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This paper describes a procedure for proving the convergence and for 
estimating the numerical solution error of boundary value problems. The 
procedure is based on the transformation of a discrete boundary value 
problem into an equivalent discrete dynamic eigenproblem. Discrete 
dynamic eigenproblem has physical meaning in convergence analysis 
because a mass represents the measure of domain discretization. The 
convergence and accuracy of numerical solution of boundary value problem 
depend on the convergence of discrete dynamic eigenproblem spectrum. 
The developed procedure is relatively simple, easy to perform; in this paper 
it is used to evaluate the convergence and accuracy of numerical solution 
of the thin plate bending problem. The plate is discretized with four-node 
finite elements. One translational and two rotational degrees of freedom, 
which are independent of each other, are associated to each node of the 
plate. The shape functions satisfy a homogenous differential equation of 
plate bending. The developed procedure gives the greatest global error 
which can appear for a chosen discretization. The performance of the 
proposed method is illustrated by the solution procedure of two examples: 
a simply supported square thin plate and a cantilever square thin plate. 
  
Dinamička analogija za dokazivanje konvergencije rubnih 
zadaća ploča 

Izvornoznanstveni članak 
  

U ovome radu se opisuje postupak dokazivanja konvergencije i ocjene 
točnosti numeričkog rješenja rubnih zadaća. Postupak se temelji na 
transformaciji diskretne rubne zadaće u ekvivalentnu diskretnu dinamičku 
vlastitu zadaću. Diskretna dinamička vlastita zadaća ima fizikalno značenje 
jer  masa  predstavlja  mjeru  diskretizacije  područja.  Konvergencija  i 
točnost numeričkog rješenja rubne zadaće ovisi o konvergenciji diskretne 
dinamičke vlastite zadaće. Razvijeni postupak je relativno jednostavan 
i lako izvediv, a u ovome radu je upotrijebljen za analizu konvergencije 
i točnosti numeričkog rješenja tankih ploča. Ploča je diskretizirana s 
četveročvornim konačnim elementima. Svakom čvoru ploče su pridruženi 
jedan translacijski i dva rotacijska stupnja slobode koji su međusobno 
neovisni. Bazne funkcije zadovoljavaju homogenu diferencijalnu 
jednadžbu savijanja ploča. Razvijenim postupkom dobivamo najveću 
moguću pogrešku koja se može pojaviti kod određene diskretizacije. 
Učinkovitost predloženog postupka je prikazana u postupku rješavanja dva 
primjera: slobodno oslonjene kvadratne tanke ploče i ukliještene kvadratne 
tanke ploče. 

  
1. Introduction 

  
The application of spectra of matrices and operators 

has a great importance in many branches of engineering 
science. The purporse of this work is to use the spectrum 
of generalized eigenproblem for proving the existance and 
convergence of the solution of boundary value problem 
and, also, for estimating the global discretization error. 

Yosifian, Oleinik and Shamaev [11] found a suitable 
set of conditions that ensure convergence of the spectrum 

spectrum of corresponding limit-operator. Under the 
same conditions convergence of the eigenvectors is also 
proved. 

A sequence of generalized eigenproblems in different 
Hilbert spaces was considered by Jurak [2] and conditions 
ensuring convergence of the eigenvalues and eigenvectors 
were given. An application to the Laplace type boundary 
value problem was presented. 

Mihanović and Radelja [6] proved that, if the applied 
numerical method is based on the weak formulation, 

of selfadjoint operators A (n∈N), as n→∞ towards the 
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Symbols/Oznake 

 
a - load vector 

- vektor opterećenja 
A - differential operator 

- diferencijalni operator 
- component of load vector 
- komponenta vektora opterećenja 

B - differential operator 
- diferencijalni operator 

E - Young’s modulus 
- Youngov modul elastičnosti 

f(Ω) - action on the domain Ω 
- djelovanje na području Ω 
- vector of the nodal forces 
- vektor čvornih sila 

g(Γ) - tractions at the boundary Γ of the domain Ω 
- djelovanje na rubu Γ područja Ω 

