CODEN STJSAO ZX470/1584

ISSN 0562-1887 UDK 621 83

Izvornoznanstveni članak

Procjena zamornog vijeka evolventnih zupčanih parova

Milan PERKUŠIĆ, Damir JELASKA i Srđan PODRUG

Fakultet elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu (Faculty of Electrical Engineering, mechanical Engineering and Naval Architecture, University of Split), Ruđera Boškovića bb, HR-21000 Split, **Republic of Croatia**

milan.perkusic@st.t-com.hr

Ključne riječi

Faktor intenziteta naprezanja Metode kritične ravnine Numerički model Suma faktora pomaka profila Širenje pukotine Zamorni vijek

Keywords

Computational model Crack propagation Critical plane methods Fatigue life Overlap factors sum Stress intensity factor

Primljeno (Received): 2010-05-19 Prihvaćeno (Accepted): 2011-01-22

1. Uvod

Fenomen zamora materijala, koji se javlja kada je dio stroja ili konstrukcije podvrgnut vremenski promjenjivim opterećenjima, više od stoljeća zadaje brige kako projektantima tako i inženjerima u pogonu te je stalno u žiži stručnog i znanstvenog interesa. Zamor se može opisati kao progresivno oštećenje materijala širenjem pukotine od njenog nastanka do kritične veličine kada nastupa lom. U ovom radu je razmatran problem određivanja zamornog vijeka evolventnih zupčanih parova koji se određuje kao broj ciklusa do loma onog zupčanika čiji zub se prije lomi. Istraživanje uključuje problematiku inicijacije i širenja pukotine za oba spregnuta zupčanika a temelji se na numeričkom modelu predloženom u [1-3]. Pri tome se ukupni broj ciklusa računa kao suma ciklusa potrebnih za inicijaciju pukotine N_i i ciklusa opterećenja potrebnih za širenje pukotine od inicijalne do kritične duljine $N_{\rm p}$.

Razmatran je problem određivanja vijeka trajanja zupčanika s obzirom na zamor materijala uslijed savijanja u korijenu zuba. Istraživanje se temelji na numeričkom modelu, koji se sastoji iz dva dijela. U prvom dijelu se izračunava vrijeme do inicijacije pukotine, a u drugom broj ciklusa opterećenja potrebnih za rast pukotine od inicijalne do kritične duljine. Ukupan vijek trajanja se dobiva zbrajanjem broja ciklusa potrebnih za inicijaciju i širenje zamorne pukotine. Korišteni numerički model omogućava izračun broja ciklusa do inicijacije zamorne pukotine pomoću metoda kritične ravnine, dovodeći u vezu deformaciju i vrijeme inicijacije zamorne pukotine. Izračun broja ciklusa naprezanja potrebnih za širenje zamorne pukotine od inicijalne do kritične duljine temelji se na principima linearno elastične mehanike loma, gdje je rast zamorne pukotine po ciklusu opterećenja ovisan od faktora intenziteta naprezanja u vršku pukotine.

Estimation of fatigue life of involute gearing pairs

Original scientific paper

The problem of determination of gear service life with regard to bending fatigue in a gear tooth root is analysed in this paper. The research is based on a computational model that consists of two parts. In the first part the period required for the crack initiation to occur is calculated, whereas in the second part the number of loading cycles required for crack propagation from the initial to the critical length is calculated. The computational model used in this paper makes it possible to calculate the number of cycles required for the fatigue crack initiation. Critical plane methods are used in the calculations and they make a correlation between the deformation and fatigue crack initiation period. The calculation of the stress cycles required for the fatigue crack propagation from the initial to the critical length is based on the principles of linear elastic fracture mechanics, where the fatigue crack propagation per stress cycle is dependent on the stress intensity factor in the crack peak.

$$N = N_{\rm i} + N_{\rm p} \tag{1}$$

Prva faza određivanja zamornog vijeka provedena je uz simulaciju pomicanja opterećenja po boku zuba radi dobivanja što realnijeg ciklusa naprezanja, dok je simulacija širenja zamorne pukotine provedena uz aproksimaciju opterećenja u početnoj (krajnjoj) točki jednostrukog zahvata koje se mijenja od nula do maksimalne vrijednosti.

