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Mann-Ishikawa iterations and Mann-Ishikawa
iterations with errors are equivalent models
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1. Preliminaries

Introduced in [4], Mann iteration is a viable method to approximate the fixed point
of an operator, when Banach principle is not functional. Let X be a Banach space,
let T: X — X be a map. Let 1 € X. Mann iteration is given by:

Tna1 = (1 — an)rn + anTay,. (1)

The sequence (o, ), C (0, 1) is convergent, such that lim, o ap, = 0,and >0~ | @y, =
oo. Ishikawa introduced later in [2] the following iteration,

Tnt1 = (1 — an)xn + anTyn, (2)
Un = (1= Bp)zn + BuTxn, n=1,2,...

Sequences (), (Bn)n C (0,1) are convergent such that

nlLII;C ay =0, nlLII;C Bn =0, andz Ay = 00.
n=1
In [2] the conditions on the above sequences were 0 < «;, < 3, < 1. A better
condition, introduced in [7], is 0 < «, , B < 1. Now, letting 3, = 0,Vn € N from
Ishikawa iteration (2), we get Mann iteration (1). Let us consider the following
iteration, see [3]:
Unt1 = (1 — ap)tn + anTuy, + e,. (3)
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Errors (ey,), C X satisfy > o~ | ||en|| < oo. This iteration is known as Mann iteration
with errors. In [3] Ishikawa iteration with errors is defined as

Unt1 = (1 = an)un + 0Ty + pn, (4)
vp = (1= Bn)un + BnTun + qn, n=1,2,....

Errors (pn)n, (gn)n and (ey), C X satisfy

o0 oo
Z [Pl < oo, nhlr;o lgnll =0, Z l[en]| < oo, (5)
n=1 n=1

where (o), and (8,), are the same as those from (1)and (2). When e, = 0,
respectively p, = g, = 0,Vn € N then we deal with Mann and Ishikawa iteration.

In [8] it was proven that for several classes of Lipschitzian operators, Mann and
Ishikawa iteration methods are equivalent. We will prove further that Mann and
Ishikawa iterations are equivalent models with Mann and Ishikawa iterations with
errors. Thus the study of convergence of the above iterations is reduced to the
study of Mann iteration, which is more convenient to be used.

Let us denote the identity map by I.

Definition 1. Let X be a real Banach space. A map T : X — X is called
strongly pseudocontractive if there exists k € (0,1) such that we have

le =yl < llz—y+r[( =T = kDz — (I =T = kDylll, (6)

forall x,y € X, and r > 0.
The following lemma can be found in [3].
Lemma 1 [[3]]. Let (an)n be a nonnegative sequence which satisfies the follow-
ing inequality
ant1 < (1= Ap)an + op + wp, (7)

where A, € (0,1), w, > 0, Vn € N, Zle Ap = 00, Zle w, < oo, and o, =
0(An). Then lim,_ o an = 0.

2. Main result

Let us denote F(T) = {«* : Ta* = x*}. We are able now to give the following
result:

Theorem 1. Let X be a Banach space and let T : X — X be a Lipschitzian
with L > 1, strongly pseudocontractive map. If vy = x1 € X, let limy, 0o ay =
0, limp—oo Bn = 0, and Y_,2 | o, = 00, suppose that for iteration (4) the errors
satisfy (5); then the following two assertions are equivalent:

(i) Ishikawa iteration (2) converges to z* € F(T),
(i) Ishikawa iteration with errors (4) converges to the same x* € F(T).

Proof. Corollary1 from [1] assures that F(T) # (; strong pseudocontractivity
assures the uniqueness of the fixed point.
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Supposing Ishikawa iteration with errors (4) converges and taking p, = ¢, =
0,Vn € N, we get the convergence of (2). We will prove that the convergence of
Ishikawa iteration (2) implies the convergence of Ishikawa iteration with errors (4).
The proof is similar to the proof of Theorem 4 from [8]. We have

T = Tnt1 + WnZn — @ TYn (8)
=14+an)tnt1 +and =T —kDzpyr +
—(2—k)antnt1 + anty + an (T — Tyn)
=14 ap)tp1 +an(I =T —kDxpir +
—(2 = k)an[(1 — an)zn + anTyn] + anxn + an(TTpt1 — Tyn)
=14+an)tpnt1 +and =T —kDzpyr +
—(1=k)anz, + (2 — k) ( Ty — Tyn) + an(Tny1 — Tyn).

