The properties of spaces which admit a Whitney map

IVAN LONČAR*

Abstract. Let X be a topological space and 2^X the hyperspace of closed subsets of X. It is known that there is a Whitney map on the hyperspace 2^X for separable metric spaces X. In this paper we study the properties of spaces which admit a Whitney map for some subspaces of 2^X . We shall show that, under some natural assumptions, such spaces are closely related to separable metric spaces.

Key words: Hyperspace, Whitney map

AMS subject classifications: Primary 54F15, 54B20; Secondary 54B35

Received December 24, 2002

Accepted November 13, 2003

1. Introduction

All spaces in this paper are Hausdorff and all mappings are continuous. The weight of a space X is denoted by w(X).

For a space X with a topology T, we put: a) $2^X = \{F : F \text{ is a nonempty} closed subset of X\}$ equipped with the Vietoris topology, i.e., the topology with base $\mathcal{B} = \{\langle U_1, ..., U_n \rangle : U_i \in T \text{ for each } i < \infty\}$, where $\langle U_1, ..., U_n \rangle = \{F \in 2^X : F \subset U_1 \cup ... \cup U_n \text{ and } F \cap U_i \neq \emptyset \text{ for each } i\}$ [3, p. 4], b) $CP(X) = \{K \in 2^X : K \text{ is compact}\}$ and c) $X(n) = \{K \in CP(X) : K \text{ contains at most } n \text{ points}\}$. We consider CP(X) and X(n) as subspaces of 2^X . If F is a closed subset of X, then $\{F\}$ denotes the corresponding element of 2^X .

For mapping $f: X \to Y$ define $2^f: 2^X \to 2^Y$ by $2^f(\{F\}) = \{\operatorname{Cl} f(F)\}$ for $\{F\} \in 2^X$. If Y is normal, then 2^f is continuous. Furthermore, $2^f(CP(X)) \subset CP(Y)$ and $2^f(X(n)) \subset Y(n)$. The restriction $2^f|CP(X)$ is denoted by cp(f).

We say that a topological space X is a Lindelöf space if X is regular and every open cover of X has a countable subcover. Every regular second-countable space is a Lindelöf space and every Lindelöf space is normal [2, Theorem 3.8.2, p. 247].

Let Λ be a subspace of 2^X . By a *Whitney map* for Λ [6, p. 24, (0.50)] we will mean any mapping $g : \Lambda \to [0, +\infty)$ satisfying

^{*}Faculty of Organization and Informatics Varaždin, University of Zagreb, Pavlinska 2, HR-42000 Varaždin, e-mail: ivan.loncar1@vz.tel.hr

I. Lončar

- a) if $\{A\}, \{B\} \in \Lambda$ such that $A \subset B, A \neq B$, then $g(\{A\}) < g(\{B\})$ and
- b) $g({x}) = 0$ for each $x \in X$ such that ${x} \in \Lambda$.

H. Whitney first constructed special types of functions on spaces of sets for the purpose of studying families of curves ([8] and [9]). Now, we construct the Whitney map (as Whitney's function is now called) that was constructed in [9, pp. 245-246] for separable metric spaces. Let d denote a metric on X. Let $Z = \{z_1, z_2, ..., z_n, ...\}$ be a countable dense subset of X. For each n = 1, 2, ..., define $f_n : X \to [0, 1]$ as follows:

$$f_n(x) = \frac{1}{1 + d(x_n, x)}$$

for each $x \in X$. Next, for each n = 1, 2, ..., define $w_n : 2^X \to [0, 1]$ as follows:

$$w_n(A) = \text{diameter } [f_n(A)]$$

for each $A \in 2^X$. Finally, define $w: 2^X \to [0,1]$ as follows:

$$w(A) = \sum_{n=1}^{\infty} \frac{w_n(A)}{2^n}$$

for each $A \in 2^X$. For the proof that $w : 2^X \to [0, 1]$ is a Whitney map for 2^X see [3, Theorem 13.4, p. 107].

J. L. Kelley [4] was the first person who introduced Whitney maps in studying hyperspaces. Book [6] is the first book in which Whitney maps are used for a systematic study of hyperspaces. A modern approach to hyperspace theory is book [3].

If X is a compact metric space, then there exists a Whitney map for 2^X and C(X) ([6, pp. 24-26], [3, pp. 106, 205-230]). On the other hand, if X is a nonmetrizable compact space, then it admits no Whitney map for 2^X [1].

The present paper is inspired by the following theorem due to T. Watanabe [7, Theorem 1].

