On a theorem of S.S. Bhatia and B. Ram

Živorad Tomovski*

Abstract

In this paper some inequalities for Dirichlet's and Fejer's kernels proved in [6] are refined and extended. Then we have obtained the conditions for L^{1}-convergence of the r-th derivatives of complex trigonometric series. These results are extensions of corresponding Bhatia's and Ram's results for complex trigonometric series (case $r=0$).

Key words: Dirichlet kernel, Fejer kernel, L^{1}-convergence, complex trigonometric series, Bernstein's inequality

AMS subject classifications: 26D15, 42A20, 45A32
Received April 14, 2003 Accepted September 22, 2003

1. Introduction and preliminaries

Let $\left\{c_{k}: k=0, \pm 1, \pm 2, \ldots\right\}$ be a sequence of complex numbers and let the partial sums of the complex trigonometric series $\sum_{k=-\infty}^{\infty} c_{k} e^{i k t}$ be denoted by

$$
\begin{equation*}
S_{n}(c, t)=\sum_{k=-n}^{n} c_{k} e^{i k t}, \quad t \in(0, \pi] \tag{1}
\end{equation*}
$$

If a trigonometric series is the Fourier series of some $f \in L^{1}$, we shall write $c_{n}=\hat{f}(n)$, for all n and $S_{n}(c, t)=S_{n}(f, t)=S_{n}(f)$.
S.S. Bhatia and B. Ram [6] introduced the following class \Re^{*} of a complex sequence: a null sequence $\left\{c_{n}\right\}$ of complex numbers belongs to class \Re^{*} if

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right)\right| k \log k<\infty \quad \text { and } \\
& \sum_{k=1}^{\infty} k^{2}\left|\Delta^{2}\left(\frac{c_{k}}{k}\right)\right|<\infty
\end{aligned}
$$

[^0]Dirichlet's and respectively Feier's kernels are denoted by

$$
\begin{aligned}
& D_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} \cos k t=\frac{\sin \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}} \\
& \tilde{D}_{n}(t)=\sum_{k=1}^{n} \sin k t=\frac{\cos \frac{t}{2}-\cos \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}} \\
& \bar{D}_{n}(t)=-\frac{1}{2} \operatorname{ctg} \frac{t}{2}+\tilde{D}_{n}(t)=-\frac{\cos \left(n+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}} \\
& \tilde{K}_{n}(t)=\frac{1}{n+1} \sum_{k=0}^{n} \tilde{D}_{k}(t)=\frac{1}{4 \sin ^{2} \frac{t}{2}}\left[\sin t-\frac{\sin (n+1) t}{n+1}\right]
\end{aligned}
$$

Let $E_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} e^{i k t}$ and $E_{-n}(t)=\frac{1}{2}+\sum_{k=1}^{n} e^{-i k t}$. Then the r-th derivatives $D_{n}^{(r)}(t)$ and $\tilde{D}_{n}^{(r)}(t)$ can be written as

$$
\begin{align*}
2 D_{n}^{(r)}(t) & =E_{n}^{(r)}(t)+E_{-n}^{(r)}(t) \\
2 i \tilde{D}_{n}^{(r)}(t) & =E_{n}^{(r)}(t)-E_{-n}^{(r)}(t) \tag{2}
\end{align*}
$$

S. S. Bhatia and B. Ram [6] introduced the following modified sums

$$
g_{n}(c, t)=S_{n}(c, t)+\frac{i}{n+1}\left[c_{n+1} E_{n}^{\prime}(t)-c_{-(n+1)} E_{-n}^{\prime}(t)\right]
$$

and proved the following result.
Theorem 1 [6]. Let $\left\{c_{n}\right\} \in \Re^{*}$. Then there exists $f(t)$ such that
(i) $\lim _{n \rightarrow \infty} g_{n}(c, t)=f(t)$ for all $0<|t| \leq \pi$.
(ii) $f(t) \in L^{1}(T)$ and $\left\|g_{n}(c, t)-f(t)\right\|_{1}=o(1), n \rightarrow \infty$.
(iii) $\left\|S_{n}(f, t)-f(t)\right\|_{1}=o(1)$ iff $\hat{f}(n) \log |n|=o(1),|n| \rightarrow \infty$.

