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Summary 

A fully nonlinear numerical wave tank (NWT) is developed to investigate the 
interaction of waves and fixed dual cylinders accurately. The potential theory and the mixed 
Eulerian-Lagrangian (MEL) method are used to solve the time domain multi-boundary 
problem. The high order boundary element method (BEM) is applied to compute the 
boundary values in the Eulerian frame. The material node approach combined with the fourth 
order Runge-Kutta time integration is employed to update the boundary values in the 
Lagrangian frame. Boundary geometry and tangential derivatives of boundary values are 
obtained by the Non-Uniform Rational B-spline (NURBS) approximation. The time 
derivative of velocity potential is calculated by the acceleration potential formulation. Free 
surface elevation and hydrodynamic forces on the objects evaluated by the present numerical 
procedure are compared with other numerical simulations. 
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1. Introduction 

Recently, the use of a numerical wave tank for studying the wave-body interaction in 
time domain has been of interest in marine hydrodynamics. In the past two decades, 
numerical wave tanks have been developed to simulate various hydrodynamics problems such 
as wave interaction with waves, currents, variable bottom and fixed or floating bodies. For the 
simulation of linear wave-body interaction, the free surface boundary condition was linearized 
and the solution was obtained in the time and frequency domain by Nakos et al. [16]. 
Perturbation theory was used for weakly nonlinear problems but it is complicated for higher 
order problems. Linear and second order wave interaction with a floating body was proposed 
by Kim et al. [11] based on the diffraction and perturbation theory. Second order wave-
current interaction with floating bodies was presented by Liu and Teng [14]. Mixed Eulerian-
Lagrangian time marching technique was presented by Longuet-Higgins and Cokelet [15], to 
solve the fully nonlinear free surface problem. By using this technique, the fully nonlinear 
free surface boundary conditions can be applied on the exact free surface. In the time stepping 
approach, free surface boundary values are calculated in the Eulerian frame at each time step 
and a new position and value of the moving boundary are obtained in the Lagrangian manner 
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for the next time step. Many attempts have been made to develop NWTs for fully nonlinear 
modelling of free surface wave problems, such as overturning waves over arbitrary bottom by 
Grilli et al. [8] and wave-current interaction by Ryu et al. [21]. Studies on propagation of 
regular and irregular waves were also conducted by Ning and Teng [17], Tang and Huang 
[22] and Ning et al. [18]. Wave interaction with an array of fixed cylinders was presented by 
Wang and Wu [27] and wave interaction with free floating bodies was presented by Koo and 
Kim [12]. To solve the Laplace equation in the potential numerical wave tanks, the BEM and 
finite elements methods (FEM) were used based on the linear or curvilinear elements by Wu 
and Hu [28], Wang and Wu [26] and Guerber et al. [10]. B-spline BEM formulations for the 
continuous boundary problem and boundaries with corner points were provided by Cabral et 
al. [3], [4]. Indirect NURBS panel method was proposed by Gao and Zou [7] to study linear 
simulation of uniform motion of submerged subjects. To update the instantaneous 
computational domain, various time integration schemes such as the fourth order Runge-Kutta 
method by Koo and Kim [12], the fifth order Runge-Kutta-Gil and the fourth order Adams-
Bashforth-Moulton method by Zhang et al. [29] have been developed. 

Evaluation of hydrodynamic loads on bodies based on the acceleration potential was 
reviewed by Bandyk and Beck [1]. The formulation was firstly introduced by Vinje and 
Brevig [25] in which a potential wave-body problem is solved in a complex domain. For a 
fixed body, the backward finite difference formula is the simplest way to approximate the 
potential change in time but spike instability might occur for incident nonlinear large 
amplitude wave. Tanizawa [23] presented a formulation for the calculation of time derivative 
of the potential for a freely floating body problem. 

