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Approximating negative and harmonic mean

moments for the Poisson distribution
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Abstract. Asymptotic expansions and the related approximations
are constructed for the negative moments of the Poisson distribution
and the moments of the harmonic mean of independent and identically
distributed (i.i.d.) Poisson random variable (r.v.). The accuracy of
the approximations are assessed and applications to multi-centre clinical
trials are outlined.
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1. Introduction

Let Poisson(λ) denote the Poisson distribution with parameter λ, and let ξ be a
random variable, ξ ∼ Poisson(λ). Let also ξ+ be the so-called positive Poisson r.v.
with parameter λ; that is,

Pr(ξ+ = k) =
1

1− e−λ

λk

k!
e−λ, for k = 1, 2 . . .

The negative moments of the Poisson distribution with parameter λ are defined as
the negative moments of ξ+ :

µ−α = E

(
1
ξ α
+

)
e−λ

1− e−λ

∞∑
k=1

λk

kα k!
. (1)

In Section 2. we derive asymptotic expansions and related approximations for
the first four negative moments µ−1, . . . , µ−4 assuming λ→ ∞.

The methods of deriving approximations for µ−1 and µ−α with α ≥ 2 are differ-
ent. In Section 2.1. we use a simple recurrence formula (see Equation (8) ) to derive
approximations for µ−1. The k-th order approximation we suggest is

µ−1 � µ(k)
−1 =

1
λ
+

1
λ2

+
2
λ3

+ . . .+
(k − 1)!
λk

. (2)
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As a benchmark for comparison we shall use the well-known Tiku’s estimators (see
Equation (11) in [16]). These estimators are defined as follows:

µ−1 � Tk
1

(λ− 1)(1− e−λ)

(
1 +

k∑
r=3

βr

)
, (3)

where βr = a(r)/ [λ(λ+ 1)(λ+ 2) . . . (λ+ r − 1)] for r = 3, 4, . . . with a(3) =
1, a(4) = 7, a(5) = 43, a(6) = 271, etc. The suggested estimators (2) are more
accurate than Tiku’s estimators (if λ is not too small); this is illustrated in Table 1
below.

Note that for small λ the moments can be easily computed using definition (1).
In particular, the relative error of the following simple approximation

µ−α =
e−λ

1− e−λ

∞∑
k=1

λk

kα k!
� e−λ

1− e−λ

3λ+10∑
k=1

λk

kα k!

is smaller than 10−10 in absolute value for all λ > 0 and α ≥ 1.
The relative error of the approximations is used as the criterion by which to

determine accuracy, where

Relative Error =
Exact Value−Approximate Value

Exact Value
.

In Sections 2.3. and 2.4. we use the estimators (2) and the Poisson-Charlie or-
thogonal polynomials (they are introduced in Section 2.2.) for deriving approxima-
tions for µ−α with α = 2, 3, 4. Tables 3, 4 and 5 show that the accuracy of the
derived approximations is quite good. The analytical formulae for some of these
approximations are given in the Appendix.

In Section 3. we derive the asymptotic (as λ→ ∞) expansions and corresponding
approximations for the first four moments of the harmonic meanH = 2/(1/ξ + 1/ζ)
of two i.i.d.r.v. ξ, ζ ∼ Poisson(λ); the results are extended to an arbitrary number
of random variables.

The approximation of the negative moments of the Poisson distribution has
independent interest and has attracted reasonable attention in literature, especially
in the field of sampling. The first negative moment µ−1 is of particular importance.
The main applications of µ−1 are related to the fact that if ηj are i.i.d.r.v. with
variance σ2 and the sample has random size n ∼ Poisson(λ), then the variance of
the mean (η1 + . . . + ηn)/n is σ2µ−1. This is a standard problem, for example, in
life testing, see e.g. Bartholomew [1], David and Johnson [3], Epstein et al. [5],
Epstein and Sobel [6], Grab and Savage [8], Mendenhall [11] and Stephan [15]. The
problem of approximating the first negative moment of the Poisson distribution was
also considered in Chao and Strawderman [2] and in Stancu [14]. Equation (4) in
Grab and Savage demonstrated that

E

(
1
X

|X > 0
)
=

e−λ

1− e−λ
(Ei(λ)− logλ− γ) ;

where γ is Euler’s constant (0.5772. . . ).
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Tiku’s estimators of negative moments µ−α constructed in [16] (see (3) and (15))
have been cited in a number of reference books; see, for instance, [9], [10]. These
estimators shall be used as a benchmark for comparison in subsequent calculations.