Also

Up = Upt1 + Qptty, — @ TUn — Dy 9)
=1+ ap)upt1 +an(I =T — kDupy1 +
—(2 = k)apunt1 + anty + an(Tuns1 — Top) — pn
=14 ap)uptr +an(I =T — kDupi1 +
—(2 = K)an[(1 — an)un + anTo, + pp] +
+antn + an(Tunt1 — Ton) — pn
=14+ ap)upt1r +an(I =T — kDupt1 +
—(1 = E)anun + (2 — k)2 (un — Tvp) + an(Tung 1 — Toy)
—(2—=k)anpn
=14 ap)uptr +an(I =T — kDupt1 +
—(1 = k)anun + (2 — k)2 (up — Tvp) + an(Tuns 1 — Toy)
—n(14 (2 = k)ay).

From (8) and (9) we get

Tp = Un = (14 an)(@nr1 — Unt1) (10)
+an (I —T—kDxpy1 — (I —T — kDupt1)
—(1 = K)an(zn — un) + (2 — k) (2n — tn — Tyn + Tvy)
+an(Trpt1 — Tunt1 — TYn + Top) + pu(1 4 (2 — k)ay,).

Taking (1+an)(@nt1 —tnt1)+on (I =T — kDzpy1 — (I =T — kI)up4q) in norm
we have

(1 + ) (@ni1 — uny1) +an (I =T = kD)znsr — (I = T — kD un41)||
an
1+ a,

=1+ ) || (@ns1 — uny1) + (=T —kDzpi1 — (I =T — kI )upi1)
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and using (6) with x := 2,41 and y := uy,41, we obtain

(L4 an)(@ni1 — tng1) + an ([ =T = kDzny1 — (I =T — kI )uni1)||

> (1+ an) lzn41 — unsall-

Taking the norm in (10) and then using (11), we get

|20 — wnl|

> X+ o) (@ns1 —uns1) +an (L =T = k)zng1 — (I = T — kDupta )|

—(1 = k) |20 — un|| — (2 = k)2 ||z — up — Tyn + To,|

—ap [[Txpg1 — Tungr — Tyn + Tonll — |Ipall (14 (2 = k)an)
> (14 an) |[Tns1 — ung1|l = (1 = K)o |2 — unll — (2 - k:)ai
|Tn — tn — Tyn + Ton|| — an |[Tent1 — Ttnt1 — Tyn + Ton|

—Ipall (1 + (2 = k)awn).
‘We obtain

(1 +an) |z — untal
< (14 (1= k)an) |0 — un| + (2 = k)2 ||2n — tup — Tyn + T,
+an |[Trps1 — Tunyr — Tyn + Top| + [[pall (1 + (2 — k)an)
S(14+ (1 =k)an) llzn —unll + (2 = k) ai [luy — T
+ (2= k) o ||lzn = Tynll + an [Tzps1 — Tynl|
o [Tunsr = Tonll + [Ipall (1+ (2= K) o).

We aim to evaluate ||u, — Tv,|| and ||Tup+1 — Top||

[un = Top|l < |lun — 2|l + (|20 — T || + | Tzn — Toy||
< wn —unll + [0 — Tl + L |20 — va -

[z — vnl

= (1 = Bn)(@n — un) + Bn(Tn — Tun) — gul|

< (1= Bn) lzn = unll + Bn |z — Tun|l + llgnll

< (1= Bn) llzn = wnll + Ba [IT2n = Tunll + 20 — Tzall ] + llgn |
< (1= Bn) lzn — unll + BuL |lzn — unll + Bu [[2n — Txpll + [|gnl]
= (1= Bn+ Bul) lzn — unll + Bn 20 — Txnll + [l gnl|

<L lzn = unll + Bn Non — Tanll + llgall,

because 1 < L =1- 0, + 6,L < L.
‘We have

lwn — Tvn |

< Han — unl| + Hxn - TmnH + L(L |27 — un| + Bn Hxn - Tan + ||Qn||)

<@ +L2) |2n = unll + (1 + LBn) |on — Ton| + L ||gull -

(11)

(13)
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Now, ||Tun+1 — Tyl satisfies

|Tunt1 —Ton|l < Llunt1 = vall = L{|(1 = an)un + anTvn — vy + pul|
SL[(1—an) [lup —vnll +an [|[Tvn —vul| + [Ipall ]

Using (13) we evaluate:

1Tvn — vnll < ([Tvn — Tanll + | Ton — 2ol + (|20 — val|
<A+ L) lzn = vall + [ T2n — 20|l
< A+ D)L zn — unll + Bn [[T2zn — znll + llgnll] + 1Tzn — 24|
=(A+L)L lzn —un|| + [T+ L) Br+ 1] [[Tzn — 2u|

+(1+ 1) llgnl

and

[tun = T + [gn||

Hun - Un” = Hun - (1 - ﬁn)un - ﬁnTU/n - QnH = ﬂn
< Bulllun = 2ol + | Tzn — zpll + [ Tun — Tan ] + [|gnll
< B (A4 L) flzn —unll + 1 Tzn —znll) + llan] -

One obtains

[Tun+1 — Ton|

SL[(1—an) [lun —vnll + o [[Tvn —vnll + llpall]

<L { (A =an) (Bn (A+L) [lzn —unll + T2 — 2l ) + llgnll)
+on ((L+L)L ||lop —unl|+ [(A+L)Bn+ 1] [Ty — 4|

+(1+L) llaall) + lpall
=1 —an) B A+ L)L [[wn —unl+ L (1 —an) B |T2n — x|
+L (1 —an) [lgnll +an (1+L) L’ |27 — un|
+an LA+ L)Bp+1] [Tzn —anl +an L (14 L) [lgnll + L [[pall
:(L(l—an)ﬁn 1+L) + ayp (1+L)L2) |n — |
+ (B L(l—an)+ an LI{(1+L)Bn+1]) |Txn — ]
+(A+L)an+ (1 —an)) L [lgnll + L [Ipall-

Also, we have

[tun — Tvn|l < ll2n = unll + lzn — Ton|| + L {lzn — vall
< lzn = unll + |20 — T2y
"’L[L |Zn — unll + Bn |20 — Ton| + HCInH]
= (1+L?) llon = unll + 1+ B L) llzn — Tnll + L llgnll-

Taking (12) with the above evaluations for ||u, — Tv,||, || Ttn+1 — Toyl|, and
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using the following inequalities (1 + ;) ! <1 —ay, +a2, (1 +a,)" ! <1, we get

(It+an)|Tnt1 — tnta|
<141 =k)an) [Tn — unl
Jai, (14 L?) [z = unll + (1 + BuL) [0 — Txn|| + L lgnl])
) a 2 [Zn = Tynll + an [[TTni1 — Tynll +
+an, (L ( 1—an Gn(l+L)+a, (1+1L) L2) lzn — unl]
tan, (B L(l—ap)+ay, L1+ L)Bn+1]) |lzn — Ty
+an (1+L) o +(1—an)) L gl
+an L [[pall + llpall (1+(2=F) an)
<{(Q+(1-k) ay) +(2—k)al (1+L?)
+an, L (14+L) ((1—an) Bnt+an L)} ||z, — unl|
+{(2-k) a2 (1+B, L)+
tan [fn L (1—an)+a, LI(1+L)Br+1]]} |2n — Tyl
+(2-k) 0‘% |20 — Tynll + L o [|Tn41 — ynll +
+apnL ((1—an)+ 1+ L) an+ (2—Fk) an) llgall
+(1+2—-k)a,+a, L) |Ipal-

2—k
2k

11 — Ungr| S { A+ (1 —k)an) 1—an+ al) + (2—k) a2 (1+L7)
+a, L (1+L) (1 —an) Bn+tan L)} ||z, — unl
+{(2-k) a2 (148, L)
tan [Bn L I—an)+ anL [(14+L) B+ 1] ]} |lon — Txull
+(2-k) ai |2n = Tynll + L an [[2p+1 — ynll
t+an, L((1—ap) + (1+L) an+ (2—k) an) |lgnll
+(1+2-k)an+tan L) ||pn] -

That is
Gn41 S Tn Gn +on + Wn

where

ap, = ||Tn — unl| ,
Vo= [14+ A =k)a, ] (1— an+ a?) +(2—k) (1+L?) a?
ta, LA+L)[Bn (1—an) + Lay,],

= llpnll A+ 2—k) an+an L),

oni=a, {{(2-k)a, (14+5, L)
H B L(l—ay) + an L[(A+L)Bn+1]]} llxn — Ta
+(2 = k) an [[2n = Tynll + L [[Tns1 — ynll
+L lgnll (1—an) +B +L—k) an) }.

w.

3
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Remark that -, is the same as in formula (27) from [8]. The same motivation as in
[8] leads us to

Yn < 1—k*ay,, from a sufficient large n.

