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The properties of spaces which admit a Whitney

map

Ivan Lončar
∗

Abstract. Let X be a topological space and 2X the hyperspace of
closed subsets of X. It is known that there is a Whitney map on the
hyperspace 2X for separable metric spaces X. In this paper we study the
properties of spaces which admit a Whitney map for some subspaces of
2X . We shall show that, under some natural assumptions, such spaces
are closely related to separable metric spaces.
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1. Introduction

All spaces in this paper are Hausdorff and all mappings are continuous. The weight
of a space X is denoted by w(X).

For a space X with a topology T , we put: a) 2X = {F : F is a nonempty
closed subset of X} equipped with the Vietoris topology, i.e., the topology with
base B = {〈U1, ..., Un〉 : Ui ∈ T for each i < ∞}, where 〈U1, ..., Un〉 = {F ∈ 2X :
F ⊂ U1 ∪ ... ∪ Un and F ∩ Ui �= ∅ for each i} [3, p. 4], b) CP (X) = {K ∈ 2X : K
is compact} and c) X(n) = {K ∈ CP (X) : K contains at most n points}. We
consider CP (X) and X(n) as subspaces of 2X . If F is a closed subset of X , then
{F} denotes the corresponding element of 2X .

For mapping f : X → Y define 2f : 2X → 2Y by 2f({F}) = {Clf(F )} for
{F} ∈ 2X . If Y is normal, then 2f is continuous. Furthermore, 2f (CP (X)) ⊂
CP (Y ) and 2f (X(n)) ⊂ Y (n). The restriction 2f |CP (X) is denoted by cp(f).

We say that a topological space X is a Lindelöf space if X is regular and every
open cover of X has a countable subcover. Every regular second-countable space is
a Lindelöf space and every Lindelöf space is normal [2, Theorem 3.8.2, p. 247].

Let Λ be a subspace of 2X . By a Whitney map for Λ [6, p. 24, (0.50)] we will
mean any mapping g : Λ → [0,+∞) satisfying
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a) if {A}, {B} ∈ Λ such that A ⊂ B,A �= B, then g({A}) < g({B}) and

b) g({x}) = 0 for each x ∈ X such that {x} ∈ Λ.

H. Whitney first constructed special types of functions on spaces of sets for the
purpose of studying families of curves ([8] and [9]). Now, we construct the Whitney
map (as Whitney’s function is now called) that was constructed in [9, pp. 245-246]
for separable metric spaces. Let d denote a metric on X . Let Z = {z1, z2, ..., zn, ...}
be a countable dense subset of X . For each n = 1, 2, ..., define fn : X → [0, 1] as
follows:

fn(x) =
1

1 + d(xn, x)

for each x ∈ X . Next, for each n = 1, 2, ..., define wn : 2X → [0, 1] as follows:

wn(A) = diameter [fn(A)]

for each A ∈ 2X . Finally, define w : 2X → [0, 1] as follows:

w(A) =
∞∑

n=1

wn(A)
2n

for each A ∈ 2X . For the proof that w : 2X → [0, 1] is a Whitney map for 2X see
[3, Theorem 13.4, p. 107].

J. L. Kelley [4] was the first person who introduced Whitney maps in studying
hyperspaces. Book [6] is the first book in which Whitney maps are used for a
systematic study of hyperspaces. A modern approach to hyperspace theory is book
[3].

If X is a compact metric space, then there exists a Whitney map for 2X and
C(X) ([6, pp. 24-26], [3, pp. 106, 205-230]). On the other hand, if X is a non-
metrizable compact space, then it admits no Whitney map for 2X [1].

The present paper is inspired by the following theorem due to T. Watanabe [7,
Theorem 1].

Theorem 1. Let X be a metric space. Then the following conditions are
equivalent to each other:

(i) X admits a Whitney map µ : (2X , Hd) → R for some bounded metric d on X,

(ii) X admits a Whitney map µ : (2X , V T ) → R, where V T is the Vietoris topology
on 2X ,

(iii) X has the Lindelöf property,

(iv) X is separable.