The authors have faced the problem of estimating negative moments and mo-
ments of the harmonic mean H = 2/(1/ξ + 1/ζ), for the Poisson distribution, in
connection to work on randomized multi-center clinical studies, see [7]. Multi-centre
trials are essential in the pharmaceutical industry, as enrollment is accelerated by
the simultaneous recruitment of patients to numerous centres. An additional ben-
efit is the ability to generalize the studies results to a wider variety of patients
and treatment settings than would be possible in a single-centre study. A linear
model is regarded as the conventional way to model the observed data; with terms
for centres, treatments and treatment-by-centre interactions. These terms may be
considered as being fixed or random effects, see e.g. [4] and [13] for details.

The treatment effect of interest is the (weighted) average of the true (but un-
known) treatment difference over the centres. Three well-known estimators exist (as
specified in [4]), their accuracy is typically measured in terms of their mean squared
error (MSE). All estimators are the least squares estimators of the treatment effect,
generated from three fixed effects models of increasing complexity.

The MSE’s for the second and third estimators (a similar formula holds for the
first estimator) are as follows:

MSE(∆III)
σ2

N2

N∑
i=1

(
1
ni2

+
1
ni1

)
, (4)

MSE(∆II) = σ2
N∑

i=1

W 2
i

(
1
ni2

+
1
ni1

)
+ 4σ2

τ

N∑
i=1

(
Wi − 1

N

)2

(5)

with the weights

Wi =
ni2ni1/(ni2 + ni1)∑N

k=1 nk2nk1/(nk2 + nk1)
,

where N is the number of centres in the study, nij is the number of patients on the
jth (j = 1, 2) treatment in the ith centre, σ2

τ , σ
2
µ and σ2 are the variances of the

treatment-by-centre interactions, centre effects and measurement error, respectively.
In standard literature nij are assumed to be known. A more realistic model

to describe the probability of arrival (see [7]) of a given number of patients for
both treatment arms, at the i-th centre is the Poisson process with parameter λi,
i = 1, . . . , N. If this occurs, we have randomised enrolment; the MSE’s become
random variables and the first two moments of the MSE’s are now of interest.

The need for negative moments is easily seen from both (4) and (5). When
the number of centres N is large, then Wi are asymptotically independent and
proportional to 2/(1/ξi+1/ζi) with independent ξi, ζi ∼ Poisson(λi). To estimate
the first two moments of MSE(∆II) we will then require approximations for the
first four moments of H for λ = λi (i = 1, . . . , N).
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2. Approximations for the negative moments of the Poisson
distribution

Let ξ ∼ Poisson(λ) and the negative moments µ−α be defined as in (1).

2.1. First negative moment

Set

Φm =
∞∑

k=1

e−λλk

(k +m− 1)!k
. (6)

In particular,

µ−1 =
Φ1

1− e−λ
.

For each m > 0 we have

1
k
=

1
k +m

+
m

k(k +m)
. (7)

By applying (7) to (6) we obtain the recurrence formula

Φm

∞∑
k=1

e−λλk

(k+m−1)!k

∞∑
k=1

e−λλk

(k+m)!
+mΦm+1Υm +mΦm+1 , (8)

where

Υm

∞∑
k=1

e−λλk

(k +m)!
1
λm

∞∑
k=m+1

e−λλk

k!
=

1
λm

(
1−

m∑
k=0

e−λλk

k!

)
. (9)

This gives for each k = 1, 2 . . .

Φ1 = Υ1+Φ2 = Υ1+Υ2+2Φ3 . . . =
k∑

i=1

(i− 1)!Υi + k! Φk+1 . (10)

Equations (8) and (9) imply

Φk =
1
λk

+ O
(

1
λk+1

)
as λ→ ∞ . (11)

To construct kth order approximations for µ−1, we keep Υ1 . . .Υk and ignore
Φk+1 in (10). In this way we obtain the estimator

µ̂
(k)
−1 =

1

λ

(
1− λe−λ

1−e−λ

)
+

1

λ2

(
1− (λ+ λ2

2
)e−λ

1−e−λ

)
+. . .+

(k − 1)!

