Lines with the butterfly property

Zvonko Čerin*

Abstract

In this paper it is explored which lines have the butterfly property with respect to quadrangles (inscribed into a given conic curve).

Key words: butterfly property, line, conic, inscribed quadrangle, midpoint

AMS subject classifications: Primary 51N20, 51M04; Secondary 14A25, 14Q05

Received July 12, 2002 Accepted March 5, 2003
Let $A B C D$ be a plane quadrangle, w a line intersecting all sides and diagonals of $A B C D$ (considered as lines), and S a point on w. Let H, K, U, V, X, and Y denote intersections of w with lines $A B, C D, A C, B D, A D$, and $B C$, respectively. We consider the statements
$\mathbb{B}(w, A B C D)$: If the midpoints of any two of the following segments $H K$, $U V$, and $X Y$ coincide, then they all coincide.
$\mathbb{B}(w, S, A B C D)$: If S is the midpoint of any of the following segments $H K$, $U V$, and $X Y$, then it is the midpoint of them all.

Figure 1. Quadrangle $A B C D$ and six points of intersection of its sides with line w
*Department of Mathematics, University of Zagreb, Bijenička 30, HR-10 000 Zagreb, Croatia, e-mail: cerin@math.hr

The first statement $\mathbb{B}(w, A B C D)$ is not very interesting because we have the following result (see Figure 1).

Theorem 1. The statement $\mathbb{B}(w, A B C D)$ is true for every line w and every quadrangle $A B C D$.

Proof. Without loss of generality, we can assume that A, B, C, D are points in the Gauss complex plane with affixes 0 (zero), 1 (one), c, and d and that the line w has the equation $z+t \bar{z}=s$, where t is a unimodular complex number and $S=(s)$ is the point symmetric to the origin with respect to the line w.

This unusual equation for a line in the complex plane is explained on page 76 of the reference [5] and could be seen as follows. Without loss of generality, one can assume that no vertex of $A B C D$ belongs to w. Then one can consider w as the perpendicular bisector of segment $A S$ which leads to the equation in the given form.

The points of intersection have the following affixes $h=\frac{s}{1+t}, k=\frac{(t \bar{d}-s) c+(s-\bar{c} t) d}{d-c+t(\bar{d}-\bar{c})}$, $u=\frac{c s}{c+\bar{c} t}, v=\frac{(s-t) d+t \bar{d}-s}{d-1+t(d-1)}, x=\frac{s d}{d+t d}$, and $y=\frac{(c-1) s+(\bar{c}-c) t}{(\bar{c}-1) t+c-1}$. Now $h_{2}=\frac{1}{2}(h+k)$, $u_{2}=\frac{1}{2}(u+v)$, and $x_{2}=\frac{1}{2}(x+y)$ are the affixes of the midpoints H_{2}, U_{2}, and X_{2} of $H K, U V$, and $X Y$ respectively. Using as denominators for $h_{2}-u_{2}$ and $h_{2}-x_{2}$ just the products of the denominators in the given descriptions of h, k, u, v, x, and y, one finds that fractions describing $h_{2}-u_{2}$ and $h_{2}-x_{2}$ have the same numerator (possibly up to the sign). From this the conclusion of the theorem follows immediately. Indeed, if H_{2} and U_{2} coincide, then the numerator of $h_{2}-u_{2}$ vanishes and so does the numerator of $h_{2}-x_{2}$ implying finally $H_{2}=X_{2}$.

Remark 1. The hypothesis that the line w intersects all sides and diagonals is essential in Theorem 1. In the case of an isosceles trapezium ABCD and $w\|A B\| C D$ the midpoints of $U V$ and $X Y$ coincide while the points H and K do not exist.

Our goal now is to prove the following three theorems.
Theorem 2. For every parabola k and every point S there is a unique line w such that $\mathbb{B}(w, S, A B C D)$ is true for every quadrangle $A B C D$ inscribed into k.

Figure 2. Parabola k and point S with line $w(k, S)$ and two inscribed quadrangles having the butterfly property with respect to this line and the point

Theorem 3. Let O be the centre of either an ellipse or hyperbola k. For every line w through O the statement $\mathbb{B}(w, O, A B C D)$ is true for every quadrangle $A B C D$ inscribed into k.