Theorem 1 shows limitations for the existence of Whitney maps for metric spaces.
Example 1. [7, Example 7]. Let m be an uncountable ordinal. Let J(m) be

the hedgehog space of spines m defined in Example 4.1.5. of [2, p. 314]. The space
J(m) is a connected, locally connected, metric space which admits no Whitney map
for 2J(m) since it does not have the Lindelöf property.
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The following result is also known.
Lemma 1 [[7], Lemma 3]. Any metric space X admits a Whitney map µ :

(CP (X), V T ) → R.
In the sequel we study the properties of spaces which admit a Whitney map for

some subspaces of 2X for non-metric space X .

2. Whitney map for X(2)

If a space X admits a Whitney map for 2X or for CP (X), then X admits a Whitney
map for X(2). Hence, it is natural to begin with the study of properties of spaces
which admit a Whitney map for X(2). Let ∆ be the diagonal of the product X×X ,
i.e., ∆ = {(x, x) : x ∈ X}. If X is a Hausdorff space, then ∆ is a closed subset of
X×X [2, Corollary 2.3.22, p. 114]. Define j2 : X×X → X(2) by j2((x, y)) = {x, y}.
The mapping j2 is a closed surjection ifX is a Hausdorff space [2, Problem 2.7.20.(c),
p. 162].

We start with the following lemma which is a part of the proof of Theorem of
[1] in the case of a compact space X .

Lemma 2. If a Hausdorff space X admits a Whitney map for X(2), then X(1)
is a Gδ-subset in X(2) and the diagonal ∆ is a Gδ-subset in X ×X.

Proof. Let µ : X(2) → R be a Whitney map. It is known that X(1) ⊂ X(2)
is homeomorphic to X if X is a T1-space [2, Problem 2.7.20.(b), p.163]. If X is a
Hausdorff space, then every X(n), n ∈ N, is closed in 2X [2, Problem 2.7.20.(b),
p.163]. By the definition of a Whitney map we have µ−1(0) = X(1). We infer that
X(1) is a Gδ-subset in X(2) since 0 ∈ R is a Gδ-subset in R. Since j−1

2 (X(1)) = ∆
we conclude ∆ = (µj2)−1(0). Since 0 ∈ R is a Gδ-subset in R, we conclude that ∆
is a Gδ-subset in X ×X . ✷

Lemma 3. The diagonal ∆ in X ×X is a Gδ-subset if and only if X(1) is a
Gδ-subset in X(2).

Proof. Consider the mapping j2 : X ×X → X(2) which is a closed surjection.
Let us observe that j−1

2 (X(1)) = ∆. If X(1) is a Gδ-set in X(2), then there
exists a sequence {Un : n ∈ N} of open subsets of X(2) such that X(1) = ∩{Un :
n ∈ N}. From j−1

2 (X(1)) = ∆ it follows that ∆ = j−1
2 (X(1)) = j−1

2 (∩{Un : n ∈
N}) = ∩{j−1

2 (Un) : n ∈ N}. Hence, ∆ is a Gδ-subset of X × X . Conversely, let
∆ be a Gδ-subset in X × X . Now, j2 is closed and X(2)�X(1) is Fσ. Hence,
j−1
2 (X(2)�X(1)) = X ×X�∆ is Fσ. ✷

Lemma 4. If X(2) is a normal space, then X admits a Whitney map if and
only if X(1) is a Gδ-subset in X(2).

Proof. If X(1) is a Gδ-subset in X(2), then there exists a continuous function
f : X(2) → I = [0, 1] such that X(1) = f−1(0) [2, Corollary 1.5.11, p. 64]. This
means that for {x, y} ∈ X(2)�X(1) we have f({x, y}) > 0. Hence, f is a Whitney
map for X(2). Conversely, if there exists a Whitney map µ : X(2) → R, then X(1)
is a Gδ-subset in X(2) (Lemma 2). ✷

Lemma 5. If X × X is a normal space, then X admits a Whitney map for
X(2) if and only if the diagonal ∆ is a Gδ-subset in X ×X.