H - Hilbert space 
- Hilbertov prostor 

u(Ω) - displacements over the domain Ω 
- pomaci na području Ω 

u - component of displacement 
- komponenta pomaka 

u - displacement vector 
- vektor pomaka 

γ - influence of the i-th eigenvector to the total 
solution 

- učešće i-tog vlastitog vektora u ukupnom rješenju 
δ - error of the i-th eigenvector 

- pogreška i-tog vlastitog vektora 
- relative error of the i-th eigenvector 
- relativna pogreška i-tog vlastitog vektora 
- relative error of the i-th component of the load 

vector 
- relativna pogreška i-te komponente vektora 

opterećenja 
δ - Kronecker delta 

- Kronecker delta 
- shape function of the translation 
- bazna funkcija translacije 
- shape function of the rotation around ξ axis 
- bazna funkcija zaokreta oko osi ξ 

h - shape function of the rotation around η axis 
13 

- bazna funkcija zaokreta oko osi η 

- total displacement error 
- ukupna pogreška pomaka 
- component of eigenvector matrix 
- komponenta vlastite matrice 
- eigenvector matrix 
- vlastita matrica 

I - unit matrix 
- jedinična matrica λ, λi - eigenvalue 

- vlastita vrijednost 
- stiffness matrix 
- matrica krutosti 

m (Ω)  - mass distributed over the domain Ω 
- masa raspodijeljena po području Ω 

φi  - eigenvector 
- vlastiti vektor 
- pairs of eigenvalues and eigenvectors in Hilbert 

spaces H 
- mass matrix 
- matrica masa 

Q - volume of the domain Ω 
- volumen područja Ω 
- error of the i-th component of the load vector 
- pogreška i-te komponente vektora opterećenja 
- component of load vector 
- komponenta vektora opterećenja 

n 
- parovi vlastitih vrijednosti i vlastih vektora u 

Hilbertovim prostorima H 
n 

Λ - spectral matrix 
- spektralna matrica 

v - Poisson’s ratio 
- Poissonov koeficijent 

Ω - domain 
- područje 

u(Γ) - displacements at the boundary Γ of the domain Ω 
- pomaci na rubu Γ područja Ω 

 
the generalized eigenproblem can be associated to the 
boundary value problem. In that case the numerical 
solution of the boundary value problem exist and converge 
to the exact solution. The described procedure can be 
used for proving the existence of solution of observed 
method and convergence of the numerical solution to the 
exact one. In this paper the method is applied for proving 
the convergence and calculating the discretization error 
of four-node plate finite element with one translational 
and two rotational degrees of freedom and the shape 
functions satisfying the homogenous differential equation 
of the thin plate bending [8]. 

The bending of thin plate is associated with fourth- 
order differential equation. The mathematical proof of the 
conditions ensuring convergence of the solution of thin 
plate is very complex and it is not the aim of this paper. 
The convergence analysis of the numerical solution for 
thin plate is performed indirectly. Namely, the numerical 
model of the boundary value problem has an appertained 
discrete standard eigenproblem and discrete dynamic 
eigenproblem. Dynamic eigenproblem has physical 
meaning because a mass represents the measure of the 
domain discretization. If eigenvalues of the associated 
discrete dynamic eigenproblem converge to the exact 
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eigenvalues  of  generalized  eigenproblem,  it  can  be 
stated that, the numerical solution of the boundary value 
problem exists and converges to the exact solution with 
the increasing of a number of degrees of freedom [6, 7]. 
Therefore, convergence of the numerical solution depends 
on the convergence of discrete dynamic eigenproblem 
spectrum. This conclusion can be applied in convergence 
analysis of different boundary value problems. 

The global discretization error of the finite element 
approximation can be estimated by using the eigenvalues 
and eigenvectors of discrete dynamic eigenproblem. It is 
different procedure from the estimation of global error 
based on  energy norm in papers of  Zienkiewicz and 
Taylor [12], Kelly, Gago, Zienkiewicz and Babuška [3], 
Zienkiewicz and Zhu [13], Li and Wiberg [4]. 

