Ishikawa iterative process for strongly pseudocontractive operators in arbitrary Banach spaces

Ljubomir Ćirić^{*} and Jeong S. Ume[†]

Abstract. In this note we give a correction to the main result of Zhou in [14] on the convergence of the Ishikawa iteration process to a unique fixed point of a strongly pseudocontractive operator in arbitrary real Banach spaces. Our results extend the recent result of Soltuz [11] to arbitrary strongly pseudocontractive operators.

Key words: Ishikawa iteration process, strongly pseudocontractive operator

AMS subject classifications: Primary 47H10; Secondary 47H06, 54H25

Received January 10, 2003 Accepted March 13, 2003

1. Introduction and preliminaries

Let X be a real Banach space and D a nonempty, convex subset of X. Let X^* be the duality space of X and $\langle . , . \rangle$ be the pairing between X and X^* . The mapping $J: X \to 2^{X^*}$ defined by

$$J(x) = \{ f \in X^* : \langle x, f \rangle = \|x\|^2, \|f\| = \|x\| \}, \quad x \in X$$

is said to be a normalized duality mapping. The Hahn-Banach theorem assures that $J(x) \neq \emptyset$ for each $x \in X$. It is easy to see (c.f. [11]) that

$$\langle x, j(y) \rangle \le \|x\| \|y\| \tag{1}$$

for all $x, y \in X$ and each $j(y) \in J(y)$.

An operator $T : D \subset X \to X$ is called strongly pseudocontractive if for all $x, y \in D$ there exist $j(x - y) \in J(x - y)$ and a constant $k \in (0, 1)$ such that

$$Tx - Ty, j(x - y) \ge k ||x - y||^2.$$
 (2)

^{*}University of Belgrade, Aleksinačkih rudara 12/35, 11080 Belgrade, Serbia, e-mail: ciric@alfa.mas.bg.ac.yu. The author was sponsored by Fuji-film.

[†]Department of Applied Mathematics, Changwon National University, Changwon 641-773, Korea, e-mail: jsume@sarim.changwon.ac.kr

One of the effective methods for approximating fixed points of an operator T: $D(T) \subset X \to X$ is the Ishikawa iteration process [5], starting with arbitrary $x_0 \in D(T)$ and for $n \geq 0$ defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n,$$

$$y_n = (1 - \beta_n)x_n + \beta_n T y_n,$$

where $\alpha_n, \beta_n \in [0, 1]$ satisfy suitable conditions (see e.g. [1]-[4], [6]-[9], [11]-[14]). If $\beta_n = 0$ for each $n \ge 0$, then Ishikawa iterations reduce to the Krasnoselski-Mann iterations [6]. In the literature which considers the convergence of the Ishikawa iteration sequence associated with accretive or pseudocontractive operators, one of hypotheses for parameters α_n is, in general, that $\alpha_n \to 0$ as $n \to \infty$. Recently Zhou [14] considered the Ishikawa iteration process with parameters $\alpha_n \ge a > 0$. Osilike in [8] have proved that two assumptions of the main theorem in [14] are contradictory. Recently Soltuz [11] presented a correction for the result of Zhou [14] for a subclass of strongly pseudocontractive operators, namely for operators T which satisfy (2) with $k < \frac{1}{2}$.

The purpose of this note is to extend the result of Soltuz [11] to all strongly pseudocontractive operators which satisfy (2) with k < 1 and the parameters α_n in the Ishikawa iteration process satisfy the condition $0 < a \le \alpha_n \le b < 2(1-k)$, where $a, b \in (0, 1]$ are some constants.

For our result we need the following two lemmas:

Lemma 1 [[7], [12], [13]]. Let X be a real Banach space and let $J: X \to 2^{X^*}$ be a normalized duality mapping. Then

$$||x+y||^{2} \le ||x||^{2} + 2\langle y, j(x+y)\rangle$$
(3)

for all $x, y \in X$ and each $j(x+y) \in J(x+y)$.

Lemma 2 [[9], [10]]. Let $\{\rho_n\}$ be a sequence of non-negative real numbers which satisfy

$$\rho_{n+1} \le (1-\omega)\rho_n + \sigma_n,\tag{4}$$

where $\omega \in (0,1)$ is a fixed number and $\sigma_n \ge 0$ is such that $\sigma_n \to 0$ as $n \to \infty$. Then $\rho_n \to 0$ as $n \to \infty$.

2. Main results

Now we prove the following theorems on approximation.