Now we define a new class $\Re^{*}(r), r=0,1,2, \ldots$ of a complex sequence as follows: a null sequence $\left\{c_{k}\right\}$ of complex numbers belongs to class $\Re^{*}(r), r=0,1,2, \ldots$ if

$$
\begin{aligned}
& \sum_{k=1}^{\infty}\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right)\right| k^{r+1} \log k<\infty \\
& \sum_{k=1}^{\infty} k^{r+2}\left|\Delta^{2}\left(\frac{c_{k}}{k}\right)\right|<\infty
\end{aligned}
$$

If $r=0$, class $\Re^{*}(r)$ reduces to \Re^{*}.
Č. V. Stanojević and V. B. Stanojević [7] introduced the following modified complex trigonometric sums:

$$
U_{n}(c, t)=S_{n}(c, t)-\left(c_{n} E_{n}(t)+c_{-n} E_{-n}(t)\right)
$$

The complex form of the r-th derivative of this sum obtained by Sheng [5] is

$$
U_{n}^{(r)}(c, t)=S_{n}^{(r)}(c, t)-\left(c_{n} E_{n}^{(r)}(t)+c_{-n} E_{-n}^{(r)}(t)\right)
$$

B. Ram and S. Kumari [4] introduced another set of modified cosine and sine sums as

$$
\begin{aligned}
& f_{n}(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta\left(\frac{a_{j}}{j}\right) k \cos k x \quad \text { and } \\
& h_{n}(x)=\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta\left(\frac{a_{j}}{j}\right) k \sin k x
\end{aligned}
$$

The complex form of the r-th derivative of these modified sums obtained by Bhatia and Ram [2] is

$$
G_{n}^{(r)}(c, t)=S_{n}^{(r)}(c, t)+\frac{i}{n+1}\left[c_{n+1} E_{n}^{(r+1)}(t)-c_{-(n+1)} E_{-n}^{(r+1)}(t)\right]
$$

Using the modified complex sums $G_{n}^{(r)}$ we shall prove the following theorem:
Theorem 2. Let $\left\{c_{n}\right\} \in \Re^{*}(r), r=0,1,2, \ldots$ Then
(i) $\lim _{n \rightarrow \infty} G_{n}^{(r)}(c, t)=f^{(r)}(t)$ for all $0<|t| \leq \pi$.
(ii) $f^{(r)} \in L^{1}(T)$ and $\left\|G_{n}^{(r)}(c, t)-f^{(r)}(t)\right\|_{1}=o(1), n \rightarrow \infty$.
(iii) $\left\|S_{n}^{(r)}(f, t)-f^{(r)}(t)\right\|_{1}=o(1), n \rightarrow \infty \quad$ iff $|n|^{r} \hat{f}(n) \log |n|=o(1),|n| \rightarrow \infty$.

The case $r=0$ of our Theorem yields Theorem 1.
For other criteria for L^{1}-convergence of the r-th derivative of a complex trigonometric series, see [8].

The real trigonometric series version of Theorem 2 was established by Bhatia and Ram [3].

2. Lemmas

For the proof of our new theorem we need the following Lemmas.
Lemma 1 [5]. For the r-th derivatives of the Dirichlet's kernels D_{n} and \tilde{D}_{n} the following estimates hold
(i) $\left\|D_{n}^{(r)}\right\|_{1}=\frac{4}{\pi} n^{r} \log n+O\left(n^{r}\right), r=0,1,2, \ldots$
(ii) $\left\|\tilde{D}_{n}^{(r)}\right\|_{1}=O\left(n^{r} \log n\right), r=0,1,2, \ldots$

Lemma 2 [5]. For each non-negative integer $n,\left\|c_{n} E_{n}^{(r)}+c_{-n} E_{-n}^{(r)}\right\|_{1}=o(1)$, $|n| \rightarrow \infty$ holds if and only if $|n|^{r} c_{n} \log |n|=o(1),|n| \rightarrow \infty$, where $\left\{c_{n}\right\}$ is a complex sequence. We note that this Lemma for $r=0$, was obtained by Bray and Stanojević in [1].

Lemma 3 [10]. Let r be a non-negative integer. Then for all $0<|t| \leq \pi$ and all $n \geq 1$ the following estimates hold
(i) $\left|E_{-n}^{(r)}(t)\right| \leq \frac{4 n^{r} \pi}{|t|}$.
(ii) $\left|\tilde{D}_{n}^{(r)}(t)\right| \leq \frac{4 n^{r} \pi}{|t|}$.

