Ishikawa iterative process for strongly pseudocontractive operators in arbitrary Banach spaces

Ljubomir Ćiricí and Jeong S. Ume ${ }^{\dagger}$

Abstract

In this note we give a correction to the main result of Zhou in [14] on the convergence of the Ishikawa iteration process to a unique fixed point of a strongly pseudocontractive operator in arbitrary real Banach spaces. Our results extend the recent result of Soltuz [11] to arbitrary strongly pseudocontractive operators.

Key words: Ishikawa iteration process, strongly pseudocontractive operator

AMS subject classifications: Primary 47H10; Secondary 47H06, 54H25

Received January 10, 2003
Accepted March 13, 2003

1. Introduction and preliminaries

Let X be a real Banach space and D a nonempty, convex subset of X. Let X^{*} be the duality space of X and $\langle.,$.$\rangle be the pairing between X$ and X^{*}. The mapping $J: X \rightarrow 2^{X^{*}}$ defined by

$$
J(x)=\left\{f \in X^{*}:\langle x, f\rangle=\|x\|^{2},\|f\|=\|x\|\right\}, \quad x \in X
$$

is said to be a normalized duality mapping. The Hahn-Banach theorem assures that $J(x) \neq \emptyset$ for each $x \in X$. It is easy to see (c.f. [11]) that

$$
\begin{equation*}
\langle x, j(y)\rangle \leq\|x\|\|y\| \tag{1}
\end{equation*}
$$

for all $x, y \in X$ and each $j(y) \in J(y)$.
An operator $T: D \subset X \rightarrow X$ is called strongly pseudocontractive if for all $x, y \in D$ there exist $j(x-y) \in J(x-y)$ and a constant $k \in(0,1)$ such that

$$
\begin{equation*}
\langle T x-T y, j(x-y)\rangle \leq k\|x-y\|^{2} . \tag{2}
\end{equation*}
$$

[^0]One of the effective methods for approximating fixed points of an operator T : $D(T) \subset X \rightarrow X$ is the Ishikawa iteration process [5], starting with arbitrary $x_{0} \in$ $D(T)$ and for $n \geq 0$ defined by

$$
\begin{aligned}
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n} \\
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} T y_{n},
\end{aligned}
$$

where $\alpha_{n}, \beta_{n} \in[0,1]$ satisfy suitable conditions (see e.g. [1]-[4], [6]-[9], [11]-[14]). If $\beta_{n}=0$ for each $n \geq 0$, then Ishikawa iterations reduce to the Krasnoselski-Mann iterations [6]. In the literature which considers the convergence of the Ishikawa iteration sequence associated with accretive or pseudocontractive operators, one of hypotheses for parameters α_{n} is, in general, that $\alpha_{n} \rightarrow 0$ as $n \rightarrow \infty$. Recently Zhou [14] considered the Ishikawa iteration process with parameters $\alpha_{n} \geq a>0$. Osilike in [8] have proved that two assumptions of the main theorem in [14] are contradictory. Recently Soltuz [11] presented a correction for the result of Zhou [14] for a subclass of strongly pseudocontractive operators, namely for operators T which satisfy (2) with $k<\frac{1}{2}$.

The purpose of this note is to extend the result of Soltuz [11] to all strongly pseudocontractive operators which satisfy (2) with $k<1$ and the parameters α_{n} in the Ishikawa iteration process satisfy the condition $0<a \leq \alpha_{n} \leq b<2(1-k)$, where $a, b \in(0,1]$ are some constants.
For our result we need the following two lemmas:
Lemma 1 [[7], [12], [13]]. Let X be a real Banach space and let $J: X \rightarrow 2^{X^{*}}$ be a normalized duality mapping. Then

$$
\begin{equation*}
\|x+y\|^{2} \leq\|x\|^{2}+2\langle y, j(x+y)\rangle \tag{3}
\end{equation*}
$$

for all $x, y \in X$ and each $j(x+y) \in J(x+y)$.
Lemma 2 [[9], [10]]. Let $\left\{\rho_{n}\right\}$ be a sequence of non-negative real numbers which satisfy

$$
\begin{equation*}
\rho_{n+1} \leq(1-\omega) \rho_{n}+\sigma_{n} \tag{4}
\end{equation*}
$$

where $\omega \in(0,1)$ is a fixed number and $\sigma_{n} \geq 0$ is such that $\sigma_{n} \rightarrow 0$ as $n \rightarrow \infty$. Then $\rho_{n} \rightarrow 0$ as $n \rightarrow \infty$.

