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Summary 

Using the torque method, one can determine not only the speed ratios in complex 
compound planetary gear trains, but also the magnitude and direction of internal power flows 
and thus the efficiency. A brief description of the torque method is given in this paper. As an 
example, a two-carrier compound planetary gear train connected in series was studied. Some 
more specific and difficult cases of application of this clear and simple method are reviewed – 
a planetary gear train with two degrees of freedom and a self-locking planetary gear train.     
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1. Introduction 

Planetary gear trains are complex technical devices and comprise a wide technical field 
[1-4]. Common methods for simple planetary gear train analysis (e.g. Willis, Kutzbach, 
Swamp, etc.) [1, 2, 5]) are either difficult or impossible to apply to complex compound 
planetary trains. In such cases, the analysis can be performed by means of known formulae, 
tables and diagrams [2, 4]. Although they do accomplish given objectives, this method of 
work has some disadvantages: 

1. The designer is dependent on a particular literary source and cannot act autonomously; 
2. The designer acts mechanically, even blindly, which is not appropriate; 
3. The method lacks any visibility. Clarity and visibility are dominant in the thoughts and 

endeavours of the engineer. And very important to him.  

These issues create a clear need for another method, one that overcomes the aforementioned 
disadvantages and allows the designer to achieve more goals. 

The torque method is extremely clear, easy to understand and easy to apply. Using it, 
more than one objective could be achieved: 

1. Determination of the speed ratio as with the methods of Willis, Kutzbach, Swamp, but 
also 

2. clarification of whether the internal power division or circulation initially exist. 
Generally, determination of the magnitude and direction of internal power flows 

3. and thus determination of the efficiency. 

There are studies [6 and 7] where the torque is used for the power analysis using the 
fundamental circuits, but the kinematic analysis is performed by using the Willis method. 
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The torque method is developed in a number of studies [8 - 13], and considered as the 
two-carrier [8 - 10], as the three- and the four-carrier compound planetary gear trains [11 - 
13]. It is also based on the lever analogy of three-shaft planetary gear trains – simple and 
compound [8]. The main objective is to review a more specific and difficult case not yet 
studied in the previous publications [8 - 13] which illustrate the application of this simple, 
clear and easy-to-apply method. 

2. Torque method 

2.1 Essence of the torque method 

This method is based on the fact that the torques of the three external shafts of a simple 
single-carrier planetary gear train (Fig. 1) are in a constant ratio in stationary mode, regardless 
of the operating mode of the gear train (with one or two degrees of freedom, as a reducer or 
multiplier, as a standalone train or a part of a compound train). For the purpose of clarity, the 
single-carrier planetary train (Fig. 1) is represented with the symbol of Wolf [14] but modified 
according to [8 - 13], the three external shafts being denoted with lines of different width 
corresponding to the magnitude and direction of their torques (Т1 and Т3 are in the same 
direction, opposite to ТS ). In Fig.1 the three ideal (with no account of losses) torques (Т1 of 
the sun gear, Т3 of the ring gear, and ТS of the carrier) are expressed with the torque ratio t [8 
and 9] defined by the authors. 

 
                                                                      Torques:    1 3 1 1 1: : : · : 1 1: : 1ST T T T t T t T t t         

Fig. 1  The most common single-carrier planetary gear train and its torques 

The ideal (Т1, Т3, and ТS) as well as the real (Т1', Т3', and ТS') torques are in equilibrium in 
stationary mode  
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The ideal input torque ТА and output torque ТВ are used [1 and 2] for the determination of the 
speed ratio i of the gear train 

A B

B A

Ti
T




      (2) 

where A  and B  are the input and output angular velocities. The real input torque ТА' and 

the output torque ТВ' are used first for the determination of the torque transformation μ and 
then the efficiency η [1 and 5]      

B

A

T
T







 (3)  

i
     (4) 

Prerequisite: 
1)(31)(130  SS  ;  

Torque ratio: 3 3

1 1

1
T zt
T z

     

1 1T 

1T

13 .TtT 

1
3

S

  11 .ST t T  

1T

3T

2

ST

t
0

3T t 

 1ST t  

50 TRANSACTIONS OF FAMENA XXXVII-1 (2013)



The Torque Method Used for Studying Coupled  K. Arnaudov, D. Karaivanov 
Two-Carrier Planetary Gear Trains 

   

In this paper, the method is illustrated on coupled two-carrier planetary gear trains (Figs 
2, 3, and the rest), also referred to as elementary compound planetary gear trains [2, 3], but 
the same procedure can be applied to higher compound planetary trains which are multi-
carrier planetary gear trains  (three-, four-, etc.) [13]. 