The organization of this paper is as follows. In Section 
2, we present theoretical considerations of the proposed 
procedure and the transformation of the discrete boundary 
value problem into an equivalent discrete dynamic 
problem. Some considerations concerning convergence 
criteria of the numerical solution and numerical solution 
accuracy are shown in Sections 3 and 4, while Section 
5 introduces the necessary mass and stiffness matrices 
used in the thin plate bending problem. The application 
of the proposed procedure is illustrated in Section 6 by 
means of two examples, i.e. a simply supported square 
thin plate and a cantilever square thin plate, together 
with appropriate comments. The general conclusion is 
presented in Section 7. 

                                                    (3) 
 
where λ represents eigenvalues, can be associated with the 
boundary value problem. The solutions of the standard 
eigenproblem are pairs of eigenvalues and orthonormalized 
eigenfunctions                                             spanning  the 
separable Hilbert space H. If that is the case, then for 
f(Ω) limited, the solution of the boundary value problem 
(1) exists. 

Let us introduce the generalized eigenproblems from 
the standard eigenproblem (3) as follows: 
 
 

(4) 
 

 
 
and name them equivalent dynamic eigenproblems. The 
functions mi(Ω) can be treated as a mass distributed over 
the whole domain, and Q is a constant equal to a volume 
over domain Ω. Let eigenproblems (4) have solutions 

 such that: 

                                                (5) 
 
where δkl is Kronecker delta function. 

The numerical model of the boundary value problem 
(1) and (2) is: 
K  u = f (6) 

n     n  n 
 

2. Dynamic eigenproblem of the 
equilibrium boundary value problem 

and it has an appertained standard eigenproblem: 
 

K  Φ = ΛІΦ . (7) 
n  n  n 

 
In this paper we are dealing with the equilibrium 

boundary value problem over the domain, consisting of 
several parts which are deformable solids. The governing 
equation is: 

The appropriate dynamic eigenproblem can be written 
in the following form: 
 

K  Φ = ΛM Φ , (8) 
n  n  n      n 

 

                                                       (1) 
 

where A is differential operator, u(Ω) are unknown 
displacements over the domain Ω and f(Ω) are the known 
action on the domain Ω, with the appropriate boundary 
conditions: 

 

                                                       (2) 
 

where B is a differential operator, u(Γ) are displacements 
at the boundary Γ of the domain Ω and g(Γ) are tractions 
at the same boundary. We assume that the boundary 
conditions (2) are such that the whole domain is supported 
as a kinematics rigid body. 

The standard eigenproblem: 

where solutions are eigenvalues and eigenvectors 
spanning a separable Hilbert spaces Hn. If a mass matrix 

is diagonal and especially if                   then matrix Mn 

represents a discretization measure of the domain . In 
that case the eigenproblem (8) represents an equivalent 
dynamic eigenproblem for a standard eigenproblem, 
where eigenvectors are identical, but the quotient of 
eigenvalues is n. 

When  n,  the  discrete  mass  is  transformed  into  a 
continuous function derivable over parts of the domain: 
 

                                            (9) 
If  eigenvalues  of  the  dynamic  eigenproblem  (8) 

converge when n, the numerical solution of boundary 
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n 

n  n 

a = φ 

 

value problem (1) and (2) exists and converges towards 
the exact solution. In the special case when: 

 

                              (10) 
 

eigenpairs from the Eq. (8) are identical to eigenpairs 
obtained from Eq. (3). 

it can be evaluated in relation to the analytical solution 
or to the solution obtained by another discretization. 
Afterwards, the error of each eigenvector, based on the 
influence of each eigenvector and its relative error upon 
the numerical solutions, is computed. The total error is 
obtained by summing the errors of all eigenvectors [7]. 