2. Main results

Now we prove the following theorems on approximation.
Theorem 1. Let X be a real Banach space, D a non-empty, convex subset of X and $T: D \rightarrow D$ a continuous and strongly pseudocontractive mapping with a pseudocontractive parameter $k \in(0,1)$. Let $x_{0} \in D$ be arbitrary and let the Ishikawa iteration sequence $\left\{x_{n}\right\}$ be defined by

$$
\begin{align*}
x_{n+1} & =\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T y_{n}, \\
y_{n} & =\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n}, \quad n=0,1,2, \ldots, \tag{5}
\end{align*}
$$

where $\alpha_{n}, \beta_{n} \in[0,1]$ and constants $a, b \in(0,1]$ are such that

$$
\begin{equation*}
0<a \leq \alpha_{n} \leq b<2(1-k) \tag{6}
\end{equation*}
$$

If sequences $\left\{T x_{n}\right\}$ and $\left\{T y_{n}\right\}$ are bounded and

$$
\begin{equation*}
\left\|T x_{n+1}-T y_{n}\right\| \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{7}
\end{equation*}
$$

then the sequence $\left\{x_{n}\right\}$ converges strongly to a unique fixed point of T in D.
Proof. The existence of a fixed point follows from the result of Deimling [3], and the uniqueness from the strongly pseudocontractivity of T. Let x^{*} be such that $T x^{*}=x^{*}$.
Put

$$
\begin{align*}
M= & 1+\left\|x_{0}-x^{*}\right\|+\sup \left\{\left\|T x_{n}-x^{*}\right\|: x_{n} \in D\right\} \tag{8}\\
& +\sup \left\{\left\|T y_{n}-x^{*}\right\|: y_{n} \in D\right\}
\end{align*}
$$

Since $\left\{T x_{n}\right\}$ and $\left\{T y_{n}\right\}$ are bounded, we have that $M<+\infty$.
We show that the sequence $\left\{x_{n}\right\}$ is bounded. We shall use the mathematical induction to prove that

$$
\begin{equation*}
\left\|x_{n}-x^{*}\right\| \leq M \quad \text { for all } \quad n \geq 0 \tag{9}
\end{equation*}
$$

For $n=0$, (9) follows from the definition of M. Suppose now that (9) holds for some $n \geq 0$. From (5), (8) and (9) we get

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\| & =\left\|\left(1-\alpha_{n}\right)\left(x_{n}-x^{*}\right)+\alpha_{n}\left(T y_{n}-x^{*}\right)\right\| \\
& \leq\left(1-\alpha_{n}\right)\left\|x_{n}-x^{*}\right\|+\alpha_{n} M .
\end{aligned}
$$

Now, by the induction hypothesis we obtain $\left\|x_{n+1}-x^{*}\right\| \leq\left(1-\alpha_{n}\right) M+\alpha_{n} M=M$. Thus, by induction, we conclude that (9) holds for all $n \geq 0$.

From Lemma 1 and (5) we have

$$
\begin{aligned}
\left\|x_{n+1}-x^{*}\right\|^{2}= & \left\|\left(1-\alpha_{n}\right)\left(x_{n}-x^{*}\right)+\alpha_{n}\left(T y_{n}-x^{*}\right)\right\|^{2} \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\langle T y_{n}-x^{*}, j\left(x_{n+1}-x^{*}\right)\right\rangle \\
\leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n}\left\langle T y_{n}-T x_{n+1}, j\left(x_{n+1}-x^{*}\right)\right\rangle \\
& +2 \alpha_{n}\left\langle T x_{n+1}-x *, j\left(x_{n+1}-x^{*}\right)\right\rangle .
\end{aligned}
$$