In this paper, a fully nonlinear two dimensional potential NWT is developed based on 
the NURBS BEM and the acceleration potential to solve the time dependent boundary value 
problem of linear wave interaction with dual cylinders. An artificial wavemaker is deployed 
on the upstream fixed end wall by specifying normal flux of the linear potential wave theory. 
To reduce the wave reflection into the computational domain, two numerical wave absorbers 
are set on the specified length of the free surface at the rear of the downstream end wall and in 
front of the upstream end wall. Hence, a viscous damping coefficient proposed by Cointe [6] 
is added to the fully nonlinear free surface boundary conditions. The fourth order Runge-
Kutta time integration and the MEL method are used for time stepping and the Gauss 
quadrature integration scheme is applied to determine hydrodynamic forces. Free surface 
elevation and hydrodynamic forces obtained by the present numerical procedure are compared 
with former studies. Coupling of boundary geometry description by the NURBS and direct 
BEM in NWTs can be a novel numerical procedure to evaluate boundary values and their 
derivatives. 

2. Mathematical Model 

The computational domain   is illustrated in Figure 1. A Cartesian coordinates system 
Oxz  is chosen such that positive z  is upwards and the origin is located on the still water 
level. It is assumed that the fluid is homogenous, incompressible and inviscid and the flow is 
irrotational. Hence, the governing equation of the velocity potential   can be written as:  

 t in        02   (1) 

To solve the boundary value problem, fully nonlinear kinematics free surface boundary 
condition (KFSBC) and fully nonlinear dynamics free surface boundary condition (DFSBC) 
are applied on the exact free surface 5 ; 
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where,  tx,  is the wave elevation measured from the still water level, and g  is the 

gravitational acceleration. In terms of the Lagrangian manner based on the material node 
approach, the fully nonlinear free surface boundary conditions can be written as: 
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where  .
tt  in which  


 and 


 is the location of free surface nodes. 

 
Fig. 1  Definition sketch of numerical wave tank 

The condition on the fixed upstream end wall 1  (inflow boundary) is given as: 

1on     
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 (4) 

where, w  could be the linear or nonlinear wave potential. Impermeable conditions on the 

bottom 2 , downstream end wall 3  and body surface 4  are given as: 

432  and  ,on    0 





n
 (5) 

To achieve an appropriate numerical solution for the wave-body interaction problem in 
a numerical wave tank, the use of artificial damping zones (sponger layer) is inevitable at both 
ends of the wave tank. An artificial damping term is added to the free surface boundary 
condition on the specific length of the free surface at the adjacent of the end walls. Cointe [6] 
presented the numerical wave absorber as: 
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where, the subscript e  corresponds to the reference configuration of the fluid. The function 
 x  is the damping coefficient defined as: 

   
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In practice, the damping coefficient is equal to zero except in the damping zone 
 10 xxx  , which is tuned to a characteristic wave frequency   and to a characteristic 

wave number K . Strength and length of the damping zone are controlled by the 

dimensionless parameters   and  , respectively. The terms e  and  eee zx ,


 are 

reference values. When reference values are set as calm water condition  0 and ee z , the 

damping zone acts as a simple absorber. 

3. NURBS Boundary Element Method 

3.1 Non-Uniform Rational B-spline Curve 

To solve the boundary value problem, the geometry description of boundary is 
substantial particularly for the complicated deformation boundary. Piegl and Tiller [20] 
summarized the parametric interpolation functions such as Bezier, B-spline, and Non-
Uniform Rational B-spline curve ( or surface). The NURBS curve is a piecewise function, 
given as: 
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where, 10  u  is the parametric value of the B-spline curve, m  is the number of control 

points iP


,  p
iN  is the B-spline basis function with a degree of p , and iw  is the weighted 

function. Inflection of the free surface and submerged bodies can be approximated accurately 
by a parametric curve to obtain geometry characteristics such as normal vector, length and 
calculating spatial derivation of boundary values. Equation (8) provides a system of m  linear 
equations for the known curve point k  and the unknown control points. It can be written as: 
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in which, 
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Using ku  the value of knots, the m  values of rational functions    p
m

p  ,...,1  are 

computed, and the position of control points is then obtained. ku  is given as; 
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where 

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1
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To solve the boundary integral equation, the boundary points are selected on the free 
surface and the corresponding terms of the points are computed based on the NURBS 
description of the free surface. 