2.2 Sequencing in the application of the method 

The following are determined: 

1) Torque ratios tІ and tІІ of the component gear trains І and ІІ 

3 3 6 6

1 1 4 4

1; 1I II
T z T zt t
T z T z

       (5) 

where z is the teeth number of the gears.  

2) Basic (internal) efficiencies η0І and η0ІІ of the component gear trains І and ІІ 
The simplest formula according to [15] is as follows ( 0  - basic coefficient of losses)  
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   
                

 (6) 

If a more accurate calculation is required, sources [16 through 18] should be used. 

3) Ideal torques Тi 
The ideal torques are calculated serially (following the relations in Fig.1) in a determined 
order where it is appropriate to begin with a sun gear shaft, preferably with a value of +1 (but 
not mandatory) [13]. The torques at the two ends of the internal compound shaft (Fig. 2) are 
equal by the absolute value, but with opposite signs. The torque of the external (outer) shaft is 
obtained as a sum of the torques of its component shafts. The sequence for the determination 
of ideal torques is shown in Fig.3 with the numbers in circles. 

 

Fig. 2  Coupled two-carrier planetary gear train and the names of its shafts 

4) Verification of the ideal torques Тi 
If the calculations are correct, the three outer ideal torques, i.e. the input torque ТА, the output 
torque ТВ, and the reaction torque ТС, should be in equilibrium in stationary mode, i.e. 

0iT  ; 0A B CT T T    (7) 

Otherwise, the calculations are incorrect. 
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Fig. 3  Coupled two-carrier planetary gear trains – torques, speed ratio, efficiency 
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6) Internal power flows, absolute and rolling (relative) power, internal power division and 
power circulation 
This is a delicate problem and sometimes not easy to understand, especially in complex 
compound multi-carrier planetary trains. It is necessary to distinguish between the absolute 
and the relative (rolling) power. The latter is related to the losses due to the relative rotation of 
the gears to the corresponding carrier. Most often the meshing losses are dominating, with 
exceptions like the turbine-trains, which have sliding (plain) bearings. It is necessary to 
determine the direction of the rolling powers PWІ and  PWІІ in each of the component trains I 
and II in order to calculate the real torques Т1', Т3', and ТSІ' (as well as  Т4', Т6', and ТSІІ') and 
thus the efficiency η of the gear train. In some simple cases the directions are determined easily. 

However, the general approach is as follows: 

When the directions of the torque Т1 and the relative angular velocities ω1rel = ω1 - ωSI of 
the sun gears 1 (relative to the carriers SI) are the same, i.e. when 

Т1 > 0 and ω1rel > 0, 

meaning that 
T1·ω1rel > 0, 

the rolling power РWI is transmitted by the sun gear 1 through the planets 2 of the ring 
gear 3. 

Otherwise, when 
T1·ω1rel < 0, 

the rolling power РWI is transmitted in the opposite direction. The directions of the two 
rolling powers РWI and РWIІ in the two component trains I and II are illustrated in Fig. 3. 

If the directions of the rolling powers are not that easy to determine, there is another possible 
method – the method of trial [19] demonstrated in section 3.2. 

As for the absolute power, in gear trains with a fixed external compound shaft, its direction is 
obvious (Fig. 3a). When the external compound shaft is not fixed, there are two possible cases: 

 internal power division (Fig. 3b); 

 internal power circulation (Fig. 3c); 

The particular case can be easily determined by the rule of algebraic signs [10] (Fig. 3): 

 if the algebraic signs of the torques of the two coupling shafts are the same, there is an 
internal power division (Fig. 3b); 

 if the signs are different, there is an internal power circulation (Fig. 3c). 