λk


1−

k∑
j=1

λj

j!
e−λ

1−e−λ


 . (12)

As λ → ∞, e−λ tends to 0 exponentially fast. Replacing e−λ with 0 in (12), we
obtain a simpler estimator (2), that is,

µ
(k)
−1 =

1
λ
+

1
λ2

+
2
λ3

+ . . .+
(k − 1)!
λk

.
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The asymptotic relation (11) implies that

∣∣∣µ−1 − µ̂(k)
−1

∣∣∣ = O( 1
λk+1

)
and

∣∣∣µ−1 − µ(k)
−1

∣∣∣ = O( 1
λk+1

)
as λ→ ∞ .

Exact Value Relative Error

λ µ−1 T0 µ
(3)
−1 µ

(4)
−1 T3 T6

5 2.578 10−1 2.356 10−2 6.865 10−3 -3.038 10−2 1.891 10−2 1.032 10−2

8 1.469 10−1 2.712 10−2 1.605 10−2 6.079 10−3 2.577 10−2 2.426 10−2

10 1.130 10−1 1.686 10−2 9.037 10−3 3.729 10−3 1.611 10−2 1.546 10−2

15 7.187 10−2 6.117 10−3 2.349 10−3 7.003 10−4 5.934 10−3 5.799 10−3

25 4.175 10−2 1.912 10−3 4.426 10−4 7.467 10−5 1.855 10−3 1.837 10−3

50 2.042 10−2 4.350 10−4 5.121 10−5 4.190 10−6 4.275 10−4 4.264 10−4

100 1.010 10−2 1.042 10−4 6.190 10−6 2.504 10−7 1.032 10−4 1.031 10−4

200 5.025 10−3 2.551 10−5 7.620 10−7 1.572 10−8 2.539 10−5 2.538 10−5

Table 1. Exact values for the first negative moment, along with comparison of the
relative errors of the five estimators, against different values of λ

The accuracy of these estimates may be seen in Table 1 which gives the relative
error against different values of λ. We compare our estimators to the Tiku’s esti-
mators Tk defined in (3); only the estimators T0 = 1/[(λ− 1)(1− e−λ)], T3 and T6

are used.
For values of λ > 8 we find that the estimators µ(3), and especially µ(4), are

very accurate, comparing favorably to the more complex estimators of Tiku. Addi-
tionally (this is not included in the table), it was found that for λ ≥ 8 the simpler
estimators µ(k)

−1 are marginally better than the respective estimators µ̂(k)
−1 .

2.2. Poisson-Charlie polynomials and the method of deriving
approximations for higher order moments

The derivation of higher order moments uses the properties of the so-called Poisson-
Charlie polynomials. In accordance with the theory of orthogonal polynomials,
there exist so-called Poisson-Charlie polynomials, p0(k), p1(k), . . . (k = 0, 1, 2, . . . )
such that for every function f(k) ε L2(Pλ)

f(k) =
∞∑

m=0

Cmpm(k) , (13)

where

Cm = E (f(ξ)pm(ξ)) =
∞∑

k=0

f(k)pm(k)
λk

k!
e−λ .
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Moment Estimator

E
(
1/ξ2

+

)
β1 =

∑2
i=0 θ

2
i β2 =

∑2
i=0 θ

2
i β3 =

∑3
i=0 θ

2
i

with θ0 � µ(3)
−1 with θ0 � µ(4)

−1 with θ0 � µ(4)
−1

E
(
1/ξ3

+

)
ϕ1 =

∑2
i=0 θiθ

′
i ϕ2 =

∑2
i=0 θiθ

′
i ϕ3 =

∑3
i=0 θiθ

′
i

θ0�µ(3)
−1, θ

′
0�β1 θ0�µ(4)

−1, θ
′
0�β3 θ0�µ(4)

−1, θ
′
0�β3

E
(
1/ξ4

+

)
)1 =

∑2
i=0 θ

′2
i )2 =

∑2
i=0 θ

′2
i )3 =

∑3
i=0 θ

′2
i

with θ′0 � β1 with θ′0 � β2 with θ′0 � β2

Table 2. Notation for estimators of the second, third and fourth negative moments;
see Appendix for explicit formulae of the estimators

By definition, f(k) ε L2(Pλ) if and only if

Ef2(ξ) =
∞∑

k=0

f2(k)
λk

k!
e−λ <∞ .