Theorem 1. Let X be a real Banach space, D a non-empty, convex subset of X and $T: D \to D$ a continuous and strongly pseudocontractive mapping with a pseudocontractive parameter $k \in (0, 1)$. Let $x_0 \in D$ be arbitrary and let the Ishikawa iteration sequence $\{x_n\}$ be defined by

$$x_{n+1} = (1 - \alpha_n)x_n + \alpha_n T y_n, y_n = (1 - \beta_n)x_n + \beta_n T x_n, \quad n = 0, 1, 2, \dots,$$
(5)

where $\alpha_n, \beta_n \in [0, 1]$ and constants $a, b \in (0, 1]$ are such that

$$0 < a \le \alpha_n \le b < 2(1-k). \tag{6}$$

If sequences $\{Tx_n\}$ and $\{Ty_n\}$ are bounded and

$$||Tx_{n+1} - Ty_n|| \to 0 \quad as \quad n \to \infty, \tag{7}$$

then the sequence $\{x_n\}$ converges strongly to a unique fixed point of T in D.

Proof. The existence of a fixed point follows from the result of Deimling [3], and the uniqueness from the strongly pseudocontractivity of T. Let x^* be such that $Tx^* = x^*$.

 Put

$$M = 1 + ||x_0 - x^*|| + \sup\{||Tx_n - x^*|| : x_n \in D\} + \sup\{||Ty_n - x^*|| : y_n \in D\}.$$
(8)

Since $\{Tx_n\}$ and $\{Ty_n\}$ are bounded, we have that $M < +\infty$. We show that the sequence $\{x_n\}$ is bounded. We shall use the mathematical induction to prove that

$$||x_n - x^*|| \le M \quad \text{for all} \quad n \ge 0.$$
(9)

For n = 0, (9) follows from the definition of M. Suppose now that (9) holds for some $n \ge 0$. From (5), (8) and (9) we get

$$||x_{n+1} - x^*|| = ||(1 - \alpha_n)(x_n - x^*) + \alpha_n(Ty_n - x^*)||$$

$$\leq (1 - \alpha_n)||x_n - x^*|| + \alpha_n M.$$

Now, by the induction hypothesis we obtain $||x_{n+1} - x^*|| \le (1 - \alpha_n)M + \alpha_n M = M$. Thus, by induction, we conclude that (9) holds for all $n \ge 0$.

From Lemma 1 and (5) we have

$$\begin{aligned} \|x_{n+1} - x^*\|^2 &= \|(1 - \alpha_n)(x_n - x^*) + \alpha_n (Ty_n - x^*)\|^2 \\ &\leq (1 - \alpha_n)^2 \|x_n - x^*\|^2 + 2\alpha_n \langle Ty_n - x^*, j(x_{n+1} - x^*) \rangle \\ &\leq (1 - \alpha_n)^2 \|x_n - x^*\|^2 + 2\alpha_n \langle Ty_n - Tx_{n+1}, j(x_{n+1} - x^*) \rangle \\ &+ 2\alpha_n \langle Tx_{n+1} - x^*, j(x_{n+1} - x^*) \rangle. \end{aligned}$$

Hence, by strongly pseudocontractivity of T, we get

$$||x_{n+1} - x^*||^2 \le (1 - \alpha_n)^2 ||x_n - x^*||^2 + 2\alpha_n k ||x_{n+1} - x^*||^2 + 2\alpha_n \langle Ty_n - Tx_{n+1}, j(x_{n+1} - x^*) \rangle$$
(10)

for each $j(x_{n+1} - x^*) \in J(x_{n+1} - x^*)$. From (10), (1) and (9) we obtain

$$(1 - 2\alpha_n k) \|x_{n+1} - x^*\|^2 \le (1 - \alpha_n)^2 \|x_{n+1} - x^*\|^2 + 2\alpha_n \|Ty_n - Tx_{n+1}\|M.$$
(11)

From (6) it follows that

$$1 - 2\alpha_n k \ge 1 - 2kb > (2k - 1)^2 \ge 0.$$

Thus, from (11) we have

$$\|x_{n+1} - x^*\|^2 \le \frac{(1 - \alpha_n)^2}{1 - 2\alpha_n k} \|x_n - x^*\|^2 + \frac{2\alpha_n M}{1 - 2\alpha_n k} \|Tx_{n+1} - Ty_n\|.$$
(12)

Since $(1 - \alpha_n)^2 < 1 - 2\alpha_n k$ for $0 < a \le \alpha_n \le b < 2(1 - k)$, we get

$$\frac{(1-\alpha_n)^2}{1-2\alpha_n k} < (1-\alpha_n)^2 + 2\alpha_n k$$

$$\leq 1-2\alpha_n + \alpha_n b + 2\alpha_n k$$

$$= 1 - [2(1-k) - b]\alpha_n$$

$$\leq 1 - [2(1-k) - b]a;$$

$$\frac{2\alpha_n}{1-2k\alpha_n} \leq \frac{2}{1-2kb}.$$

Thus, from (12) we have

$$||x_{n+1} - x^*||^2 \le (1 - \omega)||x_n - x^*||^2 + \sigma_n,$$
(13)

where

$$\omega = [2(1-k) - b] \cdot a,$$

$$\sigma_n = \frac{2M}{1 - 2kb} \|Tx_{n+1} - Ty_n\|.$$

From (7) we have that

$$\lim_{n \to \infty} \sigma_n = 0.$$

Taking $\rho_n = ||x_n - x^*||^2$, from (13) and Lemma 2 we get

$$\lim_{n \to \infty} \|x_n - x^*\| = 0.$$

Thus we proved that the sequence $\{x_n\}$ converges strongly to a unique fixed point of T in D.