Figure 3. Hyperbola k and line w through the centre O with an inscribed quadrangle such that $\mathbb{B}(w, O, A B C D)$ holds

Theorem 4. If k is either an ellipse or a hyperbola with the centre O, then for every point S different from O there is a unique line w such that $\mathbb{B}(w, S, A B C D)$ is true for every quadrangle $A B C D$ inscribed into k.

Figure 4. Ellipse k, point S and line $w=w(k, S)$ through S with inscribed quadrangles such that $\mathbb{B}(w, S, A B C D)$ and $\mathbb{B}\left(w, S, A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)$ hold

Proof. Before proving these theorems we shall recall some facts from the analytic geometry of conics. It is well-known that if we take a focus of conic k as the pole (the origin) and the main axis (the line of symmetry through the focus) μ as the polar axis of a polar coordinate system, then k has the equation $\varrho=p /(1+\varepsilon \cos \vartheta)$, where ϱ is the polar radius, ϑ is the polar angle, and p and ε are nonnegative real numbers. Hence, in the associated rectangular coordinate system points A, B, C, and D have coordinates $(p \cos \vartheta /(1+\varepsilon \cos \vartheta), p \sin \vartheta /(1+\varepsilon \cos \vartheta))$, where ϑ is α, β, γ, and δ. We could continue using trigonometric functions but it is easier at this point to employ the universal trigonometric substitution to write

$$
\cos \alpha=\frac{1-a^{2}}{1+a^{2}}, \quad \sin \alpha=\frac{2 a}{1+a^{2}}
$$

and similarly for the remaining three points (and their corresponding letters). We conclude that points A, B, C, and D have coordinates

$$
\left(\frac{p\left(1-t^{2}\right)}{\varepsilon\left(1-t^{2}\right)+t^{2}+1}, \frac{2 p t}{\varepsilon\left(1-t^{2}\right)+t^{2}+1}\right)
$$

for t equal to a, b, c, and d.
Let us assume that line w has the equation $f x+g y+h=0$ and that point S has coordinates (m, n). Since point S belongs to line w it follows that $h=-f m-g n$. Line $A B$ has the equation

$$
(a b(\varepsilon-1)+\varepsilon+1) x+(a+b) y-p(a b+1)=0 .
$$

The other lines $C D, A C, B D, A D$, and $B C$ have analogous equations. The point of intersection H of lines w and $A B$ has the coordinates

$$
\left[\frac{g p(a b+1)+h(a+b)}{g(\varepsilon-1) a b-f(a+b)+g(\varepsilon+1)}, \frac{-h((\varepsilon-1) a b+\varepsilon+1)-f p(a b+1)}{g(\varepsilon-1) a b-f(a+b)+g(\varepsilon+1)}\right] .
$$

Notice that the denominators of the above fractions do not vanish since the considered point of intersection exists by hypothesis. The other points of intersection K, U, V, X, and Y have similar coordinates.

Let $H_{2}\left(h_{2}, k_{2}\right), U_{2}\left(u_{2}, v_{2}\right)$, and $X_{2}\left(x_{2}, y_{2}\right)$ be the midpoints of the segments $H K, U V$, and $X Y$. Then $h_{2}-m=\frac{g M_{H}}{2 N_{H} P_{H}}$ and $k_{2}-n=-\frac{f M_{H}}{2 N_{H} P_{H}}$, where

$$
\begin{gathered}
P_{H}=(c+d) f+c d(1-\varepsilon) g-(1+\varepsilon) g, \quad N_{H}=(a+b) f+a b(1-\varepsilon) g-(1+\varepsilon) g, \\
M_{H}=m Q_{H}+n R_{H}+p S_{H}, \quad Q_{H}=-\mathcal{Z} \varepsilon^{2}+(\mathcal{P} f+2 \mathcal{U} g) \varepsilon+\mathcal{D} g-\mathcal{R}, \\
R_{H}=\mathcal{S} f+(\mathcal{R}-\mathcal{P} \varepsilon) g, \quad S_{H}=\mathcal{Z}-\mathcal{P} f-\mathcal{U} g
\end{gathered}
$$

with $\quad \mathcal{Z}=2(a b+1)(c d+1), \quad \mathcal{D}=2(a b-1)(c d-1), \quad \mathcal{S}=2(a+b)(c+d)$, $\mathcal{U}=2(a b c d-1), \quad \mathcal{P}=a b c+a b d+a c d+b c d+a+b+c+d$, and $\mathcal{R}=a b c+a b d+a c d+b c d-a-b-c-d$.