The Poisson-Charlie polynomials, pn(x), are defined as:

pn(x) =
λn/2

√
n!
Pn(x), n = 0, 1, 2, . . . ,

where (see, for example, [12])

Pn(x) =
n∑

r=0

(
n
r

)
(−1)n−rλ−rx(x− 1) . . . (x− r + 1) .

These polynomials are orthonormal in L2(Pλ); that is,

E (pm(ξ)pl(ξ)) =
∞∑

k=0

pm(k)pl(k)
λk

k!
e−λ =

{
1 if l = m,
0 if l 	= m. (14)

The first four Poisson-Charlie polynomial are:

p0(k) = 1, p1(k) =
√
λ

(
k

λ
− 1
)
, p2(k) =

λ√
2

(
1− 2k

λ
+
k(k − 1)
λ2

)
,

p3(k) =
λ3/2

√
6

(
−1 + 3

k

λ
− 3

k (k − 1)
λ2

+
k (k − 1) (k − 2)

λ3

)
.

Let us consider the functions

fα(k) =
{
0 if k = 0,
k−α if k 	= 0 .

Then
µ−1 = E

(
1/ξ+

)
=

1
(1− e−λ)

Ef1(ξ)
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and
µ−α = E

(
1/ξ α

+

)
=

1
(1 − e−λ)

Efα(ξ).

The approximation of Ef1(ξ) has already been considered. We now construct
approximations for Efα(ξ), α = 2, 3, 4. We are interested in λ ≥ 10. As e−10 �
0.0000454, for this range of λ the multiplier 1− e−λ will be neglected in subsequent
derivations. The approximations for the higher order moments shall be compared
against the corresponding Tiku estimators T (α), which for α ≥ 2 are defined as (see
(14) in [16])

T (α) =
1

(λ − 1)(λ− 2) . . . (λ− α) . (15)

2.3. Second negative moment

Consider the expansion (13) for f(k) = f1(k):

f1(k) =
∞∑

m=0

θmpm(k) ,

where

θm = E (f1(ξ)pm(ξ)) =
∞∑

k=1

pm(k)
λk

k k!
e−λ .

Then

f2(k)=f2
1 (k)=

∞∑
m=0

θmpm(k)
∞∑
l=0

θlpl(k)
∞∑

m,l=0

θmθlpm(k)pl(k) . (16)

In particular,

θ0 = E(p0(ξ)f1(ξ)) = Ef1(ξ) = (1 − e−λ)µ−1 . (17)

Applying the orthonormality property (14) we obtain

Ef2(ξ) = E
∞∑

m,l=0

θmθlpm(k)pl(k) =
∞∑

m=0

θ2m . (18)

To approximate Ef2(ξ), we shall use either the first three or the first four terms
in (18); µ−1 in (17) will be approximated by either µ(3)

−1 or µ(4)
−1 (see Section 2.1.).

Note that when using θ0 � µ(3)
−1 the approximations for µ−2 (as well as for µ−3 and

µ−4) with three and four terms coincide (as θ3 = 0 and θ′3 = 0). In this way, we
construct three estimators of µ−2 as stated in Table 2 (similarly, we shall obtain
three estimators of µ−3 and µ−4).

Using the four terms in (18), the following approximation is obtained:

(1− e−λ)E(1/ξ2
+
) = Ef2(ξ) ∼= θ20 + θ21 + θ22 + θ23 , (19)
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where

θ1 = E(p1(ξ)f1(ξ)) =
√
λE

(
ξ

λ
− 1
)
f1(ξ)

√
λ

λ
E(ξf1(ξ))−

√
λEf1(ξ) .

Through using the fact that

E(ξf1(ξ)) =
∞∑

k=1

λk

k!
e−λ = 1− e−λ � 1 (20)

and Ef1(ξ) = θ0 we obtain

θ1 � 1√
λ
−
√
λθ0 .

Using (20) and the fact that E(ξ2f1(ξ)) = Eξ = λ we have

θ2 = E(p2(ξ)f1(ξ)) =
√
2

2λ
E((λ − ξ)2 − ξ)f1(ξ) � λ√

2
θ0 − 1√

2λ
(2λ+ 1) +

1√
2
.

Analogously, by using E(ξ3f1(ξ)) = Eξ2 = λ2 + λ we get

θ3 =E(p3(ξ)f1(ξ)) =
λ3/2

√
6

E

((
−1+3

ξ

λ
−3

ξ (ξ−1)

λ2
+

ξ (ξ−1) (ξ−2)

λ3

)
f1(ξ)

)

� λ3/2

√
6

(
−θ0 +

3

λ2
+

λ2 − 2λ + 2

λ3

)
.