The unit tangent vector s  for any collocation point in the u  direction is defined as: 
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in which  uzuxTu  ,
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 is tangential vector along the u  direction. The unit normal 

vector is written as: 
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3.2 Boundary Integral Equation for Multi-Boundary Problem with Corner Point 

The boundary integral equation based on the Green second identity is employed to solve 
the multi-boundary value problem. It is written as: 
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where  2iic  , i  is the internal angle at node i  on the integrating boundary   of the 

computational domain which is enclosed by the internal boundary ( 4 ) and the external 

boundaries ( 5321   ). For two dimensional problems, the Green function is  
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where 
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 (16) 

is the distance from the field point 


 to the source point i


. In this study, the inflow wall, 

the end wall and the bottom can be described exactly by the linear shape function. The 
position of the nodal points on the free surface and on the surface of submerged bodies can be 
obtained by the NURBS curve. Therefore, the variation of the geometry and boundary values 
over boundary l  is described as: 
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in which 5,...,2,1l  and lN  and  uBl
j  are the number of nodes and the local shape function 

corresponding to the boundary l , respectively. l
j


, l

j  and nl
j   are geometry, potential 

and its normal flux of the node j  on the boundary l , respectively. For total points on the 

boundaries ( 54321 NNNNNN  ), the integrals of Equation (14) can be discretized 

as: 

          
  








 5

1 1

5

1 1

,

l

N

j

l
j

l
ij

l

N

j

li
l

l
j

l
j

i
ll

l

FduuJ
n

XuGuBd
n
G 







 (20) 

          
   









 5

1 1

5

1 1 l

N

j

l
jl

ij
l

N

j

l
i

ll
j

l
ji

ll

l
n

EduuJX,uGuB
n

d
n

G








 (21) 

where the Jacobian is defined as: 
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and l
ijF  denotes the array of the Dirichlet matrix and l

ijE  is the array of the Neumann matrix. 

There are four corner points at the intersection of the inflow wall and the end wall with the 
bottom and the free surface. The double point approach proposed by Brebbia and Domingues 
[2] is used to treat the potential normal flux discontinuity of boundary values. Since, the 
potential is unique at any boundary point, but the potential flux is not unique because the 
normal vector on the boundary at the intersection point is not sole and the flux differs before 
and after the corner point. The condition on the moving corner points on the free surface is 
given in Figure 2 (Case 1). At these corner points the potential and normal flux on the one side 
of the points are known and on the other side are unknown. For the fixed corner points on the 
bottom (Case 2), the fluxes on both sides are known but the potentials are unknown values. 

   
Fig. 2  Magnified view of intersection points (     ) boundary values 

Substituting Equations (20) and (21) into Equation (14), the discretized form of 
Equation (14) can be written as: 
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in which Ni ,,1 . By moving the unknown value to the left-hand side (LHS) of Equation 
(23) and the known values to the right-hand side (RHS) of the equation, Equation (23) can be 
written as: 
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where l
j  and nl

j   are the known boundary values. l
ijF  is equal to l

iji Fc   if i  coincides 

with the boundary points, otherwise l
ijF  is equal to l

ijF . By solving the system of equation, the 

unknown values are obtained and the moving computational domain is updated and regridded. 

4. Time Stepping Scheme 

At every time step, the velocity and time derivative of the potential of the free surface 
nodes are computed. Normal flux of the free surface potential and its tangential derivative are 
obtained by the boundary integral solution and the NURBS scheme, respectively. Spatial 
derivative of the free surface potential in the Cartesian coordinates can be written as: 
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where sx   and sz   is approximated by the NURBS curve along the curvilinear 

coordinates. 