Hence, by strongly pseudocontractivity of T, we get

$$
\begin{align*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq & \left(1-\alpha_{n}\right)^{2}\left\|x_{n}-x^{*}\right\|^{2}+2 \alpha_{n} k\left\|x_{n+1}-x^{*}\right\|^{2} \tag{10}\\
& +2 \alpha_{n}\left\langle T y_{n}-T x_{n+1}, j\left(x_{n+1}-x^{*}\right)\right\rangle
\end{align*}
$$

for each $j\left(x_{n+1}-x^{*}\right) \in J\left(x_{n+1}-x^{*}\right)$. From (10), (1) and (9) we obtain

$$
\begin{equation*}
\left(1-2 \alpha_{n} k\right)\left\|x_{n+1}-x^{*}\right\|^{2} \leq\left(1-\alpha_{n}\right)^{2}\left\|x_{n+1}-x^{*}\right\|^{2}+2 \alpha_{n}\left\|T y_{n}-T x_{n+1}\right\| M \tag{11}
\end{equation*}
$$

From (6) it follows that

$$
1-2 \alpha_{n} k \geq 1-2 k b>(2 k-1)^{2} \geq 0
$$

Thus, from (11) we have

$$
\begin{equation*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq \frac{\left(1-\alpha_{n}\right)^{2}}{1-2 \alpha_{n} k}\left\|x_{n}-x^{*}\right\|^{2}+\frac{2 \alpha_{n} M}{1-2 \alpha_{n} k}\left\|T x_{n+1}-T y_{n}\right\| \tag{12}
\end{equation*}
$$

Since $\left(1-\alpha_{n}\right)^{2}<1-2 \alpha_{n} k$ for $0<a \leq \alpha_{n} \leq b<2(1-k)$, we get

$$
\begin{aligned}
\frac{\left(1-\alpha_{n}\right)^{2}}{1-2 \alpha_{n} k} & <\left(1-\alpha_{n}\right)^{2}+2 \alpha_{n} k \\
& \leq 1-2 \alpha_{n}+\alpha_{n} b+2 \alpha_{n} k \\
& =1-[2(1-k)-b] \alpha_{n} \\
& \leq 1-[2(1-k)-b] a \\
\frac{2 \alpha_{n}}{1-2 k \alpha_{n}} & \leq \frac{2}{1-2 k b} .
\end{aligned}
$$

Thus, from (12) we have

$$
\begin{equation*}
\left\|x_{n+1}-x^{*}\right\|^{2} \leq(1-\omega)\left\|x_{n}-x^{*}\right\|^{2}+\sigma_{n} \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
\omega & =[2(1-k)-b] \cdot a, \\
\sigma_{n} & =\frac{2 M}{1-2 k b}\left\|T x_{n+1}-T y_{n}\right\| .
\end{aligned}
$$

From (7) we have that

$$
\lim _{n \rightarrow \infty} \sigma_{n}=0
$$

Taking $\rho_{n}=\left\|x_{n}-x^{*}\right\|^{2}$, from (13) and Lemma 2 we get

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x^{*}\right\|=0
$$

Thus we proved that the sequence $\left\{x_{n}\right\}$ converges strongly to a unique fixed point of T in D.

Remark 1. For $k<\frac{1}{2}$ condition (6) in Theorem 1 becomes $0<a \leq \alpha_{n}$, since in this case $2(1-k)>1$. Thus, Theorem 1 contains Theorem 1 of Soltuz [11] as a corollary.