Hence, by using (19) we obtain:

Ef2(ξ) ∼= θ20 + θ21 + θ22 + θ23 ∼= θ20 +
(
1
λ
−
√
λθ0)

)2

+
(
λ√
2
θ0− 1√

2λ
(2λ+1)+

1√
2

)2

+
(
λ3/2

√
6

(
−θ0+ 3

λ2
+
(
λ2−2λ+2

)))2

.

For the approximation involving three terms we omit θ3 and therefore the last
term in this formula disappears. Relative errors for the estimators of the second
negative moment can be seen in Table 3.

Exact Value Relative Error
λ µ2 β1 β2 β3 T (2)

10 1.532 10−2 7.429 10−2 4.685 10−2 4.294 10−2 9.355 10−2

15 5.664 10−3 1.810 10−2 8.827 10−3 7.432 10−3 2.993 10−1

25 1.827 10−3 3.191 10−3 1.047 10−3 7.104 10−4 8.338 10−3

50 4.259 10−4 3.624 10−4 8.360 10−5 3.852 10−5 1.808 10−3

100 1.031 10−4 4.353 10−5 8.093 10−6 2.274 10−6 4.244 10−4

200 2.538 10−5 5.343 10−6 8.774 10−7 1.387 10−7 1.030 10−4

Table 3. Exact values for the second negative moment, along with comparison of
the relative errors of the four estimators, against different values of λ
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2.4. Third and fourth negative moments

Consider the expansion of the function f2(k):

f2(k) =
∞∑

m=0

θ′mpm(k)

with θ′m = E(f2(ξ)pm(ξ)).

Exact Value Relative Error
λ µ3 ϕ1 ϕ2 ϕ3 T (3)

10 2.900 10−3 3.059 10−1 2.371 10−1 2.275 10−1 3.159 10−1

15 5.071 10−4 8.051 10−2 4.961 10−2 4.501 10−1 9.704 10−2

25 8.427 10−5 1.288 10−2 4.928 10−3 3.688 10−3 2.287 10−2

50 9.089 10−6 1.449 10−3 3.688 10−4 1.946 10−4 4.700 10−3

100 1.064 10−6 1.740 10−4 3.432 10−5 1.142 10−5 1.081 10−3

200 1.289 10−7 2.136 10−5 3.626 10−6 6.938 10−7 2.597 10−4

Table 4. Exact values for the third negative moment, along with comparison of the
relative errors of the four estimators, against different values of λ

Analogously to (16), we have

f3(k) = f1(k)f2(k) =
∞∑

m,l=0

θmθ
′
lpm(k)pl(k)

and

f4(k) = f2(k)f2(k) =
∞∑

m,l=0

θ′mθ
′
lpm(k)pl(k).

Thus, we have

Ef3(ξ) =
∞∑

m=0

θmθ
′
m � θ0θ′0 + θ1θ′1 + θ2θ′2 + θ3θ′3 ,

Ef4(ξ) =
∞∑

m=0

(θ′m)2 � (θ′0)
2 + (θ′1)

2 + (θ′2)
2 + (θ′3)

2 .

Deriving expressions for θ′0, θ
′
1, θ

′
2 and θ′3 yields the following:

θ′0 = Ef2(ξ),

θ′1 = E(p1(ξ)f2(ξ)) =
√

λE

(
ξ

λ
− 1

)
f2(ξ) �

√
λ

λ
E(ξf2(ξ)) −

√
λEf2(ξ) � θ0√

λ
−

√
λθ′0,

θ′2 = E(p2(ξ)f2(ξ)) =
1√
2λ

E(λ2 + ξ2 − (2λ + 1)ξ)f2(ξ) � 1√
2

λθ′0 +
1√
2λ

− (2λ + 1)√
2λ

θ0

θ′3 = E(p3(ξ)f2(ξ))
λ3/2

√
6

E

((
−1 +

3ξ

λ
− 3ξ(ξ − 1)

λ2
+

ξ(ξ − 1)(ξ − 2)

λ3

)
f2(ξ)

)

� λ3/2

√
6

(
−θ′0 +

3

λ
θ0 − 3

λ2
(1 − θ0) +

1

λ3
(λ − 3 + 2θ0)