To obtain the velocity of corner points 1 and 4 the double nodes approach is used. 
Points 1 and 4 are located at the intersection of the free surface and the inflow and outflow 
boundaries, respectively. Each corner point on the free surface has a unique velocity in the 
Cartesian coordinate system. To evaluate the tangential derivative of the potential at the 
corner points the formula proposed by Grilli and Svendsen [9] is used: 
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in which 1m  and 3m  correspond to the inflow boundary and the outflow boundary, 

respectively. 5  is the devitation angle of the free surface nodal points; 

 
x
z



5tan   (27) 

For the inflow boundary 21    and for the end wall 233   . n 5  and 

nm   are the potential normal flux at the corner points on the free surface and the inflow 

boundary or the end wall, respectively. Having velocity of the free surface node, the time 
derivative of the potential is obtained by the fully nonlinear dynamic free surface boundary 
condition. The fourth order Rung-Kutta time integration scheme is applied to update the 
position and potential of the nodes. 
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5. Acceleration Potential Theory 

For computation of pressure and force on the submerged bodies, the time derivative of 
the potential should be calculated accurately. The simplest approach is the backward 
difference method for calculation of the time derivative of the potential at each time step. 
However, for a nonlinear problem this method is unstable in most cases. 

The boundary integral equation can be used to calculate the acceleration field. Indeed, 
its gradient shows fluid particle acceleration. Since t  satisfies the Laplace equation, it 
can be obtained by solving the integral equation in the computational domain. The time 
derivatives of the potential can be obtained from the following integral equation. 

 























 d

n
G

tnt
G

t
c i

i
i

i

2

 (28) 

The acceleration potential boundary integral equation can be solved similarly to 
Equation (14) with the following boundary conditions:  

1. The boundary condition on the inflow boundary: 
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2. The bottom, outflow and body surface boundary conditions: 
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3. The free surface boundary condition: 
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6. Numerical Application and Results 

6.1 Fully Nonlinear Wave Interaction with Single Submerged Cylinder 

The present developed potential NWT is based on the NURBS multi-boundary integral 
equation and the acceleration potential theory is first used to obtain the nonlinear wave force 
on a fixed submerged circular cylinder. The numerical results are compared with the 
theoretical solutions of Ogilvie [19], the experimental measurements of Chaplin [5] and the 
numerical studies of Koo et al. [13]. The mean vertical forces are calculated and compared in 
Figure 3. The tank length mL 6 , tank depth m.d 850 , damping zone 1 has 0  and 
damping zone 2 has 2,1   . The linear theoretical wave potential is used as feeding 
input velocity: 

  
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Kd

zdKgA
w 


 


 sin
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 (32) 

where A  is the wave amplitude. Mesh size and time step are chosen 40 x  and 

30Tt  , where K 2  and 2T . The cylinder diameter is mr 102.02   and 

rd 20  . 
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Fig. 3  Dimensionless mean vertical forces  32rFv   versus Keulegan-Carpenter number 

It is shown that the present results are in good agreement with the experimental data and 

the theoretical solution for various Keulegan-Carpenter numbers 0KdKC Ae r  . The slight 

discrepancy between the experimental results and the numerical solution results from viscous 
effects. First harmonic components of the horizontal force amplitudes are compared 
analogously in Figure 4. 

It seems that the fluid viscosity causes significant differences between the experimental 
measurement and the potential-based results for large KC . The present results are in good 
agreement with the high-order theoretical and numerical calculations. Figure 3 and 4 show 
that the viscosity effect on the computation of vertical forces is negligible in comparison to its 
effect on horizontal forces. 
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Fig. 4  Dimensionless amplitude of  horizontal forces  32rFh   versus Keulegan-Carpenter number 

Time series of vertical and horizontal forces (without the hydrostatic force) on the 
cylinder in the NURBS NWT is illustrated for 5.0KC  in Figure 5. A snapshot of pressure 
distribution over the cylinder is shown in Figure 6 at st 33.6 . 
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Fig. 5  Time series of horizontal and vertical forces on submerged cylinder 
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Fig. 6  A snapshot of pressure distribution over the body 

Asymmetric pressure distribution on the LHS and the RHS of the cylinder is due to 
horizontal forces. Free surface wave is depicted for various KC  numbers in a snapshot of the 
whole length of the tank in Figure 7 at st 67.6 . The cylinder diameter is mr 2.02   with 

md 2.00   and the input wave with 16.6  s  is generated through the NWT with 6L . 