The vector of the nodal forces f   from Eq. (6) can be 
represented as a linear combination: 

f = Φ a,                                                                      (12) 
3. Convergence criteria of numerical n  n

 

solution 
 

The mathematical proof of the conditions ensuring 
convergence of the solutions in different boundary value 
problems is complex and is not the aim of this paper. 
The convergence analysis can be performed indirectly. 

where f is the nodal forces vector and Φ is the eigenvector 
matrix of dynamic eigenproblem (8). The components of 
vector a follow from: 
 

                                                                  (13) 
 

Because of K and I orthogonality of Φ , the solution 
Namely, it was proved in in the works [2, 11] that the 
convergence in the Laplace type boundary value problem 
is ensured if the numerical method is based on the weak 
formulation or any other formulation which produces the 
same matrix operator K. In that case the numerical solution 

u can be represented as: 
n 
 
 
 

(14) 

of  the  boundary  value  problem  exists  and  converges 
to the exact solution when the number of degrees of 
freedom increases, while the spectrum of the operators 
Kn of discrete dynamics problem converges towards the 
spectrum of the corresponding limit-operator. This proof 
can be inverted. If the convergence of eigenvalues of the 
associated discrete dynamic problem is achieved: 

where k is a number of degrees of freedom for a given 
discretization   and   it   corresponds   to   the   maximal 
possible number of the eigenvalues of the dynamic 
eigenproblem. 

If we define the norm: 

 

                                                               (11) 
 

it can be stated that, when n, the numerical solutions of 
the boundary value problem converge towards the exact 
solutions [6, 7]. 

 
 
 
we get: 

(15) 
 
 
 
 
 
(16) 

 
 
4. Numerical solution accuracy 

 
Once we have proved that a numerical solution is 

convergent to the given class of boundary value problems, 
the next step is to find out how the discretization affects 
the accuracy of the results. 

The  load  type  influences  the  discretization  error 
in addition to other factors. It is necessary to represent 
the load over the domain as a linear combination of 
eigenvectors if the equivalent discrete dynamic problem 
can be used to estimate the numerical solution error. The 
influence of each eigenvector on the numerical solutions 
can  be  determined  by  computing  the  coefficients in 
the load representation by a linear combination of 
eigenvectors. 

Let us consider two special cases of a load vector 
f. The first case is a concentrated unit force in the m 
direction. Therefore, Eq. (13) becomes: 
 

(17) 
i  i, m 

and the components of displacements are: 
 

                                      (18) 
 

The second case is a uniformly distributed load of 
intensity k. The components of the load vector a given 
by Eq. (13) are: 
 

a = ΦT1 = [a , a , ... a , ..., a ] (19) 

The procedure for the estimation of the error consists 
of two phases. The relative error in any component of each 
eigenvector has to be computed firstly. It is independent 
of the applied load and, for the observed discretization, 

where: 
1  2  i  k  

 
 
(20) 



Strojarstvo 54 (4) 297-306 (2012) Ž. NIKOLIĆ et al., Dynamic Analogies for… 301 

13 

11  12 

 

Because of the property of orthonormalized 
eigenvectors: 

one translation perpendicular on the plate mid-surface 
and two rotations. This is in accordance with a unified 

 

s  > s > s 
i-1  i 

, (21) 
i+1 

approach  to  structural  system  modelling,  described 
by Ibrahimbegović [1], which eliminates a problem of 

the components of displacement uj (j = 1, ..., k) can be 
evaluated as: 

 

                                                           (22) 
 

Let us suppose that we have two discretizations El 
and Ek, where k→∞, under condition that k>l and that k 
mesh contains all degrees of freedom of the l mesh. Let 
us suppose that the load has as many components as the 
l mesh. 

We can formally reduce the k mesh to the kr mesh 
by omitting those degrees of freedom which are not 
contained in mesh l to obtain: 

 

                      (23) 
 

According to Eqs. (13) and (14), the error of the i-th 
component of the load vector in the l mesh caused by 
eigenvector i can be presented as: 

 

                                                (24) 
If l is large enough, then for a few first eigenvectors 

where for i<l, we obtain: 
 

                                               (25) 
 

Then, the error can be rewritten as: 
 

                                               (26) 
 

In this case the relative error in any component of the 
i-th vector is: 

 

                                     (27) 
 

The total error is obtained by summing up the errors 
of all eigenvectors (Nikolić 1999). The evaluation of 
the total error is represented by a few examples in the 
Section 6. 

