DGS-trapezoids in GS-quasigroups

Zdenka Kolar-Begović* and Vladimir Volenec ${ }^{\dagger}$

Abstract

The concept of the DGS-trapezoid is defined and investigated in any GS-quasigroup and geometrical interpretation in the GS-quasigroup $C\left(\frac{1}{2}(1+\sqrt{5})\right)$ is also given. The connection of this concept with GS-trapezoids in the general GS-quasigroup is obtained.

Key words: GS-quasigroup, DGS-trapezoid
AMS subject classifications: 20N05
Received July 10, 2003
Accepted November 7, 2003

GS-quasigroups are defined in [1]; in [2] different properties of GS-trapezoids in the GS-quasigroup are explored. In this paper some "geometric" concepts in the general GS-quasigroup will be defined.

A quasigroup (Q, \cdot) is said to be a GS-quasigroup if it is idempotent and if it satisfies the (mutually equivalent) identities

$$
\begin{equation*}
a(a b \cdot c) \cdot c=b \tag{1}
\end{equation*}
$$

$a \cdot(a \cdot b c) c=b$.
In a GS-quasigroup we also have the mediality and elasticity

$$
\begin{equation*}
a b \cdot c d=a c \cdot b d \tag{2}
\end{equation*}
$$

$$
a \cdot b a=a b \cdot a
$$

as well as identities

$$
\begin{equation*}
a(a b \cdot c)=b \cdot b c, \quad(c \cdot b a) a=c b \cdot b \tag{4}
\end{equation*}
$$

and equivalencies
(5) $\quad a b=c \Leftrightarrow a=c \cdot c b, \quad a b=c \Leftrightarrow b=a c \cdot c$.

[^0]If C is the set of all points in Euclidean plane and if groupoid (C, \cdot) is defined so that $a a=a$ for any $a \in C$ and for any two different points $a, b \in C$ we define $a b=c$ if the point b divides the pair a, c in the ratio of golden section. In [1] it is proved that (C, \cdot) is a GS-quasigroup. We shall denote that quasigroup by $C\left(\frac{1}{2}(1+\sqrt{5})\right)$ because we have $c=\frac{1}{2}(1+\sqrt{5})$ if $a=0$ and $b=1$. Figures in this quasigroup $C\left(\frac{1}{2}(1+\sqrt{5})\right)$ can be used for illustration of "geometrical" relations in any GS-quasigroup.

From now on let (Q, \cdot) be any GS-quasigroup. Elements of the set Q are said to be points.

Points a, b, c, d successively are said to be the vertices of the golden section trapezoid which is denoted by $\operatorname{GST}(a, b, c, d)$ if the identity $a \cdot a b=d \cdot d c$ holds (Figure 1). Because of (5), this identity is equivalent to the identity $d=(a \cdot a b) c$.

Figure 1.

DGS-trapezoids in GS-quasigroups

Points a, b, c, d are said to be the vertices of a trapezoid of double golden section or shorter a $D G S$-trapezoid and we write $\operatorname{DGST}(a, b, c, d)$ if the equality $a b=d c$ holds (Figure 2). Namely, because of (5), the equality $d=a b \cdot(a b \cdot c)$.

Obviously the following theorems hold.
Theorem 1. From $\operatorname{DGST}(a, b, c, d)$ there follows $\operatorname{DGST}(d, c, b, a)$.
Theorem 2. A DGS-trapezoid is uniquely determined with any three of its vertices.

Based on Theorem 16. from [2] it follows immediately:
Theorem 3. Any two of the three statements $\operatorname{GST}(a, e, f, d), \operatorname{GST}(e, b, c, f)$, $\operatorname{DGST}(a, b, c, d)$ imply the remaining statement (Figure2).

Figure 2.
Corollary 1. The statement $\operatorname{DGST}(a, b, c, d)$ is valid if and only if there are points e, f such that the statements $G S T(a, e, f, d), G S T(e, b, c, f)$ are valid (Figure 2).

This corollary justifies the name of the trapezoid of double golden section.

Figure 3.
Theorem 4. Any two of the three statements $\operatorname{DGST}(a, b, c, d), \operatorname{DGST}(e, f, g, h)$, $D G S T(a e, b f, c g, d h)$ imply the remaining statement (Figure 3).

Proof. We must prove that any two of the three equalities $a b=d c$, ef $=h g$ and $a e \cdot b f=d h \cdot c g$ imply the remaining equality. This is obvious, because of (2) the third equality is equivalent to $a b \cdot e f=d c \cdot h g$.

For any point p we have obviously $\operatorname{DGST}(p, p, p, p)$ and from Theorem 4 it follows further:

Corollary 2. For any point p the statements $\operatorname{DGST}(a, b, c, d), D G S T(p a, p b, p c, p d)$ and $\operatorname{DGST}(a p, b p, c p, d p)$ are mutually equivalent.

Figure 4.
Theorem 5. Any two of the three statements $\operatorname{DGST}(a, b, c, d), \operatorname{DGST}(b, c, d, e)$, $G S T(a, b, d, e)$ imply the remaining statement (Figure 4).

Proof. Because of symmetry $a \leftrightarrow e, b \leftrightarrow d$, it is sufficient under assumption $\operatorname{DGST}(a, b, c, d)$ i.e. $d=a b \cdot(a b \cdot c)$ to prove the equivalency of the statements $\operatorname{DGST}(b, c, d, e)$ and $G S T(a, b, d, e)$ i.e. $e=b c \cdot(b c \cdot d)$ and $e=(a \cdot a b) d$.
However, we have successively

$$
\begin{aligned}
b c \cdot(b c \cdot d) & =b c \cdot(b c)[a b \cdot(a b \cdot c)] \stackrel{(2)}{=} b c \cdot(b c)[(a \cdot a b) \cdot b c] \\
& \stackrel{(3)}{=} b c \cdot[b c \cdot(a \cdot a b)](b c) \stackrel{(4)}{=}(a \cdot a b) \cdot(a \cdot a b)(b c) \\
& \stackrel{(2)}{=}(a \cdot a b) \cdot(a b)(a b \cdot c)=(a \cdot a b) d .
\end{aligned}
$$

References

[1] V. Volenec, GS-quasigroups, Čas. pĕst. mat. 115(1990), 307-318.
[2] V. Volenec, Z. Kolar, GS-trapezoids in GS-quasigroups, Mathematical Communications 7(2002), 143-158.

[^0]: *Department of Mathematics, University of Osijek, Gajev trg 6, HR-31 000 Osijek, Croatia, e-mail: zkolar@mathos.hr
 ${ }^{\dagger}$ Department of Mathematics, University of Zagreb, Bijenička c. 30, HR-10 000 Zagreb, Croatia, e-mail: volenec@math.hr