Notice that

$$
M_{H}-M_{U}=2(d-a)(b-c)\left(n f+\left[m\left(\varepsilon^{2}-1\right)-p \varepsilon\right] g\right)
$$

and

$$
M_{H}-M_{X}=2(d-b)(a-c)\left(n f+\left[m\left(\varepsilon^{2}-1\right)-p \varepsilon\right] g\right)
$$

Without loss of generality, we now assume $H_{2}=S$, i. e., that $M_{H}=0$. Then we have to look for conditions on line w implying $U_{2}=X_{2}=S$, i. e., $M_{U}=M_{X}=0$.

When k is a parabola, then $\varepsilon=1$ so that we distinguish two possibilities: (a) $n=0$ and (b) $n \neq 0$.

In the first case, point S belongs to axis μ of k and it follows

$$
M_{U}=M_{X}=0 \Leftrightarrow g=0
$$

But $g=0$ means that w is the line perpendicular to the axis of the parabola passing through point S.

In the second case, point S is not on axis μ of k and points U_{2}, and X_{2} coincide with point S if and only if $f=\frac{p g}{n}$ (i. e., if and only if w has the equation $p x+n y=m p+n^{2}$). This proves Theorem 2.

When k is either an ellipse or a hyperbola, then $\varepsilon \neq 1$ and its centre is at point $O\left(\frac{p \varepsilon}{\varepsilon^{2}-1}, 0\right)$. Now we distinguish four cases: (i) $(m, n)=\left(\frac{p \varepsilon}{\varepsilon^{2}-1}, 0\right)$ (i. e., $S=O$), (ii) $n=0$ and $m \neq \frac{p \varepsilon}{\varepsilon^{2}-1}$, (iii) $n \neq 0$ and $m=\frac{p \varepsilon}{\varepsilon^{2}-1}$ and (iv) $n \neq 0$ and $m \neq \frac{p \varepsilon}{\varepsilon^{2}-1}$.

In case (i), we have $M_{U}=M_{X}=0$ so that $\mathbb{B}(w, O, A B C D)$ is true for every line w which goes through the center O of either an ellipse or a hyperbola k and for every quadrangle $A B C D$ inscribed into it. This proves Theorem 3.

In case (ii), point S is on the principal axis μ of k and points H_{2}, U_{2}, and X_{2} coincide with point S if and only if $g=0$ (i. e., if and only if w is perpendicular to μ at point S).

In case (iii), point S is on the secondary axis ν of k and points H_{2}, U_{2}, and X_{2} coincide with point S if and only if $f=0$ (i.e., if and only if w is the perpendicular to ν at point S).

Finally, in case (iv), point S is not on either axis of k and points H_{2}, U_{2}, and X_{2} coincide with point S if and only if

$$
f=\frac{\left(p \varepsilon-m\left(\varepsilon^{2}-1\right)\right) g}{n}
$$

(with $g \neq 0$), i.e., if and only if w has the equation

$$
\left(p \varepsilon-m\left(\varepsilon^{2}-1\right)\right) x+n y=m\left(p \varepsilon-m\left(\varepsilon^{2}-1\right)\right)+n^{2} .
$$

This proves Theorem 4.
Line w from Theorems 2 and 4 is denoted also as $w(k, S)$. The above proof establishes also the following corollary which is the main result in [3] and [2].

Corollary 1. Let k be a conic and let S be a point different from the centre of k (if the centre exists). Line $w(k, S)$ is perpendicular to axis z of k if and only if S lies on z.

Our second corollary shows that the main result in [10] is also covered by the above theorems.

Corollary 2. Let k be a conic and let ℓ be a line in the same plane. If S is the point of intersection of ℓ with the diameter of k conjugate to ℓ and S is different from the centre of k (when the centre exists), then $w(k, S)=\ell$.