2. Inicijacija zamorne pukotine u korijenu zuba zupčanika

Prema numeričkom modelu za izračunavanje broja ciklusa potrebnih za inicijaciju pukotine u korijenu cilindričnog zupčanika [1-3], zasnovanom na principu lokalne deformacije, zamorna pukotina se inicira na mjestu s najvećom koncentracijom deformacije kao

Oznake/	Symbols
---------	---------

- a_{th} duljina inicijalne pukotine, mm - initial crack length a_{o} - kritična duljina pukotine, mm
- *a*_c kritična duljina pukotine, mm - critical crack length
- Δa produljenje pukotine, mm - extension of cracks
- *b* širina zupčanika, mm - width of gear
- *b*_i eksponent dinamičke čvrstoće - exponent of the dynamic strength
- *b*_{0i} smični eksponent dinamičke čvrstoće - shear exponent of dynamic strength
- *C* konstanta materijala u Parisovoj jednadžbi, mm/ciklus·(MPA·mm^{0,5})^m
 - material constants in the equation Paris
- $C_{\rm sur}$ faktor površine - factor surfaces
- *c** faktor radijalne zračnosti - radial clearance factor
- *c*_i eksponent cikličkih deformacija - exponent of cyclic strain
- *c*_{0i} smični eksponent cikličkih deformacija - shear exponent of cyclic strain
- *d*_t vlačni parametar oštećenja - tensile damage parameter
- *d*_s smični parametar oštećenja - shear damage parameter
- *E* modul elastičnosti, MPa - modulus of elasticity
- *G* modul smicanja, MPa - shear modulus
- *K*₁ faktor intenziteta naprezanja tip I, MPa·mm^{0,5} - stress intensity factor tip I
- K_{II} faktor intenziteta naprezanja tip II, MPa·mm^{0,5} - stress intensity factor tip II
- $K_{\rm IC}$ lomna žilavost materijala, MPa·mm^{0,5} - fracture toughness of the material

rezultat povratnog plastičnog toka, odnosno ciklički ponavljane plastične deformacije. Ta točka kod cilindričnih zupčanika se nalazi u korijenu zuba, za koju se, metodom konačnih elemenata, utvrdi vrijednost maksimalnog glavnog naprezanja (slika 1).

Pošto je stanje naprezanja na površini zuba zupčanika višeosno, broj ciklusa do inicijacije zamorne pukotine se računa pomoću metoda kritične ravnine, dovodeći u vezu deformaciju i vrijeme inicijacije pukotine. Prema metodama kritične ravnine pukotina se inicira na određenim, povoljno orijentiranima ravninama, gdje parametar oštećenja ima maksimalnu vrijednost. Odabrana

$K_{\rm eq}$	 ekvivalentni FIN, MPa·mm^{0,5} equivalent stress intensity factor
$K_{\rm eff}$	 efektivni FIN, MPa·mm^{0,5} effective stress intensity factor
m _n	- normalni modul - normal module
т	 eksponent u Parisovoj jednadžbi exponent in the equation Paris
N	 broj ciklusa zamornog vijeka number of cycles of fatigue life
N_{i}	 broj ciklusa do inicijacije pukotine number of cycles to crack initiation
$N_{\rm p}$	 broj ciklusa širenja pukotine od inicirane do proizvoljne duljine number of cycles of crack propagation initiated from the arbitrary length
$N_{\rm d}$	 granični broj ciklusa limit the number of cycles
x_{Σ}	 suma faktora pomaka profila sum of overlap factors
<i>x</i> ₁	 faktor pomaka profila pogonskog zupčanika overlap factor of the driving gear
<i>x</i> ₂	 faktor pomaka profila gonjenog zupčanika overlap factor driven gear
$\rho_{\rm f}^{\ *}$	 relativni radijus zakrivljenosti profila alata relative radius of curvature of the profile tool
$\sigma_{ m f}{}^\prime$	 koeficijent dinamičke čvrstoće, MPa coefficient of dynamic strength
$\sigma_{\rm d}$	 dinamička čvrstoća laboratorijskog uzorka dynamic strength of laboratory sample
$\sigma_{\rm Dr}$	 dinamička čvrstoća strojnog dijela dynamic strength of machine parts
ξ	- omjer CTOD _{brazde} i CTOD _{max} - ratio CTOD _{brazde} and CTOD _{max}

Slika 1. Kritična točka prijelazne krivulje Figure 1. The critical point of the transient curve je Socieva metoda [4] koja predviđa dva modela, jedan se odnosi na slučaj kada se zamorne pukotine opažaju u smjeru maksimalne smične deformacije, te se definira smični parametar oštećenja d_{a} :

$$d_{s} = \gamma_{a} \left(1 + k \frac{\sigma_{\max}}{R_{t}} \right) = \frac{\tau_{f}}{G} \left(2N_{i} \right)^{b_{0}} + \gamma_{f} \left(2N_{i} \right)^{c_{0}} .$$
⁽²⁾

Drugi Sociev model se odnosi na slučaj kada se zamorne pukotine opažaju u smjeru maksimalnog vlačnog naprezanja, te se definira vlačni parametar oštećenja d:

$$d_{t} = \sigma_{\max} \varepsilon_{a} = \frac{\left(\sigma_{r}\right)^{2}}{E} \left(2N_{i}\right)^{2b_{i}} + \sigma_{r} \varepsilon_{r} \left(2N_{i}\right)^{b_{i}+c_{i}}$$
(3)