Theorem 1. Let X be a metric space. Then the following conditions are equivalent to each other:

- (i) X admits a Whitney map $\mu: (2^X, H_d) \to \mathbb{R}$ for some bounded metric d on X,
- (ii) X admits a Whitney map $\mu : (2^X, VT) \to \mathbb{R}$, where VT is the Vietoris topology on 2^X ,
- (iii) X has the Lindelöf property,
- (iv) X is separable.

Theorem 1 shows limitations for the existence of Whitney maps for metric spaces. **Example 1.** [7, Example 7]. Let m be an uncountable ordinal. Let J(m) be the hedgehog space of spines m defined in Example 4.1.5. of [2, p. 314]. The space J(m) is a connected, locally connected, metric space which admits no Whitney map for $2^{J(m)}$ since it does not have the Lindelöf property.

208

The following result is also known.

Lemma 1 [[7], **Lemma 3**]. Any metric space X admits a Whitney map μ : (CP(X), VT) $\rightarrow \mathbb{R}$.

In the sequel we study the properties of spaces which admit a Whitney map for some subspaces of 2^X for non-metric space X.

2. Whitney map for X(2)

If a space X admits a Whitney map for 2^X or for CP(X), then X admits a Whitney map for X(2). Hence, it is natural to begin with the study of properties of spaces which admit a Whitney map for X(2). Let Δ be the diagonal of the product $X \times X$, i.e., $\Delta = \{(x, x) : x \in X\}$. If X is a Hausdorff space, then Δ is a closed subset of $X \times X$ [2, Corollary 2.3.22, p. 114]. Define $j_2 : X \times X \to X(2)$ by $j_2((x, y)) = \{x, y\}$. The mapping j_2 is a closed surjection if X is a Hausdorff space [2, Problem 2.7.20.(c), p. 162].

We start with the following lemma which is a part of the proof of Theorem of [1] in the case of a compact space X.

Lemma 2. If a Hausdorff space X admits a Whitney map for X(2), then X(1) is a G_{δ} -subset in X(2) and the diagonal Δ is a G_{δ} -subset in $X \times X$.

Proof. Let $\mu : X(2) \to \mathbb{R}$ be a Whitney map. It is known that $X(1) \subset X(2)$ is homeomorphic to X if X is a T_1 -space [2, Problem 2.7.20.(b), p.163]. If X is a Hausdorff space, then every $X(n), n \in \mathbb{N}$, is closed in 2^X [2, Problem 2.7.20.(b), p.163]. By the definition of a Whitney map we have $\mu^{-1}(0) = X(1)$. We infer that X(1) is a G_{δ} -subset in X(2) since $0 \in \mathbb{R}$ is a G_{δ} -subset in \mathbb{R} . Since $j_2^{-1}(X(1)) = \Delta$ we conclude $\Delta = (\mu j_2)^{-1}(0)$. Since $0 \in \mathbb{R}$ is a G_{δ} -subset in \mathbb{R} , we conclude that Δ is a G_{δ} -subset in $X \times X$.

Lemma 3. The diagonal Δ in $X \times X$ is a G_{δ} -subset if and only if X(1) is a G_{δ} -subset in X(2).

Proof. Consider the mapping $j_2: X \times X \to X(2)$ which is a closed surjection. Let us observe that $j_2^{-1}(X(1)) = \Delta$. If X(1) is a G_{δ} -set in X(2), then there exists a sequence $\{U_n: n \in \mathbb{N}\}$ of open subsets of X(2) such that $X(1) = \cap \{U_n: n \in \mathbb{N}\}$. From $j_2^{-1}(X(1)) = \Delta$ it follows that $\Delta = j_2^{-1}(X(1)) = j_2^{-1}(\cap \{U_n: n \in \mathbb{N}\}) = \cap \{j_2^{-1}(U_n): n \in \mathbb{N}\}$. Hence, Δ is a G_{δ} -subset of $X \times X$. Conversely, let Δ be a G_{δ} -subset in $X \times X$. Now, j_2 is closed and $X(2) \setminus X(1)$ is F_{σ} . Hence, $j_2^{-1}(X(2) \setminus X(1)) = X \times X \setminus \Delta$ is F_{σ} .

Lemma 4. If X(2) is a normal space, then X admits a Whitney map if and only if X(1) is a G_{δ} -subset in X(2).

Proof. If X(1) is a G_{δ} -subset in X(2), then there exists a continuous function $f: X(2) \to I = [0,1]$ such that $X(1) = f^{-1}(0)$ [2, Corollary 1.5.11, p. 64]. This means that for $\{x, y\} \in X(2) \setminus X(1)$ we have $f(\{x, y\}) > 0$. Hence, f is a Whitney map for X(2). Conversely, if there exists a Whitney map $\mu: X(2) \to \mathbb{R}$, then X(1) is a G_{δ} -subset in X(2) (Lemma 2).