Proof. If X × X is normal, then X(2) is a normal space since there exists a
closed mapping j2 : X×X → X(2) [2, Theorem 1.5.20, p. 69]. If ∆ is a Gδ-subset in
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X×X then by Lemma 3 X(1) is a Gδ-subset in X(2). Apply Lemma4. Conversely,
if X admits a Whitney for X(2), then apply Lemma2. ✷

A topological space X is Čech-complete if X is a Tychonoff space and the re-
mainder βX�X is an Fσ-set in βX [2, pp. 251-251].

A Tychonoff space X is said to be locally Čech-complete if every point x ∈ X
has a Čech-complete neighbourhood [2, Problem 3.12.18.(c), p. 297]. Every locally
Čech-complete paracompact space is Čech-complete [2, Problem 5.5.8.(c), p. 422].

Lemma 6. If a space X is a Čech-complete Lindelöf space, then X(2) is a
Lindelöf space.

Proof. If a space X is a Čech-complete Lindelöf space, then the Cartesian
product X × X is a Lindelöf space [2, Exercise 3.9.F, p. 257]. Now, X(2), as a
continuous image of X ×X [2, Problem 2.7.20.(b), p. 162] is a Lindelöf space. ✷

Theorem 2. If X is a Čech-complete Lindelöf space, then X admits a Whitney
map for X(2) if and only if X(1) is a Gδ-subset in X(2).

Proof. By virtue of Lemma6X(2) is a Lindelöf space and, consequently, normal.
Apply Lemma4. ✷

The following result is important in the sequel.
Lemma 7. If a Hausdorff space X admits one-to-one continuous mapping

f : X → Y onto a metric space Y , then X admits a Whitney map for X(2) and for
CP (X).

Proof. Compose cp(f) with a Whitney map for CP (Y ). ✷

If X is a paracompact space, then we have the following important result.
Lemma 8. [2, Problem 5.5.7, p. 421]. If X is a paracompact space and the

diagonal ∆ is Gδ-set in X ×X, then there exists a one-to-one continuous mapping
of X onto a metrizable space.

Theorem 3. A paracompact space X admits a Whitney map for X(2) if and
only if there exists one-to-one continuous mapping f : X → Y onto a metric space
Y .

Proof. If there exists one-to-one continuous mapping f : X → Y onto a metric
space Y , then apply Lemma7. Conversely, if a paracompact space X admits a
Whitney map for X(2), then it has the diagonal ∆ which is a Gδ-set in X ×
X because of Lemma 2. From Lemma8 it follows that there exists a one-to-one
continuous mapping f : X → Y onto a metric space Y . ✷

Corollary 1. A compact space X admits a Whitney map for X(2) if and only
if X is a metric space.

Proof. If X is a compact metrizable space, then X admits a Whitney map
for X(2) since it admits a Whitney map for CP (X) (Lemma 1). Conversely, if
X admits a Whitney map for X(2), then by Theorem 3 there exists one-to-one
continuous mapping f : X → Y onto a metric space Y . It is clear that f is a
homeomorphism. Hence, X is a metrizable space. ✷

A topological space X is countably compact if X is a Hausdorff space and every
countable open cover of X has a finite subcover [2, p. 258]. A Hausdorff space is
countably compact if and only if every infinite set has an accumulation point [2,
Theorem 3.10.3, p. 258]. Every countably compact paracompact space is compact
[2, Theorem 5.1.20, p. 380].
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Corollary 2. A countably compact space X admits a Whitney map for X(2) if
and only if X is a metric space.

Proof. If X is countably compact metrizable space, then X is a compact [2,
Theorem 5.1.20, p. 380] metric space. By Corollary 1 it follows that X admits a
Whitney map for X(2). Conversely, if X admits a Whitney map for X(2), then the
diagonal ∆ is a Gδ-set in X× X (Lemma2). By virtue of [2, Problem 3.12.22.(e),
p. 303] we conclude that X is compact. Therefore X is metrizable by [2, Exercise
4.2.B, p. 330] or by Corollary 1. ✷

Lemma 9. If a Hausdorff space X admits a Whitney map for X(2), then every
countably compact subset Y of X is metrizable.