Maksimalna vrijednost vlačnog parametra oštećenja je na ravnini maksimalnog normalnog naprezanja, a to je ravnina koja je okomita na površinu prijelazne krivulje u kritičnoj točki (slika 2). Smični parametar oštećenja ima maksimalnu vrijednost na ravnini gdje je maksimalna amplituda smične deformacije, a to je ravnina koja je od kritične ravnine za vlačni model zakrenuta za kut od 45° (slika 2).

$$x_{1} = \frac{x_{\Sigma}}{2} + \frac{1 - x_{\Sigma}}{2} \cdot \frac{\ln \frac{z_{n2}}{z_{n1}}}{\ln \frac{z_{n1} + z_{n2}}{100}},$$
(4)

$$x_2 = x_{\Sigma} - x_1. \tag{5}$$

Korišten je 2D model zupčanika sa tri zuba iz razloga što prema [5-6] daje približno jednake rezultate kao i 3D model u slučaju simetrične raspodjele opterećenja duž boka zuba, te je mala razlika u naprezanjima na kritičnoj lokaciji između modela sa tri zuba i model cijelog zupčanika. Prema [6] u svim modelima pogonskih i gonjenih zupčanika jedanaest razmatranih zupčanih parova vlada stanje ravninske deformacije, jer je širina zupčanika šest puta veća od modula.

Nakon što se odabere linearno elastični konačni element, materijal, definiraju rubni uvjeti i opterećenje zupčanika, za svih jedanaest modela pogonskih i gonjenih zupčanika provedena je ista procedura generiranja mreže konačnih elemenata u softverskom paketu ADINA.

Utjecaj pomicanja opterećenja po boku zuba na naprezanje u korijenu je razmatrano za šesnaest

kut na kritičnoj

the critical location

kritična ravnina smičnog modela/ critical plane shear model

U ovom radu je razmatrano jedanaest zupčanih parova različite sume faktora pomaka profila x_{s} u rasponu od -1 do 1,5 uz konstantan prijenosni omjer i, konstantan broj zubi z konstantnu širinu zubi b, opterećenih vremenski promjenjivim, cikličkim opterećenjem. Odabrana suma faktora pomaka profila dijeli se na x_1 i x_2 prema preporuci firme Maag na osnovu izraza:

odvojenih slučajeva opterećenja tijekom jednog ciklusa. Šest slučajeva kada je opterećenje na zubu koji se analizira (područje jednostrukog zahvata), četiri slučaja kada je opterećenje na zubu ispred i četiri slučaja kada je opterećenje iza zuba koji se analizira, te dva slučaja kada je opterećenje podijeljeno na dva zuba (područje dvostrukog zahvata), (slika 3).

Slika 3. Simulacija opterećenja gonjenog zupčanika Figure 3. Simulation of the load driven gear

U softverskom paketu ADINA se provodi analiza naprezanja i deformacija za najnepovoljniji slučaj opterećenja, te se uočavaju kritične lokacije na kojima su naprezanja najveća. Naprezanja u korijenu zuba su najveća kada se opterećenje nalazi u krajnjoj točki jednostrukog zahvata kod pogonskih zupčanika, dok su kod gonjenih zupčanika najveća naprezanja kada se opterećenje nalazi u početnoj točki jednostrukog zahvata. Na kritičnim lokacijama pogonskog i gonjenog zupčanika svakog analiziranog zupčanog para računaju se naprezanja i deformacije za cjelokupni ciklus opterećenja.

Ovisno o stanju naprezanja na površini prijelazne krivulje u korijenu zuba vrši se korekcija naprezanja i deformacija jer na tim mjestima dolazi do lokalnog tečenja materijala te se nakon toga, metodama kritične ravnine, određuje broj ciklusa potreban za iniciranje zamorne pukotine u korijenu zuba zupčanika. Korekcija naprezanja u elasto-plastičnom području je izvršena Hoffman-Seeger metodom [7].

Materijal jedanaest zupčanih parova je čelik za poboljšavanje Č4732, čija se svojstva nalaze u tablici 1.