Lemma 5. If $X \times X$ is a normal space, then X admits a Whitney map for X(2) if and only if the diagonal Δ is a G_{δ} -subset in $X \times X$.

Proof. If $X \times X$ is normal, then X(2) is a normal space since there exists a closed mapping $j_2: X \times X \to X(2)$ [2, Theorem 1.5.20, p. 69]. If Δ is a G_{δ} -subset in

 $X \times X$ then by Lemma 3 X(1) is a G_{δ} -subset in X(2). Apply Lemma 4. Conversely, if X admits a Whitney for X(2), then apply Lemma 2.

A topological space X is *Čech-complete* if X is a Tychonoff space and the remainder $\beta X \setminus X$ is an F_{σ} -set in βX [2, pp. 251-251].

A Tychonoff space X is said to be *locally Čech-complete* if every point $x \in X$ has a Čech-complete neighbourhood [2, Problem 3.12.18.(c), p. 297]. Every locally Čech-complete paracompact space is Čech-complete [2, Problem 5.5.8.(c), p. 422].

Lemma 6. If a space X is a Čech-complete Lindelöf space, then X(2) is a Lindelöf space.

Proof. If a space X is a Čech-complete Lindelöf space, then the Cartesian product $X \times X$ is a Lindelöf space [2, Exercise 3.9.F, p. 257]. Now, X(2), as a continuous image of $X \times X$ [2, Problem 2.7.20.(b), p. 162] is a Lindelöf space. \Box

Theorem 2. If X is a Čech-complete Lindelöf space, then X admits a Whitney map for X(2) if and only if X(1) is a G_{δ} -subset in X(2).

Proof. By virtue of Lemma 6X(2) is a Lindelöf space and, consequently, normal. Apply Lemma 4.

The following result is important in the sequel.

Lemma 7. If a Hausdorff space X admits one-to-one continuous mapping $f: X \to Y$ onto a metric space Y, then X admits a Whitney map for X(2) and for CP(X).

Proof. Compose cp(f) with a Whitney map for CP(Y).

If X is a paracompact space, then we have the following important result.

Lemma 8. [2, Problem 5.5.7, p. 421]. If X is a paracompact space and the diagonal Δ is G_{δ} -set in $X \times X$, then there exists a one-to-one continuous mapping of X onto a metrizable space.

Theorem 3. A paracompact space X admits a Whitney map for X(2) if and only if there exists one-to-one continuous mapping $f : X \to Y$ onto a metric space Y.

Proof. If there exists one-to-one continuous mapping $f: X \to Y$ onto a metric space Y, then apply Lemma 7. Conversely, if a paracompact space X admits a Whitney map for X(2), then it has the diagonal Δ which is a G_{δ} -set in $X \times X$ because of Lemma 2. From Lemma 8 it follows that there exists a one-to-one continuous mapping $f: X \to Y$ onto a metric space Y. \Box

Corollary 1. A compact space X admits a Whitney map for X(2) if and only if X is a metric space.

Proof. If X is a compact metrizable space, then X admits a Whitney map for X(2) since it admits a Whitney map for CP(X) (Lemma 1). Conversely, if X admits a Whitney map for X(2), then by Theorem 3 there exists one-to-one continuous mapping $f : X \to Y$ onto a metric space Y. It is clear that f is a homeomorphism. Hence, X is a metrizable space.

A topological space X is *countably compact* if X is a Hausdorff space and every countable open cover of X has a finite subcover [2, p. 258]. A Hausdorff space is countably compact if and only if every infinite set has an accumulation point [2, Theorem 3.10.3, p. 258]. Every countably compact paracompact space is compact [2, Theorem 5.1.20, p. 380].

Corollary 2. A countably compact space X admits a Whitney map for X(2) if and only if X is a metric space.

Proof. If X is countably compact metrizable space, then X is a compact [2, Theorem 5.1.20, p. 380] metric space. By *Corollary 1* it follows that X admits a Whitney map for X(2). Conversely, if X admits a Whitney map for X(2), then the diagonal Δ is a G_{δ} -set in $X \times X$ (*Lemma 2*). By virtue of [2, Problem 3.12.22.(e), p. 303] we conclude that X is compact. Therefore X is metrizable by [2, Exercise 4.2.B, p. 330] or by *Corollary 1*.

Lemma 9. If a Hausdorff space X admits a Whitney map for X(2), then every countably compact subset Y of X is metrizable.

Proof. If X admits a Whitney map μ for X(2), then $\mu|Y(2)$ is a Whitney map for Y(2). Apply *Corollary 2*.