 
 
5. Mass and stiffness matrices in the thin 

plate bending problem 
 

The convergence and the accuracy of the numerical 
solution  are  analyzed  for  a  four-node  plate  element 
with three independent degrees of freedom per node, 

joining individual elements to the compatible whole. The 
shape functions for the first node of the element are given 
by the following equation: 
 
 
 
 

(28) 
 
 
 
 
where h   is the function of the translation, h   is the 
function of the rotation around ξ axis, and h   is the 
function of the rotation around η axis of the local 
coordinate system ξ-η. 

The  solution  of  a  dynamic  eigenproblem  requires 
the formation of the mass and stiffness matrices. The 
computation can employ either the consistent mass 
matrix, whose elements are computed with shape 
functions   approximating   the   displacement   field,  or 
the diagonal mass matrix when the inertial forces are 
distributed uniformly over nodes. In solving the standard 
eigenproblem the mass matrix is diagonal with units on 
the diagonal. Due to the equivalence of the dynamic and 
standard eigenproblem, matrix Mn must be diagonal when 
analyzing  the  convergence  and  proving  the  accuracy 
of the equilibrium problem solution. The translational 
masses on the diagonal are computed according to Eq. 
(9), while the rotational masses are neglected since their 
influence is lost due to mesh refinement. 
 
 
6. Numerical examples 
 

The appropriate numerical algorithm is  developed 
on the basis of the theoretical considerations. The 
governing equilibrium equation is of a biharmonic form 
[7]. The finite element method is applied. The structure 
is discretized by four-node plate elements with a total 
of 12 degrees of freedom. One translational and two 
rotational displacements, which are independent of each 
other, are associated to each element node. The shape 
functions  satisfy  a  homogenous  differential  equation 
of plate bending. In order to demonstrate the proposed 
method for proving the convergence and to estimate the 
numerical solution error two examples are solved: (a) a 
simply supported square thin plate, and (b) a cantilever 
square thin plate. 
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6.1.  Example 1: Simply supported square thin plate The   plate   loads   are   developed   into   series   by 
eigenvectors for proving the numerical solution accuracy, 

A simply supported square thin plate subjected to the coefficients â 
are determined [10] and the influence 

flexure by a uniformly distributed load is analyzed. The of each of the 
ij 

eigenvectors upon the total solution is 
plate length is L = 1 m and the thickness of the plate is 
h = 0.001 m. Young’s modulus is E = 1.2×1010  kN/m2 
and the Poisson ratio is ν = 0. The unit mass is uniformly 
distributed over the plate area. 

 
The equivalent dynamic eigenproblem is analyzed 

for  several  discretizations,  namely  4×4,  8×8,  12×12, 
16×16  and 24×24  element mesh. Figure 1 shows the 
first four eigenvectors while Table 1 shows the first eight 
eigenvalues. It is obvious that the first eight eigenvalues 
obtained   numerically,   converge   to   the   analytical 
eigenvalues [5, 9] with the increasing number of degrees 
of  freedom.  These  results  show  that  the  numerical 
solution converges to the analytical one. 

 
 

 
Figure 1. Eigenvectors of a simply supported square thin plate 
Slika 1. Vlastiti vektori slobodno oslonjene kvadratne tanke 
ploče 

computed as shown in Table 2. 
 
 

 
 
Figure 2. Eigenvalues of a simply supported square thin plate 
Slika 2. Vlastite vrijednosti slobodno oslonjene kvadratne 
tanke ploče 
 

 
The relative error δ and total error      for each of the 

eigenvectors are computed according to the influence of 
each vector upon the total solution. Table 3, Figure 2 and 
Figure 3 show the relative and total eigenvector errors. 
The relative error for the given discretization is the lowest 

 
 

Table 1. Eigenvalues of a simply supported square thin plate 
Tablica 1. Vlastite vrijednosti slobodno oslonjene kvadratne tanke ploče 

 

Eigenvalue / 
Vlastite vrijednosti 

2×2 
k=19 

4×4 
k=59 

8×8 
k=211 

12×12 
k=459 

16×16 
k=803 

24×24 
k=1779 

Analytical / Analitički 
k=∞ 

 