Proof. If X admits a Whitney map µ for X(2), then µ|Y (2) is a Whitney map
for Y (2). Apply Corollary 2. ✷

We say that a Hausdorff space X is locally countably compact if for every x ∈
X there exists a neighbourhood U of x such that Cl(U) is a countably compact
subspace of X .

Theorem 4. If a locally countably compact paracompact space X admits a
Whitney map for X(2), then X is metrizable.

Proof. Let µ : X(2) → R be a Whitney map. For every x ∈ X there exists a
neighbourhood U of x such that Cl(U) is a countably compact subspace of X . From
Lemma9 it follows that Cl(U) is metrizable. Finally, using the Smirnov metrization
theorem [2, 5.4.A, p. 415] we complete the proof. ✷

Theorem 5. A linearly ordered space X admits a Whitney map for X(2) if
and only if it is metrizable.

Proof. If X is metrizable, then X admits a Whitney map for X(2). Conversely,
if X admits a Whitney map for X(2), then the diagonal ∆ is a Gδ-set in X × X
(Lemma2). By [2, Problem 5.5.22.(k), p. 430] X is metrizable. ✷

3. Whitney map for CP (X)

If a space X admits a Whitney map for CP (X), then it admits a Whitney map for
X(2). This means that X has the same properties as in the last section. We start
with the following theorem.

Theorem 6. If X is a paracompact space and the diagonal ∆ is a Gδ-set in
X ×X, then X admits a Whitney map for CP (X).

Proof. Apply Lemma8 and Theorem 3. ✷

Theorem 7. A paracompact space X admits a Whitney map for CP (X) if
and only if there exists a one-to-one continuous mapping f : X → Y onto a metric
space Y .

Proof. The proof is the same as the proof of Theorem 3. ✷

Let us observe that for a compact space X we have CP (X) = 2X and if f :
X → Y is a continuous one-to-one mapping, then f is a homeomorphism. Hence,
we have the following corollary.

Corollary 3. A compact space admits a Whitney map for 2X if and only if it
is metrizable.

Remark 1. For another proof of Corollary 3 see [1]. The proof by the inverse
system method is given in [5].
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Theorem 8. If a countably compact space admits a Whitney map for CP (X),
then X is metrizable.

Proof. As in Corolary 2,X is compact and metrizable sinceX admits a Whitney
map for X(2). ✷

Corollary 4. A countably compact space admits a Whitney map for CP (X) if
and only if it is a separable metric space.

Theorem 9. If X is a locally countably compact paracompact space which
admits a Whitney map for CP (X), then X is metrizable.

Proof. From Theorem 8 it follows that every x ∈ X has a neighbourhood U
such that Cl(U) is metrizable. This means that every point of X has a metrizable
neighbourhood. Using the Smirnov theorem [2, 5.4.A, p. 415] we conclude that X
is metrizable since X is paracompact. ✷

Corollary 5. A locally compact paracompact space X is metrizable if and only
if X admits a Whitney map for CP (X).

Proof. If X is a locally compact paracompact space which admits a Whitney
map, then X is metrizable because of Theorem 9. Conversely, if X is metrizable,
then X admits a Whitney map (Lemma1). ✷

4. Whitney map for 2X

The assumption that a space X admits a Whitney map for 2X is very restrictive.
This is established by Lemmas 10 and 11.

Lemma 10. If X admits a Whitney map for 2X , then hl(X) < ℵ1, i.e., X
is hereditarily Lindelöf. Moreover, X is perfectly normal and hereditarily paracom-
pact.