We say that a Hausdorff space X is *locally countably compact* if for every $x \in X$ there exists a neighbourhood U of x such that Cl(U) is a countably compact subspace of X.

Theorem 4. If a locally countably compact paracompact space X admits a Whitney map for X(2), then X is metrizable.

Proof. Let $\mu : X(2) \to \mathbb{R}$ be a Whitney map. For every $x \in X$ there exists a neighbourhood U of x such that Cl(U) is a countably compact subspace of X. From Lemma 9 it follows that Cl(U) is metrizable. Finally, using the Smirnov metrization theorem [2, 5.4.A, p. 415] we complete the proof. \Box

Theorem 5. A linearly ordered space X admits a Whitney map for X(2) if and only if it is metrizable.

Proof. If X is metrizable, then X admits a Whitney map for X(2). Conversely, if X admits a Whitney map for X(2), then the diagonal Δ is a G_{δ} -set in $X \times X$ (*Lemma 2*). By [2, Problem 5.5.22.(k), p. 430] X is metrizable.

3. Whitney map for CP(X)

If a space X admits a Whitney map for CP(X), then it admits a Whitney map for X(2). This means that X has the same properties as in the last section. We start with the following theorem.

Theorem 6. If X is a paracompact space and the diagonal Δ is a G_{δ} -set in $X \times X$, then X admits a Whitney map for CP(X).

Proof. Apply *Lemma 8* and *Theorem 3*.

Theorem 7. A paracompact space X admits a Whitney map for CP(X) if and only if there exists a one-to-one continuous mapping $f: X \to Y$ onto a metric space Y.

Proof. The proof is the same as the proof of *Theorem 3*.

Let us observe that for a compact space X we have $CP(X) = 2^X$ and if $f : X \to Y$ is a continuous one-to-one mapping, then f is a homeomorphism. Hence, we have the following corollary.

Corollary 3. A compact space admits a Whitney map for 2^X if and only if it is metrizable.

Remark 1. For another proof of Corollary 3 see [1]. The proof by the inverse system method is given in [5].

I. LONČAR

Theorem 8. If a countably compact space admits a Whitney map for CP(X), then X is metrizable.

Proof. As in Corolary 2, X is compact and metrizable since X admits a Whitney map for X(2).

Corollary 4. A countably compact space admits a Whitney map for CP(X) if and only if it is a separable metric space.

Theorem 9. If X is a locally countably compact paracompact space which admits a Whitney map for CP(X), then X is metrizable.

Proof. From *Theorem 8* it follows that every $x \in X$ has a neighbourhood U such that Cl(U) is metrizable. This means that every point of X has a metrizable neighbourhood. Using the Smirnov theorem [2, 5.4.A, p. 415] we conclude that X is metrizable since X is paracompact. \Box

Corollary 5. A locally compact paracompact space X is metrizable if and only if X admits a Whitney map for CP(X).

Proof. If X is a locally compact paracompact space which admits a Whitney map, then X is metrizable because of *Theorem 9*. Conversely, if X is metrizable, then X admits a Whitney map (*Lemma 1*). \Box

4. Whitney map for 2^X

The assumption that a space X admits a Whitney map for 2^X is very restrictive. This is established by *Lemmas 10* and *11*.

Lemma 10. If X admits a Whitney map for 2^X , then $hl(X) < \aleph_1$, i.e., X is hereditarily Lindelöf. Moreover, X is perfectly normal and hereditarily paracompact.

Proof. Suppose that X contains a transfinite increasing sequence $U_0 \subset U_1 \subset ... \subset U_{\xi} \subset ..., \xi < \omega_1$ of open subsets of X. Then $X \setminus U_0 \supset X \setminus U_1 \supset ... \supset X \setminus U_{\xi} \subset ..., \xi < \omega_1$ is a decreasing sequence of closed subsets of X. Now, $\omega(X \setminus U_0) > \omega(X \setminus U_1) > ... > \omega(C_{\xi}) > ..., \xi < \omega_1$ is an decreasing transfinite sequence of real numbers $\omega(X \setminus U_0) > \omega(X \setminus U_1) > ... > \omega(X \setminus U_1) > ... > \omega(X \setminus U_{\xi}) > ..., \xi < \omega_1$. This is impossible since $w(\mathbb{R}) = \aleph_0$. By virtue of [2, Problem 3.12.7(b), p. 284] it follows that $hl(X) < \aleph_1$, i.e., X is hereditarily Lindelöf. Furthermore, X is perfectly normal [2, Exercise 3.8.A(b), p. 249] and [2, Theorem 5.1.2, p. 373].

