (P).

(1) Assume that LICC) holds at T. Then, T is a strongly stable stationary point
of (P) if and only if sign det (H|T (S)) is constant and not zero for all § with
S5, (T)C5C S (T).

(i1) Assume that LICC) holds at T and that T is a strongly stable stationary
point of (P). Then, the number of negative eigenvalues of H|T (§) is constant
for all § with S, (T) € 5 C Sy (F) and it is called the stationary index of T
(notation: s.i.(T)). In particular, it is

e 5.i.(T) =0 if and only if T is a local minimizer of (P),

o1 <54 (x)<n—1if and only if T is a saddle point of (P).

e 5.i.(T) =n if and only if T is a local maximizer of (P).

(111) Assume that MFCQ holds at T but LICQ does not hold at 7. Then,
T is a strongly stable stationary point of (P) if and only if all eigenvalues of
H (X) |T (A) are positive for all X & RS0 satisfying (2-1). Set s.i. (T) = 0. In

particular, T is a local minimizer of (P). FAN

Note that neither LICC) nor the strict complementarity condition need to hold
at a strongly stable stationary point. We refer again to [19] where an algebraic
characterization of a strongly stable stationary point of SIP is presented.

3 The reduction approach

One of the main challenges for the design of a solution method for semi-infinite
problems is that the original problem has (at least locally) to be transformed
into a finite optimization problem. That might he done by discretizing the
infinite index set ¥ or by another approximation of the original problem. In
this section we recall the so-called reduction approach, a condition under which
the original semi-infinite problem can locally be transformed equivalently into a
finite problem (for more details see e.g. [6, 12, 13, 14]). We will comment at the
end of this section that in a certain sense the reduction approach is a natural
assumption.

Let T € M and 7 € Yy (T). Since 7 is a (global) minimizer of the lower level
problem (1-1) and LICQ) holds at 7, there exist uniquely determined multipliers
@, € Aand 3, =0, k € B, (7) satisfying

Dyg(®.7) +»_ @D (@) + Y BiDuv(7) =0. (3-1)

leA ke Bo(7)

We introduce the following

Assumption (A2). ¥ € Yo (T) is a strongly stable stationary point of LL (T)
with 3, > 0, k € By (7) in (3-1).

Let Assumption (A2) be fulfilled throughout this section (7 is then called a
nondegenerate stationary point of LL (T)). Then, a moment of reflection shows
that the partial Jacobian Dy, , 5 F(z,y, o, 3) of the system
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Dyg(z,y) + > aeDu(y) + 3°  BeDur (y)
IcA ke Bn(T)
F{:g?y?ﬂ,'ﬁ}z uI{yJ? lc A
vk (y), k€ Bo(¥)

is nonsingular at (r,y, o, ) = (T, 7, @ E} A straightforward application of the
Implicit Function Theorem provides the existence of an open neighbourhood
V¥ of T and uniquely determined continuously differentiable functions 3, o, 3
defined on V¥ such that

(#(@).8@).5(2)) = (7.7.5) and

F (:{.‘,ﬁ{:{.‘} & (z) .,E{z;) =0 for all z € V7.

In particular, we get for the locally defined function g(z) =g (z,y(z)), z € V¥
that

Dg(x) = Dxg(x,y) |y='éi'{m} s T E vy
and we also obtain an explicit formula for D?g(zx) [6, 12, 13, 14] (although the

function y(-) is only implicitly known). Now, for our purpose we define the
reduction approach as follows.

Definition 3.1 The reduction approach (briefly: RA) is said to hold at T € M
if Assumption (A2) is fulfilled for all 7 € Y; (T).

Note that (a more general variant of) the reduction approach can be formulated
under the weaker condition that not all multipliers 3. = 0, k € By (%) in (3-1)
are positive (see [6, 12, 13, 14]). The above construction and the compactness of
the index set ¥ wield the following corollary which summarizes some important
properties under the reduction approach.