)
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Exact Value Relative Error
λ µ4 )1 )2 )3 T (4)

10 9.865 10−4 6.835 10−1 6.120 10−1 5.986 10−1 6.648 10−1

15 5.782 10−5 2.755 10−1 2.163 10−1 2.043 10−1 2.801 10−1

25 4.130 10−6 3.820 10−2 1.816 10−2 1.385 10−2 5.064 10−2

50 1.986 10−7 4.294 10−3 1.370 10−3 7.125 10−4 9.780 10−3

100 1.109 10−8 5.187 10−4 1.310 10−4 4.180 10−5 2.202 10−3

200 6.576 10−10 6.388 10−5 1.412 10−5 2.541 10−6 5.241 10−4

Table 5. Exact values for the fourth negative moment, along with comparison of
the relative errors of the four estimators, against different values of λ

3. Approximating the moments of the harmonic mean

Let ξ and ζ be i.i.d.r.v., ξ, ζ ∼ Poisson(λ). Set

H =
2ξζ
ξ + ζ

=
2

1/ξ + 1/ζ

to be the harmonic mean of ξ and ζ. In the following theorem we derive an asymp-
totic expansion (as λ→ ∞) for E(H). Table 6 demonstrates that the corresponding
approximation is extremely accurate.

3.1. First moment of the harmonic mean

Theorem 1. Let ξ and ζ be i.i.d.r.v. with ξ, ζ ∼ Poisson(λ). Then

E

(
2ξζ
ξ + ζ

)
λ− 1

2
+ o

(
1
λ40

)
as λ→ ∞ . (21)

Proof. We have

H = H(ξ, ζ) =
2ξζ

ξ + ζ − 2λ+ 2λ
=

1
λ

ξζ

1 + z

with

z = z(ξ, ζ) =
{

ξ+ζ
2λ − 1 if ξ + ζ > 0,
0 if ξ + ζ = 0 .

(22)

Note that z > −1. The moments of the r.v. ξ ∼ Poisson(λ) can be expressed
explicitly as (see e.g. [9], p.6)

mα = mα(λ) = E ξα =
α∑

i=1

λiSi:α, (23)

where α is a positive integer and Si:α are Stirling numbers of the second kind:

Si:α =
1
i!

i∑
j=0

(−1)i−j

(
i
j

)
jα .
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Denote
An = An(λ) = (−1)n 1

λ
E ξζzn

with z defined in (22).
Using the binomial formula we obtain

An = (−1)n 1

λ
E ξζ

(
ξ + ζ

2λ
− 1

)n

= (−1)n 1

λ

n∑
k=0

(
n
k

)
(−1)n−k 1

2kλk
Eξζ(ξ + ζ)k

=
ξζ

λ

n∑
k=0

(
n
k

)
(−1)k 1

2kλk

k∑
l=0

(
k
l

)
ml+1mk−l+1

with the moments mα defined in (23).
Analytical manipulations using the computer package Maple 7 show that for all

positive integers κ ≤ N + 2 with N = 40 we have

A2κ = O
(

1
λκ−1

)
and A2κ+1 = O

(
1
λκ

)
as λ→ ∞ ; (24)

additionally,

2κ∑
n=0

An=
1
λ
E ξζ(1−z+z2−. . .+z2κ)=λ− 1

2
+O

(
1
λκ

)
, λ→ ∞ . (25)

For all z > −1 and any integer κ > 0 we have

1
1 + z

≥ 1− z + z2 − . . .+ z2κ − z2κ+1 .

This yields for all positive integers κ

EH =
1
λ
E
ξζ

1+z
≥ 1
λ
E ξζ(1−z+. . .+z2κ−z2κ+1)

2κ+1∑
n=0

An . (26)

The asymptotic relations (25) and (24) imply

2κ+1∑
n=0

Anλ− 1
2
+O

(
1
λκ

)
, λ→ ∞ ,

with κ = 42. Combining this with (26) we obtain

EH ≥λ− 1
2
+O

(
1
λ42

)
, λ→ ∞ . (27)

For any c ≥ 1, any positive integer κ and z ≥ −1 + 1
c we have

1
1 + z

≤ 1− z + z2 − . . .+ z2κ−2 − z2κ−1 + cz2κ . (28)
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Since ξ, ζ are non-negative, we have

ξζ

λ(1 + z)
=

2ξζ
ξ + ζ

≤ 2ξ . (29)

Through combining (28) and (29) we obtain

1
λ

ξζ

1 + z
≤ ξζ
λ
(1−z+z2−. . .+z2κ−2−z2κ−1+cz2κ)+f(ξ, ζ) , (30)

where

f(ξ, ζ) =
{
0 if z ≥ −1 + 1

c ,
2ξ if − 1 < z < −1 + 1

c .