Proof. (i) The case $r=0$ is trivial. Really, since $E_{n}(t)=D_{n}(t)+i \tilde{D}_{n}(t)$, we have

$$
\begin{aligned}
\left|E_{n}(t)\right| & \leq\left|D_{n}(t)\right|+\left|\tilde{D}_{n}(t)\right| \leq \frac{\pi}{2|t|}+\frac{\pi}{|t|}=\frac{3 \pi}{2|t|}<\frac{4 \pi}{|t|} \\
\left|E_{-n}(t)\right| & =\left|E_{n}(-t)\right|<\frac{4 \pi}{|t|}
\end{aligned}
$$

Let $r \geq 1$. Applying Abels's transformation, we have:

$$
\begin{aligned}
E_{n}^{(r)}(t) & =i^{r} \sum_{k=1}^{n} k^{r} e^{i k t}=i^{r}\left[\sum_{k=1}^{n-1} \Delta\left(k^{r}\right)\left(E_{k}(t)-\frac{1}{2}\right)+n^{r}\left(E_{n}(t)-\frac{1}{2}\right)\right] \\
\left|E_{n}^{(r)}(t)\right| & \leq \sum_{k=1}^{n-1}\left[(k+1)^{r}-k^{r}\right]\left(\frac{1}{2}+\left|E_{k}(t)\right|\right)+n^{r}\left(\left|E_{n}(t)\right|+\frac{1}{2}\right) \\
& \leq\left(\frac{\pi}{2|t|}+\frac{3 \pi}{2|t|}\right)\left\{\sum_{k=1}^{n-1}\left[(k+1)^{r}-k^{r}\right]+n^{r}\right\}=\frac{4 \pi n^{r}}{|t|} .
\end{aligned}
$$

Since $E_{-n}^{(r)}(t)=E_{n}^{(r)}(-t)$, we obtain $\left|E_{-n}^{(r)}(t)\right| \leq \frac{4 \pi n^{r}}{|t|}$.
(ii) Applying inequality (i) and equation 2, we obtain

$$
\left|\tilde{D}_{n}^{(r)}(t)\right|=\left|i \tilde{D}_{n}^{(r)}(t)\right| \leq \frac{1}{2}\left|E_{n}^{(r)}(t)\right|+\frac{1}{2}\left|E_{-n}^{(r)}(t)\right| \leq \frac{4 n^{r} \pi}{|t|}
$$

Lemma 4 [6]. $\left\|\tilde{K}_{n}^{\prime}(t)\right\|_{1}=O(n)$.
Lemma 5 [11]. If $T_{n}(x)$ is a trigonometric polynomial of order n, then

$$
\left\|T_{n}^{(r)}\right\| \leq n^{r}\left\|T_{n}\right\|
$$

This is Bernstein's inequality in the $L^{1}(0, \pi)$-metric (see [11], vol.2, p.11).
Lemma 6. $\left\|\tilde{K}_{n}^{(r)}\right\|_{1}=O\left(n^{r}\right), r=1,2, \ldots$
Proof. Since $\tilde{K}_{n}(x)=\sum_{k=1}^{n} \frac{n+1-k}{n+1} \sin k x$, we have that

$$
T_{n}(x)=\tilde{K}_{n}^{\prime}(x)=\sum_{k=1}^{n} \frac{k(n+1-k)}{n+1} \cos k x
$$

is a cosine trigonometric polynomial of order n.
Applying first Bernstein's inequality, then Lemma 4, yields:

$$
\left\|\tilde{K}_{n}^{(r)}\right\|_{1}=\left\|T_{n}^{(r-1)}(x)\right\|_{1} \leq n^{r-1}\left\|T_{n}(x)\right\|_{1}=O\left(n^{r}\right)
$$

3. Proof of the main result

Applying Abel's transformation, we have:

$$
\begin{aligned}
G_{n}^{(r)}(c, t) & =S_{n}^{(r)}(c, t)+\frac{i}{n+1}\left[c_{n+1} E_{n}^{(r+1)}(t)-c_{-(n+1)} E_{-n}^{(r+1)}(t)\right] \\
& =2 \sum_{k=1}^{n} \Delta\left(\frac{c_{k}}{k}\right) \tilde{D}_{k}^{(r+1)}(t)+\sum_{k=1}^{n} \Delta\left(\frac{c_{-k}-c_{k}}{k}\right) i E_{-k}^{(r+1)}(t)
\end{aligned}
$$