Remark 1. For $k < \frac{1}{2}$ condition (6) in Theorem 1 becomes $0 < a \le \alpha_n$, since in this case 2(1-k) > 1. Thus, Theorem 1 contains Theorem 1 of Soltuz [11] as a corollary.

Let X be a real Banach space and $S : X \to X$ a mapping on X. If for any $x, y \in X$ there exist $j(x-y) \in J(x-y)$ and a constant $k \in (0,1)$ such that

$$\langle Sx - Sy, j(x - y) \rangle \le k \|x - y\|^2$$

then S is called a *strongly accretive operator*.

Lemma 3 [[1]]. If $T : X \to X$ is a strongly accretive operator, then, for any $f \in X$, mapping $S : X \to X$, defined by Sx = f - Tx + x is a strongly pseudocontractive operator, i.e. for any $x, y \in X$:

$$\langle Sx - Sy, j(x - y) \rangle \le (1 - k) \|x - y\|^2$$

where $k \in (0,1)$ is the strongly accretive constant of T.

Theorem 2. Let X be a real Banach space and $S : X \to X$ a continuous strongly accretive operator with a strongly accretive constant $k \in (0,1)$. For any given $f \in X$, define a mapping $T : X \to X$ by

$$Tx = f - Sx + x$$

for all $x \in X$. Let $\{\alpha_n\}$, $\{\beta_n\}$ be two real sequences in [0,1] and $a, b \in (0,1]$ be such that

$$0 < a \le \alpha_n \le b < 2k.$$

If the range of (I - S) is bounded, then for arbitrary $x_0 \in X$ the sequence $\{x_n\}$, defined by (5) and satisfying (7) in Theorem 1, converges strongly to a unique solution of the equation Sx = f.

Proof. Obviously, if $x^* \in X$ is a solution of the equation Sx = f, then x^* is a fixed point of T. Also it is easy to prove that T is continuous and strongly pseudocontractive with the strongly pseudocontractivity constant (1 - k). Clearly, since the range of (I - S) is bounded, it follows that $\{Tx_n\}$ and $\{Ty_n\}$ are bounded. Thus, *Theorem 2* follows from *Theorem 1*.

References

- S. S. CHANG, Y. J. CHO, B. S. LEE, J. S. JUNG, S. M. KANG, Iterative approximations of fixed points and solutions for strongly accretive and strongly pseudo-contractive mappings in Banach spaces, J. Math. Anal. Appl. 224(1998), 149–165.
- [2] LJ. B. CIRIĆ, Convergence theorems for a sequence of Ishikawa iterations for nonlinear quasi-contractive mappings, Indian J. Pure Appl. Math. 30(1999), 425–433.
- [3] K. DEIMLING, Zeroes of accretive operators, Manuscripta Math. 13(1974), 365– 374.
- [4] GUFENG, Iteration processes for approximating fixed points of operators of monotone type, Proc. Amer. Math. Soc. 129(2001), 2293–2300.
- [5] S. ISHIKAWA, Fixed points by a new iteration method, Proc. Amer. Soc. 44(1974), 147–150.
- [6] W. R. MANN, Mean value in iteration, Proc. Amer. Math. Soc. 4(1953), 506– 510.
- [7] C. MORALES, J. S. JUNG, Convergence of paths for pseudocontractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128(2000), 3411–3419.
- [8] M. O. OSILIKE, A note on the stability of iteration procedures for strongly pseudo-contractions and strongly accretive type equations, J. Math. Anal. Appl. 250(2000), 726–730.
- [9] S. M. SOLTUZ, Some sequences supplied by inequalities and their applications, Revue d'analyse numérique et de théorie de l'approximation, Tome 29(2000), 207-212.
- [10] S. M. SOLTUZ, Three proofs for the convergence of a sequence, OCTOGON Math. Mag. 9(2001), 503–505.

- [11] S. M. SOLTUZ, A correction for a result on convergence of Ishikawa iteration for strongly pseudocontractive maps, Math. Commun. 7(2002), 61–64.
- [12] Y. G. XU, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive operator equations, J. Math. Anal. Appl. 224(1998), 91– 101.
- [13] H. Y. ZHOU, Y. JIA, Approximation of fixed points of strongly pseudocontractive maps without Lipschitz assumption, Proc. Amer. Math. Soc. 125(1997), 1705–1709.
- [14] H. Y. ZHOU, Stable iteration procedures for strongly pseudocontractions and nonlinear equations involving accretive operators without Lipschitz assumption, J. Math. Anal. Appl. 230(1999), 1–30.