Proof. We know that line $w(k, S)$ has the equation

$$
\left(p \varepsilon-m\left(\varepsilon^{2}-1\right)\right) x+n y-m\left(p \varepsilon-m\left(\varepsilon^{2}-1\right)\right)-n^{2}=0
$$

where (m, n) are coordinates of S. In order to find these coordinates, let us assume that line ℓ has the equation $f x+g y+h=0$. In the rectangular coordinate system k has the equation $\left(\varepsilon^{2}-1\right) x^{2}-y^{2}-2 \varepsilon p x+p^{2}=0$. When we compute the midpoint of the points of intersections of k and ℓ and eliminate parameter h we obtain the equation $\left(\varepsilon^{2}-1\right) g x+f y-\varepsilon p g=0$ of the diameter of k conjugate to the given line ℓ. It intersects line ℓ at the point

$$
S\left(-\frac{\varepsilon p g^{2}+f h}{f^{2}+g^{2}\left(1-\varepsilon^{2}\right)}, \frac{g\left(\varepsilon p f+h\left(\varepsilon^{2}-1\right)\right)}{f^{2}+g^{2}\left(1-\varepsilon^{2}\right)}\right)
$$

By substituting the coordinates of S for m and n on the left-hand side of the above equation of $w(k, S)$ we shall get

$$
\frac{\left(\varepsilon p f+h\left(\varepsilon^{2}-1\right)\right)(f x+g y+h)}{f^{2}+g^{2}\left(1-\varepsilon^{2}\right)}
$$

This clearly concludes the proof.
The next result shows the connection of our theorems with the version of the original Butterfly Theorem from [7] and the Three-Winged Butterfly Problem from [8] for conics.

Theorem 5. If S is the midpoint of chord $P Q$ of conic k, then $w(k, S)$ is line $P Q$.

Proof. From the proof of Theorems 2-4 we know that line $w(k, S)$ has the equation $f x+g y=f m+g n$ where (m, n) are coordinates of S and

$$
\begin{equation*}
f n+g\left(m\left(\varepsilon^{2}-1\right)-p \varepsilon\right)=0 \tag{1}
\end{equation*}
$$

We assume that P and Q have coordinates

$$
\left(\frac{p\left(1-t^{2}\right)}{\varepsilon\left(1-t^{2}\right)+t^{2}+1}, \frac{2 p t}{\varepsilon\left(1-t^{2}\right)+t^{2}+1}\right)
$$

for t equal to u and v. It follows that by substituting for m and n the coordinates of the midpoint of the segment $P Q$ into (1) we obtain

$$
\frac{p((\varepsilon-1) u v-\varepsilon-1)(-(u+v) f+(u v(\varepsilon-1)+\varepsilon+1) g)}{\left((\varepsilon-1) u^{2}-\varepsilon-1\right)\left((\varepsilon-1) v^{2}-\varepsilon-1\right)}=0
$$

Since the equation of line $P Q$ is $(u v(\varepsilon-1)+\varepsilon+1) x+(u+v) y=p(u v+1)$ it is obvious that $w(k, S)=P Q$.

Remark 2. Line $w(k, S)$ has the following simple construction. When k is a parabola with directrix d, then the perpendicular through S to d intersects k at point P and $w(k, S)$ is the parallel through S to the tangent at P to k. When k is an ellipsis or a hyperbola and S is different from the centre O of k, then line $O S$ intersects k at point P (which could be imaginary) and $w(k, S)$ is the parallel through S to the tangent at P to k.

Remark 3. This paper (without Corollary 2) was written in August 2001. In the meantime, [10] has appeared which is similar in that for a given line w it searches for a point S on it such that $\mathbb{B}(w, S, A B C D)$ is true while our approach is to find a line w through a given point S such that $\mathbb{B}(w, S, A B C D)$ holds.

References

[1] L. Bankoff, The Metamorphosis of the Butterfly Problem, Math. Mag., 60(1987), 195-210.
[2] Z. Čerin, Poučci o leptirima, Poučak 8(2001), 12-35, in Croatian.
[3] Z. Čerin, A generalization of the butterfly theorem from circles to conics, Mathematical Communications 6(2001), 161-164.
[4] S. R. Conrad, Another Simple Solution of the Butterfly Problem, Math. Mag. 46(1973), 278-280.
[5] L. Hahn, Complex numbers and geometry, Math. Assoc. America, Washington, 1994.
[6] R. Honsberger, The Butterfly Problem and Other Delicacies from the Noble Art of Euclidean Geometry, College Math. J., 14(1983), 2-8 and 154-158.
[7] S. Mitchell, J. Rosenbaum, W. E. Buker, R. Steinberg, E. P. Starke, J. H. Butchart, Problem E571, Amer. Math. Monthly 51(1944), 91-92.
[8] Problem 1187, Math. Mag. 58(1985), 115.
[9] V. Volenec, A generalization of the butterfly theorem, Mathematical Communications 5(2000), 157-160.
[10] V. Volenec, The butterfly theorem for conics, Mathematical Communications 7(2002), 35-38.