λ  = 
1  11 

109.10 368.30 384.60 387.58 388.32 388.88 389.64 
 

λ  = 
2  12 

- 2177.46 2344.55 2418.14 2428.24 2435.60 2435.23 
 

λ  = 
3  21 

- 2177.46 2344.55 2418.14 2428.24 2435.60 2435.23 
 

λ  = 
4  22 

- 4551.94 5899.34 6091.89 6155.93 6201.26 6234.18 
 

λ  = 
5  13 

- 6559.39 9142.61 9428.13 9625.76 9693.13 9740.91 
 

λ  = 
6  31 

- 6559.39 9142.61 9428.13 9625.76 9693.13 9740.91 
 

λ  = 
7  23 

- 7797.62 13352.20 15129.80 15972.10 15981.00 16462.14 
 

λ  = 
8  32 

- 7797.62 13352.20 15129.80 15972.10 15981.00 16462.14 
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= 389.64 
11 

1.62113894 0.00416065 0.96908432 
 

= 2435.23 
12 

0 0 0 
 

= 2435.23 0 0 0 
 

= 6234.18 
22 

0 0 0 
 

= 9740.91 
13 

0.54037965 0.00005548 0.01292112 
 

= 9740.91 0.54037965 0.00005548 0.01292112 
 

= 16462.14 0 0 0 
 

= 16462.14 
32 

0 0 0 
 

= 28151.23 0 0 0 
 

= 28151.23 0 0 0 
 

= 31560.55 
33 

0.18012655 0.00000571 0.00132933 

.    
 

 
 

 
0.00429338 

 

 

φ 
i 

4×4 8×8 12×12 16×16 24×24 
  

δ  
 

δ  
 

δ  
 

δ  
 

δ  
φ 

1 5.7942 5.5673 1.3105 1.2592 0.5315 0.5107 0.3399 0.3266 0.1954 0.1877 
φ 

2 11.8381 0.0000 3.8677 0.0000 0.7067 0.0000 0.2879 0.0000 0.0152 0.0000 
φ 

3 11.8381 0.0000 3.8677 0.0000 0.7067 0.0000 0.2879 0.0000 0.0152 0.0000 
φ 

4 36.9566 0.0000 5.6759 0.0000 2.3357 0.0000 1.2711 0.0000 0.5309 0.0000 
φ 

5 48.5033 0.6267 6.5441 0.0846 3.3175 0.0429 1.1963 0.0155 0.4929 0.0064 
φ 

6 48.5033 0.6267 6.5441 0.0846 3.3175 0.0429 1.1963 0.0155 0.4929 0.0064 
φ 

7 111.1175 0.0000 23.2916 0.0000 8.8061 0.0000 3.0681 0.0000 3.0107 0.0000 
φ 

8 111.1175 0.0000 23.2916 0.0000 8.8061 0.0000 3.0681 0.0000 3.0107 0.0000 
  

6.8207 
 

- 
 

1.4284 
 

- 
 

0.5965 
 

- 
 

0.3576 
 

- 
 

0.2005 

 

 
for the first eigenvector and it increases for the higher- 
order eigenvectors. It is distinct because, for the same 
discretization, the first eigenvector, which is relatively 
simple, cannot be obtained with the same accuracy as 
the higher-order vectors with a more complex form. The 
relative error of the eigenvector components is reduced 
when the number of degrees of freedom increases. 

 
 

Table 2. Computation of the influence of eigenvectors upon 
the total solution for a simply supported square thin plate 
Tablica 2. Proračun učešća vlastitih vektora u ukupnom 
rješenju za slobodno oslonjenu kvadratnu tanku ploču 

 
 

 
 

 

21 

31 

23 

 

41 

14 

 

 
Figure 3. Relative eigenvector error (%) of a simply supported 
square thin plate 
Slika 3. Relativna pogreška vlastitih vektora (%) za slobodno 
oslonjenu kvadratnu tanku ploču 
 

The total error    of the i-th eigenvector is the greatest 
for the first eigenvector while it decreases for the higher- 
order eigenvectors because the influence of these vectors 
upon the total solution becomes smaller. The total 
solution error can be computed by summing up the errors 
of all eigenvectors. The fifth and sixth eigenvector have a 
total error less than 1 per cent (%) for all discretizations. 
The total error for the higher-order eigenvectors becomes 
smaller so the solution accuracy can be estimated quite 
precisely with several first eigenvectors. The total error 
of the numerical solution, in relation to the exact solution, 
is estimated upon the basis of the first eight eigenvectors 
and  for  discretizations  4×4,  8×8,  12×12,  16×16  and 
24×24  is successively equal to 6.8207 %, 1.4284 %, 