Using (30) and (25) we have for all κ ≤ 42

E H ≤ 1
λ
E ξζ(1 − z + z2 − . . .+ cz2κ)+E fλ(ξ, ζ)

= λ− 1
2
+O

(
1
λκ

)
+(c− 1)

1
λ
E ξζz2κ+E fλ(ξ, ζ) . (31)

Consider the term E fλ(ξ, ζ) on the right-hand side of (31). The inequality
z > −1 + 1

c is equivalent to ξ + ζ < 2λ
c and therefore (using the fact that ζ is

non-negative)

fλ(ξ, ζ) ≤ f̃λ(ξ, ζ) =
{
0 if ξ > 2λ

c ,
2ξ if ξ ≤ 2λ

c .

This implies

E fλ(ξ, ζ) ≤ E f̃λ(ξ, ζ)=
� 2λ

c �∑
j=0

2je−λλ
j

j!

= 2e−λ

� 2λ
c �∑

j=1

λj

(j − 1)!
≤2e−λ

� 2λ
c �∑

j=1

λj (32)

for any c ≥ 1.
By estimating each term on the right-hand side of (32) by the largest term (the

last term), we get

E fλ(ξ, ζ) ≤ E f̃λ(ξ, ζ) ≤ 2e−λ

(
2λ
c

)
λ2λ/c . (33)

Substituting c =
√
λ into the right-hand side (33) we obtain

gλ = 2e−λ

(
2λ
c

)
λ2λ/c4e−λ

√
λ λ2

√
λ .
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Since log gλ = −λ+ 2
√
λ log λ+ 1

2 log λ+ 2 log 2 , we have

1
λ
log gλ = −1 + o

(
λ−

1
2+ε
)
as λ→ ∞, for any ε > 0 . (34)

Hence, E fλ(ξ, ζ) tends to zero as λ→ ∞ exponentially fast implying

E fλ(ξ, ζ) = o
(

1
λκ

)
for any κ > 0 as λ→ ∞ . (35)

Consider now
hλ = (c− 1)

1
λ
E ξζ z2κ = (c− 1)A2κ.

on the right-hand side of (31).
Using (24) and recalling that c =

√
λ, we obtain

hλ = (
√
λ− 1)A2κ = O

(
1

λκ− 3
2

)
, as λ→ ∞ . (36)

Substituting (35) and (36) into (31) we obtain

E H ≤ λ− 1
2
+O

(
1

λκ− 3
2

)
(37)

for κ = N + 2 = 42.
Combining (27) and (37) gives (21). This completes the proof. ✷

The constant 40 in (21) is attributable to the capabilities of our computers
(Pentium III) and the version of the computer package (Maple 7) used. For example,
formula (25) for κ = 40 can be specified as

80∑
n=0

An = λ− 1
2
+ Cλ−40 +O

(
1
λ41

)
, λ→ ∞ , C � 0.421196957388 1050 .

Without the aid of a computer we can attain accuracy only up to o(λ−2) rather
than o(λ−40) in (21).

3.2. Higher order moments of the harmonic mean

Theorem 2. Let ξ and ζ be i.i.d.r.v., ξ, ζ ∼ Poisson(λ). Then, as λ → ∞, we
have

E

(
2ξζ
ξ + ζ

)2

= λ2 − λ
2
+

3
4
− 1
4λ

− 1
8λ2

+O
(

1
λ3

)
,

E

(
2ξζ
ξ + ζ

)3

= λ3 +
7λ
4

− 21
8
+

15
8λ

+
7

16λ2
+O

(
1
λ3

)
,

E

(
2ξζ
ξ + ζ

)4

= λ4 + λ3 +
13λ2

4
− 57λ

8
+

225
16

− 121
8λ

+
13
8λ2

+O
(

1
λ3

)
.
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Proof. Firstly, consider the second moment(
2ξζ
ξ + ζ

)2

=
4ξ2ζ2

(ξ + ζ − 2λ+ 2λ)2
=

1
λ2

ξ2ζ2

(1 + z)2

with z defined in (22). Similarly to the proof of Theorem 1 we have the asymptotic
expansion (as λ→ ∞):

1
λ2
E

ξ2ζ2

(1 + z)2
=

1
λ2
E ξ2ζ2(1−z+z2−z3+z4−z5+z6−z7+z8)2+O

(
1
λ3

)

= λ2 − λ
2
+

3
4
− 1

4λ
− 1

8λ2
+O

(
1
λ3

)
.