Let X be a real Banach space and $S: X \rightarrow X$ a mapping on X. If for any $x, y \in X$ there exist $j(x-y) \in J(x-y)$ and a constant $k \in(0,1)$ such that

$$
\langle S x-S y, j(x-y)\rangle \leq k\|x-y\|^{2},
$$

then S is called a strongly accretive operator.
Lemma 3 [[1]]. If $T: X \rightarrow X$ is a strongly accretive operator, then, for any $f \in X$, mapping $S: X \rightarrow X$, defined by $S x=f-T x+x$ is a strongly pseudocontractive operator, i.e. for any $x, y \in X$:

$$
\langle S x-S y, j(x-y)\rangle \leq(1-k)\|x-y\|^{2},
$$

where $k \in(0,1)$ is the strongly accretive constant of T.
Theorem 2. Let X be a real Banach space and $S: X \rightarrow X$ a continuous strongly accretive operator with a strongly accretive constant $k \in(0,1)$. For any given $f \in X$, define a mapping $T: X \rightarrow X$ by

$$
T x=f-S x+x
$$

for all $x \in X$. Let $\left\{\alpha_{n}\right\},\left\{\beta_{n}\right\}$ be two real sequences in $[0,1]$ and $a, b \in(0,1]$ be such that

$$
0<a \leq \alpha_{n} \leq b<2 k
$$

If the range of $(I-S)$ is bounded, then for arbitrary $x_{0} \in X$ the sequence $\left\{x_{n}\right\}$, defined by (5) and satisfying (7) in Theorem 1, converges strongly to a unique solution of the equation $S x=f$.

Proof. Obviously, if $x^{*} \in X$ is a solution of the equation $S x=f$, then x^{*} is a fixed point of T. Also it is easy to prove that T is continuous and strongly pseudocontractive with the strongly pseudocontractivity constant $(1-k)$. Clearly, since the range of $(I-S)$ is bounded, it follows that $\left\{T x_{n}\right\}$ and $\left\{T y_{n}\right\}$ are bounded. Thus, Theorem 2 follows from Theorem 1.

References

[1] S. S. Chang, Y. J. Cho, B. S. Lee, J. S. Jung, S. M. Kang, Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces, J. Math. Anal. Appl. 224(1998), 149-165.
[2] LJ. B. ĆIrić, Convergence theorems for a sequence of Ishikawa iterations for nonlinear quasi-contractive mappings, Indian J. Pure Appl. Math. 30(1999), 425-433.
[3] K. Deimling, Zeroes of accretive operators, Manuscripta Math. 13(1974), 365374.
[4] Gu Feng, Iteration processes for approximating fixed points of operators of monotone type, Proc. Amer. Math. Soc. 129(2001), 2293-2300.
[5] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Soc. 44(1974), 147-150.
[6] W. R. Mann, Mean value in iteration, Proc. Amer. Math. Soc. 4(1953), 506510.
[7] C. Morales, J. S. Jung, Convergence of paths for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128(2000), 3411-3419.
[8] M. O. Osilike, A note on the stability of iteration procedures for strongly pseudo-contractions and strongly accretive type equations, J. Math. Anal. Appl. 250(2000), 726-730.
[9] S. M. Soltuz, Some sequences supplied by inequalities and their applications, Revue d'analyse numérique et de théorie de l'approximation, Tome 29(2000), 207-212.
[10] S. M. Soltuz, Three proofs for the convergence of a sequence, OCTOGON Math. Mag. 9(2001), 503-505.
[11] S. M. Soltuz, A correction for a result on convergence of Ishikawa iteration for strongly pseudocontractive maps, Math. Commun. 7(2002), 61-64.
[12] Y. G. Xu, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224(1998), 91101.
[13] H. Y. Zhou, Y. Jia, Approximation of fixed points of strongly pseudocontractive maps without Lipschitz assumption, Proc. Amer. Math. Soc. 125(1997), 1705-1709.
[14] H. Y. ZHOU, Stable iteration procedures for strongly pseudocontractions and nonlinear equations involving accretive operators without Lipschitz assumption, J. Math. Anal. Appl. 230(1999), 1-30.

[^0]: *University of Belgrade, Aleksinačkih rudara 12/35, 11080 Belgrade, Serbia, e-mail: ciric@alfa.mas.bg.ac.yu. The author was sponsored by Fuji-film.
 ${ }^{\dagger}$ Department of Applied Mathematics, Changwon National University, Changwon 641-773, Korea, e-mail: jsume@sarim.changwon.ac.kr