Zamorne karakteristike strojnih dijelova su vrlo osjetljive na stanje površine. Stvarna hrapavost površine strojnog dijela je veća od hrapavosti laboratorijskog uzorka što onda uvjetuje i njegovu nižu dinamičku čvrstoću. Korekcija dinamičke čvrstoće laboratorijskog uzorka $\sigma_{\rm D}$ se vrši preko faktora površine $C_{\rm sur}$ i dobiva se dinamička čvrstoća strojnog dijela $\sigma_{\rm Dr}$:

$$\sigma_{\rm Dr} = \sigma_{\rm D} C_{\rm sur} \,. \tag{6}$$

Tablica 1. Podaci o materijalu zupčanih parova [1,8]**Table 1.** Data on the material gearing pairs [1,8]

	42 CrMo 4 - AISI 4142 - Č4732					
E, MPa	206000	n'	0,14	k	1	
<i>G</i> , MPa	80000	K'	2259	$\tau_{\rm f}$ ', MPa	1051	
v	0,3	$\sigma_{\rm f}$ ', MPa	1820	b_{0i}	-0,08	
R _m , MPa	1000	$b_{ m i}$	-0,08	γf	1,13	
R _t , MPa	800	\mathcal{E}_{f}	0,65	c_{0i}	-0,76	
σ _D , MPa	550	Ci	-0,76	$\sigma_{ m e,D}$	700	

S promjenom trajne dinamičke čvrstoće mijenja se i eksponent dinamičke čvrstoće b_i , koji nakon korekcije iznosi:

$$b_{i} = \frac{\ln \frac{\sigma_{\rm Dr}}{\sigma_{\rm r}}}{\ln \left(2N_{\rm p}\right)} \,. \tag{7}$$

U ovom radu je razmatran utjecaj površinske hrapavosti $R_a = 0.8 \ \mu m$ na vrijeme do inicijacije zamorne pukotine, te eksponent dinamičke čvrstoće iznosi $b_i = -0.0861$.

3. Rezultati izračuna vremena do inicijacije zamorne pukotine

Osnovni podaci za jedanaest razmatranih zupčanih parova dati su u tablici 2. Dobivena vremena inicijacije su prikazana grafički u ovisnosti od sume faktora pomaka profila (slika 5, 6, 7, 9, 10, 11), te u tablici 3. za pogonske, a u tablici 4. za gonjene zupčanike. Isto tako je grafički prikazana ovisnost numerički dobivenih naprezanja od sume faktora pomaka profila pogonskih i gonjenih zupčanika (slika 4, 8). širenja pukotine i izračunavanje ukupnog zamornog vijeka. Za duljinu inicirane zamorne pukotine se uzima granica između kratkih i dugih pukotina i prema [9-10] vrijeme potrebno za nastajanje pukotine duljine a_2 se može smatrati vremenom potrebnim za inicijaciju pukotine N_i . Veličina a_2 je definirana izrazom:

$$a_{2} = \frac{\delta}{2} e^{2\left(\frac{4\sqrt{2}\sigma_{\rm LD}}{\pi\sigma_{\rm D}}-1\right)}.$$
(8)

Kada pukotina pređe ovu duljinu njeno ponašanje se može opisati linearno elastičnom mehanikom loma. Za

x_{Σ}	<i>x</i> ₁	<i>x</i> ₂	<i>m</i> _n , mm	<i>z</i> ₁	<i>Z</i> ₂	b_1 , mm	<i>b</i> ₂ , mm	<i>α</i> _n ,0	с*	$ ho_{\mathrm{f}}^{*}$	promjer preko glave / diameter over her head
-1,0	0,3691	-1,3691									
-0,75	0,3854	-1,1354									
-0,5	0,4017	-0,9017									
-0,25	0,4181	-0,6681									
0,0	0,4345	-0,4345									sa skraćenjem glave /
0,25	0,4509	-0,2009	4,5	11	39	32,5	28	24	0,35	0,25	with the shortening of the head
0,5	0,4672	0,0327									
0,75	0,4836	0,2663									
1,0	0,5	0,5									
1,25	0,5163	0,7336									
1,5	0,5327	0,9672	1								

Tablica 2. Osnovni podaci zupčanih parova**Table 2.** Basic data gearing pairs

Tablica 3. Naprezanja i vremena do inicijacije zamorne pukotine pogonskih zupčanika

 Table 3. Stress and time to initiation of fatigue cracks pinions

			$R_a = 0 \ \mu m$		$R_{\rm a} = 0$,8 μm
x_{Σ}	$F_{\rm b}/b$, N/mm	$\sigma_{\rm n'} { m N/mm^2}$	vlačni model /	smični model /	vlačni model /	smični model /
			tensile model	shear model	tensile model	shear model
-1	800	478,12	1,2180.109	7,6578·10 ⁸	2,6609.108	1,7665.108
-0,75	800	487,424	9,5524·10 ⁸	5,4796·10 ⁸	2,1259.108	1,2982.108
-0,5	800	497,895	7,3042.108	$3,7702 \cdot 10^8$	1,6594.108	9,2344.107
-0,25	800	503,12	6,4010·10 ⁸	3,1348.108	1,4691.108	7,8086.107
0	800	507,955	5,6722·10 ⁸	$2,6464 \cdot 10^8$	1,3141.108	6,6969·10 ⁷
0,25	800	511,009	5,2578·10 ⁸	2,3791.108	1,2254.108	6,0814.107
0,5	800	515,538	4,7021.108	2,0333.108	1,1055.108	5,2765.107
0,75	800	519,473	4,2721.108	1,7753.108	1,0120.108	4,6685.107
1	800	523,208	3,8996.108	1,5617.108	9,3047.107	4,1597.107
1,25	800	524,976	3,7363.108	1,4701.108	8,9453·10 ⁷	3,9395.107
1,5	800	527,038	3,5550.108	1,3703.108	8,5452.107	3,6983.107