The same methodology can be applied to obtain asymptotic expressions for
higher order moments of H . This completes the proof. ✷

λ h1 h2 h3 h4

10 2.5031 10−7 -2.7617 10−4 1.8860 10−4 1.3331 10−4

15 2.7586 10−10 -7.9107 10−5 3.7366 10−5 -1.8299 10−5

25 5.8163 10−16 -1.6647 10−5 4.8328 10−6 -1.4754 10−6

50 3.5267 10−30 -2.0402 10−6 3.0121 10−7 -4.7286 10−8

100 1.8177 10−58 -2.5251 10−7 1.8791 10−8 -1.4954 10−9

200 6.7957 10−115 -3.1406 10−8 1.1173 10−9 -4.7001 10−11

Table 6. Relative errors for the approximations (38) of the first four moments of H
against different values of λ

Theorems 1 and 2 suggest the following approximations for the first four mo-
ments of the harmonic mean H = 2ξζ/(ξ + ζ):


E (H) � h1 = λ− 1

2 ,
E
(
H2
) � h2 = λ2 − λ

2 + 3
4 ,

E
(
H3
) � h3 = λ3 + 7

4λ− 21
8 ,

E
(
H4
) � h4λ

4 + λ3 + 13
4 λ

2 − 57
8 λ+

225
16 .

(38)

The accuracy of the suggested four approximations is demonstrated in Table 6.

3.3. Harmonic mean of several variables

Let n ≥ 1 be fixed and ξ1, . . . , ξn be i.i.d. Poisson(λ) r.v. Set

Hn =
n∑n

k=1 1/ξk

to be the harmonic mean of random variables ξ1, . . . , ξn. Then, similarly to Theo-
rems 1 and 2, we have, as λ→ ∞,

E(Hn) = λ− n− 1
n

+O
(
1
λ

)
; Var(Hn)

λ

n
− 2(n− 1)(n− 3)

n2
+O

(
1
λ

)
.
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Appendix

The estimators in Table 2 may be expressed as follows:

β1 =
1

λ2
+

3

λ3
+

11

λ4
+

8

λ5
+

4

λ6
;

β2 =
1

λ2
+

3

λ3
+

11

λ4
+

44

λ5
+

58

λ6
+

60

λ7
+

36

λ8
;

β3 =
1

λ2
+

3

λ3
+

11

λ4
+

50

λ5
+

58

λ6
+

60

λ7
+

36

λ8
;

ϕ1 =
1

λ3
+

6

λ4
+

35

λ5
+

57

λ6
+

58

λ7
+

28

λ8
+

8

λ9
;

ϕ2 =
1

λ3
+

6

λ4
+

35

λ5
+

183

λ6
+

472

λ7
+

892

λ8
+

1196

λ9
+

1044

λ10
+

648

λ11
+

216

λ12
;

ϕ3 =
1

λ3
+

6

λ4
+

35

λ5
+

201

λ6
+

508

λ7
+

940

λ8
+

1232

λ9
+

1044

λ10
+

648

λ11
+

216

λ12
;

�1 =
1

λ4
+

10

λ5
+

85

λ6
+

231

λ7
+

379

λ8
+

360

λ9
+

224

λ10
+

80

λ11
+

16

λ12
;

�2 =
1

λ4
+

10

λ5
+

85

λ6
+

567

λ7
+

2 179

λ8
+

6084

λ9
+

12 644

λ10
+

19 412

λ11
+

22 804

λ12
+

20 064

λ13

+
12 744

λ14
+

5616

λ15
+

1296

λ16
;

�3 =
1

λ4
+

10

λ5
+

85

λ6
+

621

λ7
+

2 395

λ8
+

6588

λ9
+

13 436

λ10
+

20 228

λ11
+

23 380

λ12
+

20 280

λ13

+
12 744

λ14
+

5616

λ15
+

1296

λ16
.
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