 
Table 3. Relative and total eigenvector error (%) for a simply supported square thin plate 
Tablica 3. Relativna i ukupna pogreška vlastitih vektora (%) za slobodno oslonjenu kvadratnu tanku ploču 

 
 
 

i  i  i  i  i 
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Eigenvalue / 
Vlastita vrijednost 

4×4 
k=60 

8×8 
k=216 

12×12 
k=468 

16×16 
k=816 

λ 11.68 12.22 12.30 12.29 

λ 
2 

82.64 90.83 92.42 92.95 

λ 
3 

467.80 465.33 477.93 482.41 
λ 884.85 806.131 819.02 827.44 
λ 999.61 1187.21 1221.67 1233.53 
λ 4381.51 3946.26 3859.84 3924.34 

 

i 

 

0.596 %, 0.3576 % and 0.2005 % (see Table 3). The 
error of the numerical solution cannot be as high as those 
values at any plate node. The developed procedure for 
the estimation of the numerical solution shown in this 
paper guarantees the upper bounds of the error at the 
finite element nodes for a given discretization. 

 
 

 
Figure 4. Displacement error of a simply supported square 
thin plate subjected to a uniform load 
Slika 4. Pogreška pomaka slobodno oslonjene kvadratne tanke 
ploče izložene jednoliko raspodijeljenom opterećenju 

 
 

6.2. Example 2: Cantilever square thin plate 
 

A cantilever square thin plate subjected to flexure by 
a uniformly distributed load is analyzed. The plate length 
is L = 1 m, Young’s modulus is E = 1.2×1010 kN/m2, the 
thickness of the plate is h = 0.001 m. 

 
The equivalent dynamic eigenproblem is analyzed 

for several discretizations, namely 4×4, 8×8, 12×12 and 
16×16 element mesh. Table 4 and Figure 5 show the first 
six numerical eigenvalues and eigenvectors. 

 
 

Table 4. Eigenvalues of a cantilever square thin plate 
Tablica 4. Vlastite vrijednosti ukliještene kvadratne tanke 
ploče 

 
 
 

1 
 
 
 
 

4 

 
5 

 
6 

the first eigenvector, which is relatively simple, cannot 
be obtained with the same accuracy as the higher-order 
vectors with a more complex form. Because of that the 
third, fourth and fifth eigenvalue start to converge with 
8×8 mesh while the sixth eigenvalue starts to converge 
with 12×12 mesh. 

Consequently, it is obvious from Table 4 that the first 
six eigenvalues obtained numerically converge with the 
increase of the number of degrees of freedom. According 
to the Eq. (11) it follows that the numerical solution, 
obtained by the proposed method, converges to the exact 
one. 
 

The accuracy of the solution in this example is 
analyzed with regard to the solution obtained by 16×16 
element mesh. The given load is presented as a linear 
combination of the eigenvectors. The components of 
vector a are calculated for the first several eigenvectors 
and different discretizations. According to the computed 
components of vector a and its eigenvalues the influence 
of each eigenvector for uniformly distributed loads 
according to Eq. (20) is computed and the data are given 
in Table 5. The influence of each eigenvector upon the 
total solution slightly differs for different discretizations 
and the results converge with the mesh refinement. 
 
 

 
Figure 5. Eigenvectors of a cantilever square thin plate 
Slika 5. Vlastiti vektori ukliještene kvadratne tanke ploče 
 
 

The relative error δ of each eigenvector and the total 

error  calculated on the basis of the first six eigenvectors 
related to the values obtained by the 16×16 element mesh 
is shown in Table 6. 