The following example shows that the assumption that X has the Lindelöf property (X is separable) cannot be omitted in *Corollary* 9 (*Corollary* 8).

Example 2. [7, Example 8]. Let L be the long segment defined in 3.12.18 of [2, p. 297]. Then L is a connected, locally connected and compact space which admits no Whitney map for 2^{L} since L is not separable and is not a hereditarily Lindelöf space.

Lemma 11. If X admits a Whitney map for 2^X , then $hd(X) < \aleph_1$.

Proof. The proof is a straightforward modification of the proof of Lemma 10 using [2, Problem 2.7.9(e), p.155]. \Box

Lemmas 10 and 11 show limitations for the existence of Whitney maps for 2^X . The space which admits a Whitney map for 2^X must be hereditarily Lindelöf and hereditarily separable. The following question is natural.

QUESTION. Does there exist a non-metric hereditarily Lindelöf and hereditarily separable space X which admits a Whitney map for 2^X ?

Theorem 10. If a space X admits a Whitney map for 2^X , then there exists a one-to-one mapping $f: X \to Y$ onto a separable metric space.

Proof. By Lemma 10 X is a paracompact space. Moreover, it has the diagonal Δ in $X \times X$ which is a G_{δ} -subset (Lemma 2). From Lemma 8 it follows that there exists a one-to-one continuous mapping $f : X \to Y$ onto a metrizable space Y. Now, since X is a Lindelöf space, Y is a Lindelöf space and, consequently, separable and second-countable.

As an immediate consequence of the above Theorem we have the following result.

Theorem 11. If a countably compact space X admits a Whitney map for 2^X , then it is compact and metrizable.

Proof. By virtue of *Theorem 10 X* is paracompact. Moreover, X is compact since each countably compact paracompact space is compact [2, Theorem 5.1.20, p. 380]. Finally, from *Theorem 10* it follows that X is metrizable. \Box

Corollary 6. A countably compact space X is metrizable if and only if it admits a Whitney map for 2^X .

Theorem 12. If a locally countably compact space X admits a Whitney map for 2^X , then X is metrizable.

Proof. Let $\mu : 2^X \to \mathbb{R}$ be a Whitney map. By virtue of *Theorem 10 X* is paracompact. For every $x \in X$ there exists a neighbourhood U of x such that Cl(U) is a countably compact subspace of X. It follows that Cl(U) is compact [2, Theorem 5.1.20, p. 380]. From *Theorem 11* it follows that Cl(U) is metrizable since the restriction $\mu|2^{Cl(U)}$ is a Whitney map for $2^{Cl(U)}$. Finally, using the Smirnov metrization theorem [2, 5.4.A, p. 415] we complete the proof. \Box

Corollary 7. If X is a locally compact space which admits a Whitney map for 2^X , then X is metrizable.

Proof. From *Theorem 11* it follows that every $x \in X$ has a neighbourhood U such that Cl(U) is metrizable. This means that every point of X has a metrizable neighbourhood. Using the Smirnov theorem [2, 5.4.A, p. 415] we conclude that X is metrizable since X is paracompact (hereditarily) because of *Theorem 10*. \Box

Corollary 8. A separable locally compact space X admits a Whitney map for 2^X if and only if it is metrizable.

Proof. If X admits a Whitney map, then by *Theorem* 7X is metrizable. Conversely, if X is a separable metric space, then X admits a Whitney map because of *Theorem* 1.

By the same method of proof we obtain the following result.

Corollary 9. A locally compact space X with the Lindelöf property admits a Whitney map for 2^X if and only if it is metrizable.

References

- J. J. CHARATONIK, W. J. CHARATONIK, Whitney maps a non-metric case, Colloq. Math. 83(2000), 305–307.
- [2] R. ENGELKING, General Topology, PWN, Warszawa, 1977.

I. Lončar

- [3] A. ILLANES, S. B. NADLER, JR., *Hyperspaces: Fundamentals and Recent Advances*, Marcel Dekker, New York-Basel 1999.
- [4] J. L. KELLEY, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52(1942), 22-36.
- [5] I. LONČAR, A note on a Whitney map for continua, Math. Commun. 6(2001), 1–9.
- [6] S. B. NADLER, JR., Hyperspaces of sets, Marcel Dekker, Inc., New York, 1978.
- [7] T. WATANABE, A Whitney map and the Lindelöf property, Houston J. Math. 1(1969), 147–151.
- [8] H. WHITNEY, Regular families of curves, I, Proc. Nat. Acad. Sci. 18(1932), 275–278.
- [9] H. WHITNEY, Regular families of curves, Annals Math. 34(1933)244–270.