By Lemma 3, we get:

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|\Delta\left(\frac{c_{k}}{k}\right) \tilde{D}_{k}^{(r+1)}\right| & \leq \frac{4 \pi}{|t|} \sum_{k=1}^{\infty} k^{r+1}\left|\Delta\left(\frac{c_{k}}{k}\right)\right| \leq \frac{4 \pi}{|t|}\left\{\sum_{k=1}^{\infty} \sum_{j=k}^{\infty} k^{r+1}\left|\Delta^{2}\left(\frac{c_{j}}{j}\right)\right|\right\} \\
& =\frac{4 \pi}{|t|}\left\{\sum_{j=1}^{\infty}\left(\sum_{k=1}^{j} k^{r+1}\right)\left|\Delta^{2}\left(\frac{c_{j}}{j}\right)\right|\right\} \\
& =O\left(\frac{1}{|t|} \sum_{j=1}^{\infty} j^{r+2}\left|\Delta^{2}\left(\frac{c_{j}}{j}\right)\right|\right)<\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{k=3}^{\infty}\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right) E_{-k}^{(r+1)}(t)\right| & \leq \frac{4 \pi}{|t|}\left\{\sum_{k=3}^{\infty} k^{r+1}\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right)\right|\right\} \\
& =O\left(\frac{1}{|t|} \sum_{k=3}^{\infty} k^{r+1} \log k\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right)\right|\right)<\infty
\end{aligned}
$$

Consequently,

$$
f^{(r)}(t)=2 \sum_{k=1}^{\infty} \Delta\left(\frac{c_{k}}{k}\right) \tilde{D}_{k}^{(r+1)}(t)+\sum_{k=1}^{\infty} \Delta\left(\frac{c_{-k}-c_{k}}{k}\right) i E_{-k}^{(r+1)}(t)
$$

exists and thus (i) follows.
Now, for $t \neq 0$, we have:

$$
\begin{aligned}
f^{(r)}(t)-G_{n}^{(r)}(c, t)= & 2 \sum_{k=n+1}^{\infty} \Delta\left(\frac{c_{k}}{k}\right) \tilde{D}_{k}^{(r+1)}(t)+i \sum_{k=n+1}^{\infty} \Delta\left(\frac{c_{-k}-c_{k}}{k}\right) E_{-k}^{(r+1)}(t) \\
= & 2 \sum_{k=n+1}^{\infty}(k+1) \Delta^{2}\left(\frac{c_{k}}{k}\right) \tilde{K}_{k}^{(r+1)}(t)-2(n+1) \Delta\left(\frac{c_{n+1}}{n+1}\right) \tilde{K}_{n+1}^{(r+1)}(t) \\
& +i \sum_{k=n+1}^{\infty} \Delta\left(\frac{c_{-k}-c_{k}}{k}\right) E_{-k}^{(r+1)}(t) .
\end{aligned}
$$

Then,

$$
\begin{aligned}
\left\|f^{(r)}(t)-G_{n}^{(r)}(c, t)\right\|_{1} \leq & 2 \sum_{k=n+1}^{\infty}(k+1)\left|\Delta^{2}\left(\frac{c_{k}}{k}\right)\right| \int_{-\pi}^{\pi}\left|\tilde{K}_{k}^{(r+1)}(t)\right| d t \\
& +2(n+1)\left|\Delta\left(\frac{c_{n+1}}{n+1}\right)\right| \int_{-\pi}^{\pi}\left|\tilde{K}_{n+1}^{(r+1)}(t)\right| d t \\
& +\sum_{k=n+1}^{\infty}\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right)\right| \int_{-\pi}^{\pi}\left|E_{-k}^{(r+1)}(t)\right| d t
\end{aligned}
$$

Applying Lemma 6 and Lemma 1, we have:

$$
\begin{aligned}
\left\|f^{(r)}(t)-G_{n}^{(r)}(c, t)\right\|_{1}= & O\left(\sum_{k=n+1}^{\infty}(k+1)^{r+2}\left|\Delta^{2}\left(\frac{c_{k}}{k}\right)\right|\right) \\
& +O\left((n+1)^{r+2}\left|\Delta\left(\frac{c_{n+1}}{n+1}\right)\right|\right) \\
& +O\left(\sum_{k=n+1}^{\infty}\left|\Delta\left(\frac{c_{-k}-c_{k}}{k}\right)\right| k^{r+1} \log k\right)
\end{aligned}
$$