We get relation (7) with A, = k%a,
ant1 < (1= M) an + oy + wy,.

Using (5) and using that Ishikawa iteration (2) converges i.e. lim, o, z, = x*,
(more precisely using lim,—.oo [|Znt1 — Ynl| = 0, limpy— oo [|2n — T2n|| = 0), it is
easy to see that o, = o(An), and Y > | w,, < co. All the assumptions from Lemma I
are satisfied, hence we have lim,,_,o, a,, = 0. That is

lim ||z, — u,|| = 0. (14)

n—oo

We suppose that lim,,_,, z, = 2*. Relation (14) and the following inequality
un — 2| < [|wn — upl| + |20 — || = 0, (n — o0),

lead us to lim,,_, o u,, = x*. O
If we consider /3, = 0, in (2) and (4), then we have the following result
Theorem 2. Let X be a Banach space and T : X — X be a Lipschitzian with

L > 1, strongly pseudocontractive map. If uy = x1 € X, let lim,, 00 @, = 0 and

Yoo |y = 00, suppose that the errors satisfy (5), then the following two assertions

are equivalent:

(i) Mann iteration (1) converges to x* € F(T),
(i) Mann iteration with errors (3) converges to the same x* € F(T).

The following result is from [8].

Theorem 3 [[8]]. Let K be a closed convex (not necessarily bounded) subset of
an arbitrary Banach space X and let T be a Lipschitzian pseudocontractive selfmap
of K. Let us consider Mann iteration and Ishikawa iteration with the same initial
point and with the conditions limy, .~ a, = 0, lim, .o B, =0, and 220:1 Q, = 00.
Let x* € F(T).Then the following conditions are equivalent:

(i) Mann iteration (1) converges to x* € F(T),
(i) Ishikawa iteration (2) converges to x* € F(T).

Take K := X in the above result. Theorem 1, Theorem 2 and Theorem 3 lead us
to the conclusion:

Corollary 1. In the same assumptions as in Theorem 1 we have the equivalence
between the convergences of (1), (2), (3) and (4).
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3. The equivalence for strongly accretive and accretive maps

The map J : X — 2% given by
* * * 2 *
Jr:={z* € X*: (x,2") = ||z||7, ||=*|| = |||}, Vx € X,

is called the normalized duality mapping. Let us denote the identity map by I.
Definition 2. Let X be a Banach space. A map T : X — X is called strongly
pseudocontractive if there exists k € (0,1) and j(zr —y) € J(x —y) such that

Re (Tz — Ty, j(z —y)) < k|z—y|?,

for all x,y € X. This is equivalent with (6).
A map S : X — X is called strongly accretive if there exists v € (0,1) and
jlx—vy) € J(x —y) such that

Re (Sz — Sy, j(x —y)) = 7llz - y|*.

for all z,y € X.
A map S : X — X is called accretive if there exists j(x —y) € J(xz —y) such
that
Re(Sz — Sy, j(x —y)) > 0.

for all z,y € X.

Let us denote the identity map by I.

Remark 1. Map T is a strongly pseudocontractive map with k € (0,1) if and
only if (I —T) is a strongly accretive map with (1 — k).

Let us consider the following operator equation

Sz = f,

where S is a strongly accretive map and f is given. Consider the map Tx =
f+{I—=8)z,Vz € X. A fixed point for T will be a solution for the equation Sz = f;
such a solution exists, see [6]. We consider iterations (2) and (4) with f+ (I — S)x
instead of T'z.

Tpnp1 = (1 —an)zn +an (f+ T = S)yn), (15)
Yo = (1= Bu)xn+Bu (f+ (I = S)z,), n=1,2,..,

and

un+1 = (1 - an)un + Oy (f + (I - S)Un) +pn7 (16)
U = (L= Bu)tun+Bn (f+ (T —Sun) +qn, n=1,2,....

Sequences (y )n, (Bn)n C (0,1), are convergent such that lim,,_,o o, = 0, limy, .00 B =
0, and >~ 7 | o, = 00. Errors (pp)n, (¢n)n satisfy (5).