Also, the cylinder is located a wave length ( meter) in front of the inflow boundary. 
Damping zone 1 vanishes and the damping zone 2 parameters are chosen 2,1   . The 

pressure distribution over the body is shown in Figure 8. 
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Fig. 7  Spatial series of wave elevation in presence of submerged cylinder for various KC  

Figure 7 shows the damping zone 2 performance for various KC  numbers and the input 
wave height. Deformation in the wave profile behind the cylinder is noticeable and increases 
by increasing the wave height and KC . The vertical plan symmetric pressure distribution 

0° 

  

44 TRANSACTIONS OF FAMENA XXXVII-1 (2013)



Simulation of Nonlinear Wave Interaction with A. Abbasnia, M. Ghiasi 
Dual Cylinders in Numerical Wave Tank 

  

shown in Figure 8 indicates that the horizontal force is zero and the vertical force has 
maximum value at the instant. 
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Fig. 8  Pressure distribution on cylinder body for various KC  

6.2 Fully Nonlinear Wave Interaction with Dual Submerged Cylinder 

In this section, the variation of nonlinear wave forces on two submerged cylinders 
against different gap distances cyL  is presented. Figure 9 shows spatial series of the wave 

profile in which diameters of both cylinders are taken m15.0  and the input wave length is 
m558.1 . Depth of the NWT is chosen m85.0 , its length is 6 , 1,1    for damping zone 

1 and 2,1    for damping zone 2. The first cylinder is located 1.5  from the inflow 
boundary and 0.56KC  . Mesh size and time step values are similar to the previous 
subsection. It is shown that more deformation on the wave profile occurs when the gap 
distance becomes smaller. 
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Fig. 9  A snapshot of wave profile in presence of dual cylinders with various cyL  

A comparison of pressure distribution over the cylinders for different gap distances is 
shown in Figure 10 at the same moment. 
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Fig. 10  A snapshot of pressure distribution in presence of dual cylinders with various cyL  

It is shown that when the gap distance is larger, the pressure difference between the 
front cylinder and the rear cylinder becomes greater. Indeed, the rear cylinder undergoes 
larger forces when the gap distance becomes smaller as shown in Figure 11 and 12. The 
obtained vertical and horizontal mean forces on the front and rear cylinders are compared 
with the viscous NWT developed by Tavassoli and Kim [24] and the potential NWT 
presented by Koo et al. [13].  
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Fig. 11  Mean horizontal force on two cylinders normalized by 32r  for various cyL   
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Fig. 12  Mean vertical force on two cylinders normalized by 32r  for various cyL   

Figure 11 shows that mean horizontal forces on the cylinders are in opposite directions. 
Hence, two cylinders tend to drift and decrease the gap distance. Also, when the gap distance 
becomes smaller, this phenomenon severely occurs. In both Figures 11 and 12, trends of the 
viscous NWT results are the same with the potential solutions. 

7. Conclusion 

A fully nonlinear two dimensional potential NWT is developed based on the MEL 
approach and the NURBS boundary element method. Acceleration potential field is used to 
evaluate hydrodynamic forces on the bodies. Two numerical beaches by adding the artificial 
damping coefficient to both kinematic and dynamic free surface conditions are set, and their 
performances are obtained. Wave distortion, pressure distribution and time series of forces 
due to a fully submerged single cylinder are evaluated and validated by Ogilvie’s theoretical 
solutions and Koo’s et al. numerical results and Chaplin’s experimental measurements. The 
substantial difference in wave forces for higher KC  numbers seems to be due to the fluid 
viscosity. The fully nonlinear NURBS NWT is also used to solve a wave interaction problem 
with fixed dual submerged cylinders by means of the acceleration potential theory for various 
gaps. It is recognized that the interaction effects are more important when the gap distance 
becomes smaller. The direction of horizontal forces on the dual cylinders is opposite and two 
cylinders tend to drift in the opposite direction to reduce the gap. The magnitude of mean 
horizontal and vertical forces significantly increases when the gap distance decreases. 
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