Proof. Suppose that X contains a transfinite increasing sequence U0 ⊂ U1 ⊂
... ⊂ Uξ ⊂ ..., ξ < ω1 of open subsets of X . Then X�U0 ⊃ X� U1 ⊃ ... ⊃ X�Uξ ⊂
..., ξ < ω1 is a decreasing sequence of closed subsets of X . Now, ω(X�U0) > ω(X�

U1) > ... > ω(Cξ) > ..., ξ < ω1 is an decreasing transfinite sequence of real numbers
ω(X�U0) > ω(X�U1) > ... > ω(X�Uξ) > ..., ξ < ω1. This is impossible since
w(R) = ℵ0. By virtue of [2, Problem 3.12.7(b), p. 284] it follows that hl(X) < ℵ1,
i.e., X is hereditarily Lindelöf. Furthermore, X is perfectly normal [2, Exercise
3.8.A(b), p. 249] and [2, Theorem 5.1.2, p. 373]. ✷

The following example shows that the assumption that X has the Lindelöf prop-
erty (X is separable) cannot be omitted in Corollary 9 (Corollary 8).

Example 2. [7, Example 8]. Let L be the long segment defined in 3.12.18 of [2,
p. 297]. Then L is a connected, locally connected and compact space which admits
no Whitney map for 2L since L is not separable and is not a hereditarily Lindelöf
space.

Lemma 11. If X admits a Whitney map for 2X , then hd(X) < ℵ1.
Proof. The proof is a straightforward modification of the proof of Lemma10

using [2, Problem 2.7.9(e), p.155]. ✷

Lemmas 10 and 11 show limitations for the existence of Whitney maps for 2X .
The space which admits a Whitney map for 2X must be hereditarily Lindelöf and
hereditarily separable. The following question is natural.
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QUESTION. Does there exist a non-metric hereditarily Lindelöf and heredi-
tarily separable space X which admits a Whitney map for 2X?

Theorem 10. If a space X admits a Whitney map for 2X , then there exists a
one-to-one mapping f : X → Y onto a separable metric space.

Proof. By Lemma 10 X is a paracompact space. Moreover, it has the diagonal
∆ in X ×X which is a Gδ-subset (Lemma 2). From Lemma 8 it follows that there
exists a one-to-one continuous mapping f : X → Y onto a metrizable space Y .
Now, since X is a Lindelöf space, Y is a Lindelöf space and, consequently, separable
and second-countable. ✷

As an immediate consequence of the above Theorem we have the following result.
Theorem 11. If a countably compact space X admits a Whitney map for 2X,

then it is compact and metrizable.
Proof. By virtue of Theorem 10 X is paracompact. Moreover, X is compact

since each countably compact paracompact space is compact [2, Theorem 5.1.20, p.
380]. Finally, from Theorem 10 it follows that X is metrizable. ✷

Corollary 6. A countably compact space X is metrizable if and only if it admits
a Whitney map for 2X .

Theorem 12. If a locally countably compact space X admits a Whitney map
for 2X , then X is metrizable.

Proof. Let µ : 2X → R be a Whitney map. By virtue of Theorem 10 X is
paracompact. For every x ∈ X there exists a neighbourhood U of x such that
Cl(U) is a countably compact subspace of X . It follows that Cl(U) is compact [2,
Theorem 5.1.20, p. 380]. From Theorem 11 it follows that Cl(U) is metrizable since
the restriction µ|2Cl(U) is a Whitney map for 2Cl(U). Finally, using the Smirnov
metrization theorem [2, 5.4.A, p. 415] we complete the proof. ✷

Corollary 7. If X is a locally compact space which admits a Whitney map for
2X, then X is metrizable.

Proof. From Theorem 11 it follows that every x ∈ X has a neighbourhood U
such that Cl(U) is metrizable. This means that every point of X has a metrizable
neighbourhood. Using the Smirnov theorem [2, 5.4.A, p. 415] we conclude that X
is metrizable since X is paracompact (hereditarily) because of Theorem 10. ✷

Corollary 8. A separable locally compact space X admits a Whitney map for
2X if and only if it is metrizable.

Proof. If X admits a Whitney map, then by Theorem 7 X is metrizable. Con-
versely, if X is a separable metric space, then X admits a Whitney map because of
Theorem 1. ✷

By the same method of proof we obtain the following result.
Corollary 9. A locally compact space X with the Lindelöf property admits a

Whitney map for 2X if and only if it is metrizable.
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