4. Širenje zamorne pukotine

Primjenom metoda kritične ravnine u predviđanju vremena do inicijacije zamorne pukotine na mjestu maksimalnog glavnog naprezanja u korijenu zuba zupčanika, osigurava se predviđanje pravca inicirane pukotine što predstavlja dobar temelj za daljnju analizu izračun duljine pukotine je potrebno odredit efektivni faktor intenziteta naprezanja na pragu širenja pukotine $\Delta K_{\text{th,eff}}$ promjer kristalnog zrna materijala δ , te koristiti podatke o materijalu zupčanika iz tablice 1. kao i podatke o propagacijskim svojstvima materijala u tablici 5. Duljina inicirane pukotine je 200 µm.

Slika 4. Promjena numerički dobivenih naprezanja u korijenu zuba sa sumom faktora pomaka profila pogonskih zupčanika Figure 4. Change the numerically obtained stress at the root of the tooth with the sum of overlap factors driving gear

Slika 5. Promjena vremena do inicijacije pukotine pogonskih zupčanika sa sumom faktora pomaka profila za $R_a=0 \mu m$ **Figure 5.** Change the time to crack initiation driving gear with

the sum of overlap factors for $R_a=0 \,\mu\text{m}$

Slika 6. Promjena vremena do inicijacije pukotine pogonskih zupčanika sa sumom faktora pomaka profila za $R_a=0.8 \,\mu\text{m}$ **Figure 6.** Change the time to crack initiation driving gear with the sum of overlap factors for $R_a=0.8 \,\mu\text{m}$

Slika 7. Vrijeme do inicijacije pukotine u korijenu zuba pogonskih zupčanika

Figure 7. Time to crack initiation at the root of the tooth pinions

Slika 8. Promjena numerički dobivenih naprezanja u korijenu zuba sa sumom faktora pomaka profila gonjenih zupčanika Figure 8. Change the numerically obtained stress at the root of the tooth with the sum of overlap factors driven gear

Slika 9. Promjena vremena do inicijacije pukotine gonjenih zupčanika sa sumom faktora pomaka profila za $R_a=0 \ \mu m$ **Figure 9.** Change the time to initiation of cracks driven gear with the sum of overlap factors for $R_a=0 \ \mu m$

Slika 10. Promjena vremena do inicijacije pukotine gonjenih zupčanika sa sumom faktora pomaka profila za $R_a=0.8 \,\mu\text{m}$ **Figure10.** Change the time to initiation of cracks driven gear with the sum of overlap factors for $R_a=0.8 \,\mu\text{m}$

Slika 11. Vrijeme do inicijacije pukotine u korijenu zuba gonjenih zupčanika

Tablica 5. Propagacijska svojstva materijala zupčanika [1]**Table 5.** Propagation properties of materials gears [1]

42 CrMo 4 - SAE (AISI) 4142 - Č4732				
$\Delta K_{\rm th},$ MPa mm ^{0,5}	269	$\frac{C,}{mm}$ ciklus× (MPa mm ^{0,5}) ^m	3,31.10-17	
$K_{\rm Ic}$, MPa mm ^{0,5}	2620	т	4,16	

Simulacija širenja zamorne pukotine je izvedena u softverskom paketu FRANC 2DL [11] koji je baziran na poluautomatskoj simulaciji širenja pukotine, što podrazumijeva da se prije svakog produljenja mora definirati iznos produljenja. Pri tome treba voditi računa o primjenjivosti principa linearno elastične mehanike loma (LEML). Analiza se provodi metodom konačnih elemenata, određuje se iznos faktora intenziteta naprezanja, izračunava se smjer širenja pukotine, vrši se lokalno brisanje mreže konačnih elemenata u području širenja pukotine, produžava se pukotina za zadani iznos, te se generira nova mreža konačnih elemenata oko vrška pukotine.

U ovom radu faktor intenziteta naprezanja izračunava se metodom J-integrala, koja daje bolje rezultate za kompliciranije geometrije i kompleksnija opterećenja, dok se smjer širenja pukotine određuje preko MCNkriterija koji je jednostavniji od ostalih, a daje približno iste rezultate [12].

Širenje pukotine se odvija kod mješovitog tipa opterećenja (tip I i tip II), gdje i mali raspon faktora intenziteta naprezanja tipa II značajno povećava brzinu širenja pukotine. Doprinos opterećenja tipa II se uzima preko ekvivalentnog faktora intenziteta naprezanja [13].