Corollary 3.1 Assume that RA holds at 7. Then
(i) The set Y; () is finite, say Y5 (T) = {y',..., 9" }.

(1) There exist an open neighbourhood V' of T and uniquely determined con-
tinuously differentiable functions

WPireV e ?[I}ER"", j=1,...,p

such that §7(T) = 37 and 3 (z), j = 1,...,p Is a nondegenerate local minimizer
of LL (z) for all x € V.

(iii) We have g (-, 77 (z)) € CH(V.R), j =1.....p.

() MAV ={z €V | g (@7 @) >0, j=1,....p}. A

Property (iv) in Corollary 3.1 means that the feasible set M of the semi-infinite
problem SIP can, locally around T, be described by finitely many C*-inequality
constraints. In the following we will assume that RA holds at our points under
consideration. By [20, 21], this assumption is natural in the sense that it is
fulfilled generically for each local minimizer of the original problem SIF.

25



Croatian Operational Research Review (CRORR), Vol. 4, 2013

26

4 A logarithmic smoothing approach

Throughout this section let T € M and assume

e that (Al) is fulfilled,

& that RA holds at T and

» that T 1s a strongly stable stationary point of SIP.

The latter condition implies that EMFCQ) holds at T. According to Corollary
3.1, let Y5 (z) = {¢',..., y*} and

MaV={zeV|g(x,F()=0 j=1,...p} (4-1)

where V and 37, j = 1,...,p are defined as in Corollary 3.1. The description
(4-1) of M NV by finitely many C*-inequality constraints allows to generalize
locally around T the logarithmic smoothing approach which was introduced in
[4, 10] for finite problems. In this section we will briefly introduce this technique
and present its main results which are local generalizations of the results in
[10]. We omitted all proofs of these results in this short note since they are
straightforward generalizations of the proofs in [10].

The main idea is to consider a family of interior point approximations of M NV
which depends on an approximation parameter v € K, in the following way.
Define the local interior-point-set as

M ={zeMnV|g(z,i7(z)) >0, j=1,...,p}

as well as
Gla) =Y tng (¢, 7P(x)) and

MOV ={reM°|G(z)—Iny=>0}. (4-2)

P .
Note that G(z) — In+y = 0 is equivalent to [] g (z,7(z)) — v = 0.
j=1
Furthermore, let the local approximation of (P) be given as

Fl  minimize f(z) st. ze M"NV. (4-3)

This construction provides the following properties:

# The feasible set M NV is defined by a single continuously differentiable
inequality constraint.

o If EMFCQ) holds at all z € M NV, then the set {zV |G(z)=Inv} s a
smooth approximation (since it is described by only one constraint) of the (in
general, non-smooth) intersection of V' and the boundary M of M.

e There is a strong relationship between the problem P in (4-3) and a standard
interior-point approach. It is easy to see that the first order necessary optimality
conditions of P,
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Df(x) - pDG(z) = Df(x) — uD (Z Ing (z. if"tr}}) —0, u=0  (44)

are also the first order necessary optimality conditions of the interior point
problem

P
minimize f(x) —pZ]ng (z,7(x)) st. e M° (4-5)
j=1

(where p = 0 is a corresponding interior-point-parameter).

The following theorem contains the main result. It states that for all sufficiently
small v € B, the problem FJ has a uniquely determined strongly stable sta-
tionary point which converges to T as v — (.

Analogously to [15], we consider the following two cases:
¢ ELICQ) holds at 7.
o EMFCQ) holds at T but ELIC() does not hold at 7.