Theorem 1 assures that the Ishikawa iteration and Ishikawa iteration with errors
are equivalent models for a strongly pseudocontractive map. Using Remark 1, ob-
serve that if S is Lipschitzian and strongly accretive, then the map Tz = f+(/—S)x
is Lipschitzian strongly pseudocontractive. We obtain
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Theorem 4. Let X be a Banach space, let S : X — X be a Lipschitzian with
L > 1, a strongly accretive map. If uy = x1 € B, then the following two assertions
are equivalent:

(i) Ishikawa iteration (15) converges to x* € F(T'), which is the solution of Sx =
[

(i) Ishikawa iteration with errors (16) converges to the same z* € F(T'), which
is the solution of Sx = f.

When we take 3, = 0, we get a similar result for Mann iteration and Mann
iteration with errors. Thus Mann iteration with errors (3) is equivalent with Mann
iteration (1), when we take Tz = f + (I — S)z, Vo € X.

According to observation from [8], Theorem 3 holds if we take the above oper-
ator T, with S strongly accretive. Theorem / and the equivalence between Mann
iteration with errors (3) and Mann iteration (1) lead us to the following conclusion

Corollary 2. In the same assumptions as in Theorem 4 we have the equivalence
between the convergences of (1), (2), (3) and (4) for a Lipschitzian strongly accretive
map S, and Tz = f+ (I — S)z,Vz € X.

Remark 2. If S is an accretive map, then T = f — S is a strongly pseudocon-
tractive map.

Proof. For all z,y € X and j(z —y) € J(xz — y), we have

k H{E - yH2 7Vk € (07 1)

Let us consider the following operator equation
r+Sx=f,

where S is a strongly accretive map and f is given. The existence of the solution
for  + Sx = f follows from [5]. It is clear that x + Sz is Lipschitzian if S is.
Consider the map Tx = f — Sz,Vz € X. A fixed point for T will be a solution for
the equation Sz = f. Using Remark 2, if S is an accretive map, then T is strongly
pseudocontractive. Now let us consider iterations (2) with Tx = f — Sz

Tn+1 = (1 - an)xn + ay (f - Syn) s (17)
Yn = (1 _6n)$n+6n (f_an)7 n=12 ..,

and the Ishikawa iteration with errors (4):

Unt1 = (1= an)un + an (f = Svn) + pn, (18)
Un = (1 = Bn)un + Bn (f = Sun) +qn, n=1,2,....



148 S. M. SorLTuz

Sequences (p)n, (Bn)n C (0,1) are convergent such that lim,_., o, = 0,
lim, o0 Bn =0, and Y02 | a;, = co. The errors verify (5).

Theorem 1 assures that Ishikawa iteration and Ishikawa iteration with errors are
equivalent models for a strongly pseudocontractive map. According to Remark 2,
the map Tx = f — Sz,Vax € X, is (Lipschitzian) strongly pseudocontractive map
when S is a (Lipschitzian) accretive. These arguments lead us to the following
conclusion

Theorem 5. Let X be a Banach space, let S : X — X be a Lipschitzian
with L > 1, accretive map. If uy = x1 € X, then the following two assertions are
equivalent:

(i) Ishikawa iteration (17) converges to x* € F(T'), which is the solution of x +
St =f

(%) Ishikawa iteration with errors (18) converges to the same z* € F(T'), which
is the solution of x + Sx = f.

When we take 3, = 0, we get a similar result for Mann iteration and Mann
iteration with errors. Thus Mann iteration with errors (3) is equivalent with Mann
iteration (1), when we take Tz = f — Sz, Va € X.

According to second observation from [8], Theorem I holds if we take Tx =
f— Sx,Vx € X, with S accretive. Also Theorem 5 and the remark concerning
the equivalence between Mann iteration with errors and Mann iteration for Tx =
f—Sz,Vx € X, lead us to

Corollary 3. In the same assumptions as in Theorem 5 we have the equivalence
between the convergences of (1), (2), (3) and (4) for a Lipschitzian accretive map
S, and Tx = f — Sx,Vx € X.

4. The multivalued case

In the multivalued case the following definitions hold

Definition 3. Let X be a real Banach space. A map T : X — 2% is called
strongly pseudocontractive if there exists k € (0,1) and j(z —y) € J(x —y) such
that

(€= 0,j(x—y) <kllz -yl
forallz,ye X, £ €Tx,0 € Ty.

Let S: X — 2% the map S is called strongly accretive if there exists v € (0,1)
and j(x —y) € J(x —y) such that

(€=0,j(@—y) =7 ]e—y]*

forallz,y e X, £ €Tx,0 €Ty, etc.
We remark that all results from this paper hold in the multivalued case, provided
that these multivalued maps admit single valued selections.
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