Tablica 4	4. Naprezanja i vi	remena do inicija	cije zamorne	pukotine gonjenih	zupčanika
Table 4.	Stress and time to	o initiation of fati	gue cracks d	riven gear	

			$R_{\rm a} =$	0 μm	$R_{\rm a} = 0$),8 μm
x_{Σ}	$F_{\rm b}/b$, N/mm	$\sigma_{n'} N/mm^2$	vlačni model / tensile model	smični model / shear model	vlačni model / tensile model	smični model / shear model
-1	800	678,474	1,3544.107	1,1713.106	4,3918.106	6,875·10 ⁵
-0,75	800	617,006	4,7191.107	7,4524.106	1,3485.107	2,9564.106
-0,5	800	573,477	1,2163.108	2,9734.107	3,1939.107	9,5704·10 ⁶
-0,25	800	542,917	2,4381.108	8,0229.107	6,0414·10 ⁷	2,2919.107
0	800	522,323	3,9846.108	1,6266.108	9,4914·10 ⁷	4,3148.107
0,25	800	510,093	5,4474·10 ⁸	2,5166.108	1,2660.108	6,3987·10 ⁷
0,5	800	501,998	6,5846·10 ⁸	3,2615·10 ⁸	1,5079·10 ⁸	8,0946.107
0,75	800	494,065	8,0524·10 ⁸	4,3199·10 ⁸	1,8157·10 ⁸	1,0452.108
1	800	485,532	1,0033.109	5,8677·10 ⁸	2,2244·10 ⁸	1,3819·10 ⁸
1,25	800	478,717	1,1990.109	7,5112·10 ⁸	2,6226.108	1,7318.108
1,5	800	466,632	1,6546.109	1,1719.109	3,5323.108	2,6032·10 ⁸

Figure 11. Time to crack initiation at the root of the tooth driven gear

$$\Delta K_{eq} = \cos^2 \frac{\theta_0}{2} \left(\Delta K_1 \cos \frac{\theta_0}{2} - 3\Delta K_1 \sin \frac{\theta_0}{2} \right).$$
(9)

Pukotina se produljuje sve dok ekvivalentni faktor intenziteta naprezanja ne dostigne vrijednost lomne žilavosti materijala zupčanika Kako se pukotina ne može širiti dok je zatvorena, efektivnim faktorom intenziteta naprezanja se određuje raspon ciklusa opterećenja koji sudjeluje u širenju pukotine. Model efektivnog faktora intenziteta naprezanja je definiran preko analitičkog modela zatvaranja pukotine uslijed plastičnosti [14], te modela djelomičnog zatvaranja pukotine uslijed korozije i hrapavosti [15].

$$\Delta K_{\rm eff} = K_{\rm max} \left\{ 1 - \left(1 - 2\sqrt{1 - \xi}\right) \left[1 + \left(\frac{2}{\pi} - 1\right) g \right] \right\},\tag{10}$$

gdje je g funkcija oblika definirana izrazom:

$$g = e^{-\left(\frac{K_{max}}{K_{th}}\right)}.$$
(11)

Parametar ξ povezuje zaostalu plastičnu deformaciju i pomak površine u njenom vršku okomito na smjer otvaranja pukotine (CTOD) u ovisnosti o koeficijentu asimetrije ciklusa opterećenja. Ovisnost $\xi = f(R)$ preuzeta je od Newmana [16] koji ju je aproksimirao polinomom četvrtog stupnja. Vrijeme potrebno za širenje pukotine od inicirane do kritične veličine kada nastupa lom se dobiva provođenjem numeričke integracije Parisove jednadžbe uz korištenje svojstava propagacije materijala, tablica 5.

$$\int_{0}^{N_{e}} dN = \frac{1}{C} \int_{a_{2}}^{a_{1}} \frac{da}{\left[\Delta K_{eff}(a)\right]^{m}} \,.$$
(12)

5. Rezultati izračuna vremena širenja pukotine od inicijalne do kritične duljine

Razmatrana su četiri zupčana para čije sume faktora pomaka profila iznose: $x_{\Sigma} = 0$; $x_{\Sigma} = 0,23$; $x_{\Sigma} = 0,25$; $x_{\Sigma} = 0,5$. Rezultati su prikazani grafički posebno za pogonske i gonjene zupčanike zupčanih parova, a dobivena je ovisnost ekvivalentnih faktora intenziteta naprezanja od duljini pukotine (slika 12, 14), kao i ovisnost duljine pukotine od broja ciklusa širenja pukotine (slika 13, 15) . Kritične duljine pukotina i broj ciklusa rasta pukotine od inicijalne do kritične veličine za pogonske i gonjene zupčanike dat je u tablici 6 i 7.