 
The first two eigenvalues converge fast to the exact 

values. The convergence is slower for the higher-order 
eigenvalues. The reason is that for the same discretization, 
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φ 

Components of the vector a / Komponente vektora a, Influence of the eigenvectors to the total solution / 
Utjecaj vlastitih vektora u ukupnom rješenju, γ 

i 

4×4 8×8 12×12 16×16 4×4 8×8 12×12 16×16 

φ 
1 

2.8810 9.2371 19.0750 32.4969 0.98764 0.98631 0.98655 0.98581 

φ 
2 

0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 

φ 
3 

0.7295 3.1959 7.7870 14.3718 0.00624 0.00892 0.01036 0.01111 

φ 
4 

1.0978 2.0932 3.1025 4.1859 0.00497 0.00339 0.00241 0.00189 

φ 
5 

0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 

φ 
6 

1.2565 4.0520 4.0729 12.5776 0.00115 0.00134 0.00067 0.00119 

 

 

 
φ 

4x4 8x8 12x12 
 

δ 
 

 

 
δ 

 
 

 
δ 

 
 

φ 
1 

5.2226 5.1485 0.5728 0.5646 0.0813 0.0801 
φ 12.4758 0.0000 2.3340 0.0000 0.5735 0.0000 
φ 3.1231 0.0347 3.6705 0.0407 0.9374 0.0104 
φ -6.4987 0.0123 2.6435 0.0050 1.0281 0.0019 
φ 23.4011 0.0000 3.9016 0.0000 0.9708 0.0000 

φ 
6 

-10.4954 0.0125 -0.5555 0.0007 1.6711 0.0020 

  
5.2080 

 
- 

 
0.6110 

 
- 

 
0.0944 

 

 

Table 5. Computation of the influence of eigenvectors upon the total solution for a cantilever square thin plate 
Tablica 5. Proračun učešća vlastitih vektora u ukupnom rješenju za ukliještenu kvadratnu ploču 

 
 

i 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6. Relative and total eigenvector error (%) for a 
cantilever square thin plate 
Tablica 6. Relativna i ukupna pogreška vlastitih vektora (%) 
za ukliještenu kvadratnu ploču 
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The relative error is the least for the first eigenvector. 
Generally, the relative error of eigenvectors decreases 
with the increase of the number of degrees of freedom. 
The total error for the uniformly distributed load decreases 
with the increase of the number of degrees of freedom. 
The displacement field error for a given discretization 
in the analyzed example at any place will not exceed 
5.2080 % for 4×4, 0.6110 % for 8×8 and 0.0944 % for 
12×12  element mesh discretization. Although the error 
is computed according to the first six eigenvectors, the 
influence of other vectors upon the total solution is 
significantly smaller so that it will not affect the obtained 
results. 

For the same discretization, the total error for the 
cantilever plate is smaller than for the simply supported 
square plate if both are exposed to uniformly distributed 
loads, which is expected since the eigenvectors accuracy 
is greater for the cantilever plate. 

7. Conclusion 
 

The procedure for proving the convergence and for 
estimating  the  numerical  solution  error  of  boundary 
value plate problems is shown in this paper. The 
procedure is based on the transformation of a discrete 
boundary value problem into an equivalent discrete 
dynamic eigenproblem. Discrete dynamic eigenproblem 
has physical meaning in convergence analysis because 
a mass represents the measure of domain discretization. 
Convergence  of  the  numerical  solution  depends  on 
the convergence of discrete dynamic eigenproblem 
spectrum. 

The numerical experiment is proposed for the 
estimation of the convergence of numerical method instead 
a mathematical proof of convergence. The convergence 
of eigenvalues of discrete dynamic eigenproblem shows 
that numerical solution exists and converges to exact 
solution for used numerical method. If the numerical 
solution  is  convergent,  the  global  discretization  error 
of the finite element approximation can be estimated 
by using the eigenvalues and eigenvectors of discrete 
dynamic eigenproblems. Furthermore, the procedure can 
be applied in convergence analysis of different boundary 
value problems in linear and non-linear analysis. 

The   developed   procedure   is   relatively   simple, 
easy to perform and irrespective of the applied load. 
It gives the greatest global error which can appear for 
a chosen discretization. The only condition is to apply 
the algorithm for determining the number of eigenvalues 
and eigenvectors which is sufficient to estimate the error 
reliably and accurately. 
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