But

$$
\begin{aligned}
\left|\Delta\left(\frac{c_{n+1}}{n+1}\right)\right| & =\left|\sum_{k=n+1}^{\infty} \Delta^{2}\left(\frac{c_{k}}{k}\right)\right| \leq \sum_{k=n+1}^{\infty} \frac{k^{r+2}}{k^{r+2}}\left|\Delta^{2}\left(\frac{c_{k}}{k}\right)\right| \\
& \leq \frac{1}{(n+1)^{r+2}} \sum_{k=n+1}^{\infty} k^{r+2}\left|\Delta^{2}\left(\frac{c_{k}}{k}\right)\right|=o\left(\frac{1}{(n+1)^{r+2}}\right), \quad n \rightarrow \infty .
\end{aligned}
$$

Hence, $\left\|f^{(r)}(t)-G_{n}^{(r)}(c, t)\right\|_{1}=o(1), n \rightarrow \infty$ by the hypothesis of the theorem.
Since $G_{n}^{(r)}(c, t)$ is a polynomial, it follows that $f^{(r)} \in L^{1}$.
The proof of (iii) follows from the estimate

$$
\begin{aligned}
& \left|\left\|f^{(r)}-S_{n}^{(r)}(f)\right\|_{1}-\left\|\frac{i}{n+1}\left(\hat{f}(n+1) E_{n}^{(r+1)}-\hat{f}(-(n+1)) E_{-n}^{(r+1)}\right)\right\|_{1}\right| \\
& \quad \leq\left\|f^{(r)}-G_{n}^{(r)}(c, t)\right\|_{1}=o(1), n \rightarrow \infty
\end{aligned}
$$

and from Lemma 2.

References

[1] W. O. Bray, Č. V. Stanojević, Tauberian L^{1}-convergence classes of Fourier series, Trans. Amer. Math. Soc. 275(1983), 59-69.
[2] S. S. Bhatia, B. Ram, The extensions of the Ferenc Móricz theorems, Proc. Amer. Math. Soc. 124(1996), 1821-1829.
[3] S. S. Bhatia, B. Ram, On L^{1} convergence of certain modified trigonometric series, Indian Journal of Mathematics 35(1993), 171-176.
[4] B. Ram, S. Kumari, On L^{1}-convergence of certain trigonometric sums, Indian J. Pure Appl. Math. 20(1989), 908-914.
[5] S. Sheng, The extension of the theorems of Č. V. Stanojevic and V. B. Stanojević, Proc. Amer. Math. Soc. 110(1990), 895-904.
[6] S. S. Bhatia, B. Ram, On L^{1}-convergence of modified complex trigonometric sums, Proc. Indian. Acad. Sci. 105(1995), 193-199.
[7] Č. V. Stanojević, V. B. Stanojević, Generalizations of the Sidon-Telyakovskii theorem, Proc. Amer. Math. Soc. 101(1987), 679-684.
[8] Ž. Tomovski, Necessary and sufficient condition for L^{1}-convergence of complex trigonometric series, Vestnik 7(2000), 139-145, Russian University of People's Friendship, Moscow.
[9] Ž. Tomovski, Convergence and integrability on some classes of trigonometric series, Ph.D thesis, University of Skopje, 2000; RGMIA Monographs, Victoria University, 2000, URL: http: //rgmia.vu.edu.au/monographs/tomovski_thesis.htm; Dissertationes Mathematicae (Warszawa) 420(2003), 1-65.
[10] Ž. Tomovski, Some results on L^{1}-approximation of the r-th derivative of Fourier series, Journal of Ineq. in Pure and Appl. Math. 3(2002), 1-11. URL: http://jipam.vu.edu.au
[11] A. Zygmund, Trigonometric Series, Univ. Press, Cambridge, 1959.

[^0]: *Department of Mathematics, Faculty of Mathematical and Natural Sciences, P.O. BOX 162, 1000 Skopje, Macedonia, e-mail: tomovski@iunona.pmf.ukim.edu.mk