6. Procjena zamornog vijeka evolventnih zupčanih parova

Zamorni vijek dobiva se kao zbroj ciklusa potreban za iniciranje i širenje zamorne pukotine. Rezultati zamornog vijeka pogonskih i gonjenih zupčanika dati su u tablici 8 i 9, te su grafički prikazani na dijagramima (slika 16, 17).

Slika 12. Promjena ekvivalentnog FIN-a sa duljinom pukotine pogonskih zupčanika

Figure 12. Modified equivalent stress intensity factor with crack length pinions

Slika 13. Promjena duljine pukotine s brojem ciklusa širenja pukotine pogonskih zupčanika za pukotinu iniciranu prema vlačnom model

Figure 13. Change the length of the cracks with the number of cycles of crack propagation of driving gears for cracks initiated by tensile model

Slika 14. Promjena ekvivalentnog FIN-a sa duljinom pukotine gonjenih zupčanika

Figure 14. Modified equivalent stress intensity factor with crack length driven gear

Slika 15. Promjena duljine pukotine s brojem ciklusa širenja pukotine gonjenih zupčanika za pukotinu iniciranu prema vlačnom modelu

Figure 15. Change the length of the cracks with the number of cycles of crack propagation driven gear for cracks initiated by tensile mode

Tablica 6. Broj ciklusa rasta pukotine od inicijalne do kritične veličine pogonskih zupčanika

Table 6. The number of cycles of the initial crack growth to critical size for drive gears

x_{Σ}	F _b /b N/mm	<i>a</i> _c - kritična duljina pukotine prema vlačnom modelu / the critical crack length of the tensile model, mm	N _p - broj ciklusa za pukotinu iniciranu prema vlačnom modelu / number of cycles to crack initiated by tensile model
0,0	800	8,331	1,410.106
0,23	800	8,416	$1,407 \cdot 10^{6}$
0,25	800	8,452	1,411.106
0,5	800	8,478	1,413.106

Tablica 7. Broj ciklusa rasta pukotine od inicijalne do kritične veličine gonjenih zupčanika

Table 7. The number of cycles of the initial crack growth to critical size for the driven gear

x_{Σ}	F _b /b N/mm	a _c - kritična duljina pukotine prema vlačnom modelu / the critical crack length of the tensile model, mm	N _p - broj ciklusa za pukotinu iniciranu prema vlačnom modelu / number of cycles to crack initiated by tensile model
0,0	800	7,43	5,799·10 ⁵
0,23	800	8,0	7,814.105
0,25	800	8,09	8,101.105
0,5	800	8,8	1,134.106

Slika 16. Zamorni vijek pogonskih zupčanika s obzirom na lom zuba u korijenu

Figure 16. The fatigue life of drive gear due to failure of tooth root

Slika 17. Zamorni vijek gonjenih zupčanika s obzirom na lom zuba u korijenu

Figure 17. The fatigue life of driven gear due to failure of tooth root

Tablica 8. Zamorni vijek pogonskih zupčanika**Table 8.** The fatigue life of drive gears

	$F_{\rm b}/b$	N, ciklusa/cycles		
χ_{Σ}	N/mm	$R_{\rm a} = 0 \ \mu {\rm m}$	$R_{\rm a} = 0.8 \ \mu {\rm m}$	
0,0	800	5,686.108	1,328.108	
0,23	800	5,363·10 ⁸	1,255.108	
0,25	800	5,271·10 ⁸	1,239.108	
0,5	800	4,716·10 ⁸	1,119.108	

Tablica 9. Zamorni vijek gonjenih zupčanika
Table 9. The fatigue life of gears driven

χ_{Σ}	F _b /b N/mm	N, ciklusa/cycles	
		$R_{\rm a} = 0 \ \mu {\rm m}$	$R_{\rm a} = 0.8 \ \mu {\rm m}$
0,0	800	3,991·10 ⁸	9,549.107
0,23	800	5,357·10 ⁸	1,249.108
0,25	800	5,455·10 ⁸	1,274.108
0,5	800	6,595·10 ⁸	1,519.108