Theorem 4.1 (see [10, Theorems 3.1 and 3.2] for finite problems)

(i) Assume that ELICQ) holds at F. Then, there exist § € R, and 5 € R, such
that for all v € (0,7] we have that

e there exists a stationary point z(v) € Bs(T) of P and z(v) is the only
stationary point of FZl in B; (T);

e z(7) is a strongly stable stationary point of P2 and T and z(v) have the
same stationary index (hence, T is a local minimizer or saddle point of SIP if
and only if z(v) is a local minimizer or saddle point of FZ, respectively);

o the mapping

v € (0.7) = (z(v). u(v)) € Bz (T) x R, (4-6)

is continuously differentiable with
lim {I{ﬁf}:«#{x}'” = {T: D}~
F—0

where p(7v) is the uniquely determined Lagrange multiplier for z(v) (see (4-4)).
(11) Assume that EMFCQ) holds at T but ELICCQ) does not hold at 7. Then, there
exist & € R, and 7 € R, such that for all v € (0,7] we have that

e there exists a stationary point z(v) € Bs(T) of FZ and z(v) is the only
stationary point of I in Bz (T);

e z(7) is a strongly stable stationary point of FI with s.i. (z(v)) = s.i.(T) =0
(hence, T and z(v) is a local minimizer of SIP and P;" , respectively);

s the mapping

v € (0,7) = (z(7),p(7)) € B () x R4
1s continuous with
Jim (z(), u(7)) = (,0),

where p(y) is the uniquely determined Lagrange multiplier for z(v). M
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The following remarks refer to several properties related to the results in the
previous theorem.

Remark 4.1 A moment of reflection shows that the only constraint of FJI
is active at z(v), that is, G'(z(v)) — Iny = 0. Furthermore, we have that
DG(x) } z—z(~) 18 non-vanishing and p(7y) > 0 which means that z(7) 1s a non-
degenerate (strongly stable) stationary point of FPZ. It is remarkable that ()
and T have the same stationary index although the number of active constraints
at z(7y) and T is one and p, respectively (remember that the stationary index
depends on the restriction of the Hessian of the Lagrangian to the corresponding
tangent space, see Lemma 2.1).

Remark 4.2 As mentioned above, the first order necessary optimality condi-
tions (4-4) of FZ are also the first order necessary optimality conditions of the
interior point problem (4-5). Theorem 4.1 states that the mapping in (4-6) pro-
vides a continuously differentiable solution path for this interior point approach.

The following corollary refers to some local topological properties (where, per-
haps, a shrinking of the open neighbourhood V' of T is necessary). This corollary
is a local version of [10, Proposition 3.2].

Corollary 4.1 There exist a neighbourhood V c V of T and a 7 € R, such
that for all v € (0,%) we have:

e EMFCQ holds at all z € MT NV (with respect to the description (4-2)),

e M NV and M*"NV are homeomorphic,

« MOV converges to M N V in the Hausdorff metric as ~ — 1, that 1s,

sup inf |x—z|| —=0asy—=0. A
reMnV zEMINV

So far, all results in this section are related to a local neighbourhood of the
strongly stable stationary point T of SIP. In the following corollary we consider
a global aspect related to the whole feasible set M. We will assume that M is
a compact set and that all stationary points of SIP are strongly stable. These
conditions 1mply that there exists only a finite number of stationary points of
SIP, say F', ..., 7. This final corollary is a straightforward generalization of [10,
Corollary 3.1] to our semi-infinite setting under the reduction approach.

Corollary 4.2 Assume that M is a compact set and that all stationary points
of SIP are strongly stable; say, the set of stationary points of SIP 1s {f11 W T }.
Then, there is a § € R, such that for all v € (0,7] there exist

s a set of corresponding problems P; each locally (and analogously to FZ)
defined on a neighbourhood V* of 7, i =1.....t, and

e corresponding locally uniquely determined stationary points 7*(v) of F;I.. i=

1...., t,
o where T*(v) are strongly stable and have the same stationary index as 7,
i=1,...,t Fa
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5 Conclusions

In this note we generalized a logarithmic smoothing approach to a semi-infinite
setting where the generic condition of the reduction approach is assumed at the
strongly stable stationary point under consideration. This logarithmic smooth-
ing approach was originally developed for fimite optimization problems; it uses
a family of logarithmic barrier functions and is closely related to a standard
interior-point approach. We discussed the convergence of a solution path and
presented topological properties and global aspects.
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