7. Zaključci

- Rezultati provedenog numeričkog postupka opravdavaju početnu pretpostavku da vremena potrebna kako za inicijaciju, tako i za širenje zamorne pukotine u korijenu zuba, uz nepromijenjena opterećenja, znatno ovise o sumi faktora pomaka profila spregnutih zupčanika. To znači da se primjenom, tj. izradom zupčanika s unaprijed točno određenim faktorima pomaka profila, uz nepromijenjena opterećenja, materijal i obradu zupčanika, može znatno povećati njihov vijek trajanja
- Utvrđeno je također da su za razmatrani nivo opterećenja, kod svih promatranih zupčanih parova, vremena potrebna za inicijaciju pukotine smičnom modelu manja od vremena dobivenih prema vlačnom modelu. Trend je da su manje razlike u vremenima inicijacije između ova dva modela kod pogonskih zupčanika na manjim sumama faktora pomaka profila, dok je kod gonjenih ta razlika manja kod većih suma faktora pomaka profila. Na taj način, vremena potrebna za iniciranje pukotine prema smičnom modelu predstavljaju i konačnu procjenu vremena do inicijacije zamorne pukotine.
- Broj ciklusa potreban za širenje zamorne pukotine do loma se povećava sa sumom faktora pomaka profila zupčanika, kao i kritična duljina pukotine.
- Ukupni vijek trajanja pogonskih i gonjenih zupčanika ovisi o nivou naprezanja koja se mijenjaju sa sumom pomaka profila. Dobiveni rezultati pokazuju da se kod pogonskih zupčanika, zbog porasta naprezanja, vjekovi trajanja smanjuju s porastom sume faktora pomaka profila, dok kod gonjenih zupčanika zbog opadanja naprezanja s povećanjem sume pomaka profila, dolazi do povećanja zamornog vijeka zupčanika s obzirom na lom u korijenu zuba.

LITERATURA

- PODRUG, S.; JEI ASKA, D.; GLODEŽ, S.: *Influence of different load models on gear crack path shapes and fatigue lives*, Fatigue & Fracture of Engineering Materials& Structures, Volume 31, Number 5, May 2008, 327-339.
- [2] GLODEŽ, S.; ŠRAML, M.; KRAMBERGER, J.: A Computational Model for Determination of Service Life of Gears, International Journal of Fatigue, Volume 24, Number 10, October 2002, 1013-1020.
- [3] JEI ASKA, D.; GLODEŽ, S.; KRAMBERGER, J.; PODRUG, S.: Numerical Modelling of the Crack Propagation Path at Gear Tooth Root, Proc. of the ASME Int. 2003 DETC, Chicago 2003.
- [4] SOCIE, D.; bANNANTIN E, J.: Bulk Deformation Damage Models, Materials Scince and Engineering, A103, 1988, 3-13.
- [5] BLARASIN, A.; GUAGI IANO, M.; VERGANI, L.: Fatigue Crack Growth Prediction in Specimens Similar to Spur Gear Teeth, Fatigue & Fracture of Engineering Materials& Structures, Volume 20, Issue 8, 1997, 1171-1182.
- [6] PEHAN, S.; HELLEN, T.K.; FLAŠKER, J.; GLODEŽ, S.: Numerical Methods for Determining Stress Intensity factors vs Crack Depth in Gear Tooth Roots, International Journal of Fatigue, Volume 19, Number 10, December 1997, 677-685.
- [7] HOFFMANN, M.; SEEGER, T.: A Generalized Method for Estimating Multiaxial Elastic-Plastic Notch Stresses and Strains, parts 1 and 2, Journal of Engineering Materials and Technology, Transactions of the ASME, 1985, 250-260.
- [8] ...: MSC/FATIGUE, User's Manual
- [9] OSTASH, O.P.; PANASYUK, V.V.; KOSTy K, E.M.: A Phenomenological Model of Fatigue Macrocrack Initiation Near Stress Concentrators, Fatigue & Fracture of Engineering Materials& Structures, Volume 22, Number 2, 1999, 161-172.
- [10] OSTASH, O.P.; PANASYUK, V.V.; KOSTy K, E.M.: Assessment of the Period to Fatigue Macrocrack Initiation Near Stress Concentrators by Means of Strain Parameters, Fatigue & Fracture of Engineering Materials& Structures, Volume 22, Number 8, 1999, 687-696.
- [11] ...: FRANC2D/L, User's Guide, Version 1.5, Cornell University
- [12] BITTENCOURT, T.N.; WAWRZYNEK, P.A.; INGRAFFEA, A.R.; SOUSA, J.L.: Quasi-Automatic Simulation of Crack Propagation for 2D LEFM Problems, Engineering Fracture Mechanics, 55 (2), 1996, 321-334.

- [13] ANDERSEN, M.R.: *Fatigue Crack Initiation and Growth in Ship Structures*, PhD Thesis, Technical University of Denmark, 1998.
- [14] bUDIANSK y, B.; HUTCHINSON, J.W.: Analysis of Closure in Fatigue Crack Growth, Journal of Applied Mechanics, 45, 1978, 267-276.
- [15] KUJAWSKI, D.: Enhanced Model of Partial Crack Closure for Correlation of R-Ratio Effects in Aluminum Alloys, International Journal of Fatigue, 23, 2001, 95-102.
- [16] NEWMAN, J.A.; RIDDELL,W.T.; PIASCIK, R.S.: A Threshold Fatigue Crack Closure Model: Part I – Model Development, Fatigue & Fracture of Engineering Materials& Structures, Volume 26, Issue 7, 2003, 603-614.