The direction of the circulating power is the same as the direction of the input PA or output PB 
power (acting on the compound shaft) in the coupling shaft, the sign of which is the same as 
the sign of the corresponding input РА or output РВ power. This is clearly demonstrated in 
Fig. 3c. It is also obvious that the circulating power РBl is three times the input power РА. 

7) Real torques Тi' 
Their determination is done by the same sequence used for the ideal torques with regard to the 
direction of transmission of rolling powers PWІ and РWIІ in each of the component trains I and 
II as well as the corresponding basic efficiencies η0І and η0ІІ. If the calculations (e.g. for the 
first component train I) are based on the real torque Т1' of the sun gear 1, there are two options 
for the torque Т3' of the ring gear 3: 

 Т3' = tІ·Т1'·η0І when the rolling power PWІ' is transmitted from the sun gear 1 to the 
ring gear 3; 

 Т3' = tІ·Т1'/η0І when PWІ' is transmitted from the ring gear 3 to the sun gear 1; 
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This applies to the second component train II as well. 

In the figures, the real torques are denoted in rectangles.  

8) Verification of the real torques Тi' 
The same as with ideal torques, the real torques must also be in equilibrium, i.e. 

0iT  ; 0A B CT T T      (8) 

if the calculations are correct. 

9) Transformation of the torques μ and efficiencies η 
They are determined by the real input torque ТА' and the output torque ТВ' according to (3) 
and (4). 

Two more specific cases of torque method application are reviewed in this paper: 

 a gear train with two degrees of freedom operating with power summation as a 
„summation train” in case of two-motor driving; 

 a self-locking train consisting of two non-locking component trains; 

3. Study of a coupled two-carrier planetary gear train with two degrees of freedom 

3.1 Determination of angular velocities and power flows 

Fig. 4 shows a gear train with two degrees of freedom which operates as a summation 
train with internal power division. 

With given torque ratios I 3.5t   and IІ 2.818t   of the two component trains I and II and 

angular velocities of the input shafts 1
АI 25 s   and 1

АIІ 12 s   , the ideal torques and 

angular velocities can be determined for all the shafts of the coupled train. 

The sequence for the determination of torques is also shown with encircled numbers 
(Fig. 4). 

 

Fig. 4  Coupled two-carrier planetary gear train with two degrees of freedom and its ideal torques 

After assuming that АI 1Т    and having in mind the equilibrium of power flows in the 

coupled train 
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From the equilibrium of power flow in the component train I: 

   
1 3 1 1 3 3· · ·

1·25 3.5 14.29 4.5 0

i SI SI SI

SI

P P P P T T T  
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

 

the angular velocity of the internal compound shaft 1
4

25 50.015
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4.5SI s  
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be determined. 

This angular velocity is necessary for the 
determination of relative angular velocities of 
the gear wheels. The relative angular velocities 
are expressed as: 

  1
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1
2 1
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The directions of the torques and angular velocities determined this way indicate that the 
train has internal power division. The magnitudes of the two power flows are shown in Fig. 5. 

3.2 Efficiency determination 

Proper determination of the real torques (and thus the efficiency (4) of the coupled train) 
requires the determination of the directions of the rolling powers PWI and PWII in the 
component trains I and II. 

Fig. 6 shows this determination (for the train from Fig. 4) by means of the trial method 
(the aim is to illustrate a method different from the one described above). 

When determining the direction of the rolling power PWI of the first component train I, 
one must choose a basic efficiency with a lower value (for method effectiveness and result 
clarity), for example η0І =0.8, while the efficiency of the other train is chosen as η0ІІ =1. 

The total efficiency η of the coupled train is calculated with the two possible directions 
of the rolling power PWI of the first component train I. The direction which gives a realistic 
value (η < 1) is chosen. The same method is applied to the second component train II. 

Fig. 6 shows that in both component trains I and II, the rolling powers flow from the sun 
gears 1 and 4 to the respective ring gears 3 and 6. 

The real torques at given basic efficiencies of the component trains η0І = η0ІІ = 0.97 (a 
realistic value) are determined in Fig. 7. The efficiency of the coupled gear train is:  
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Fig. 5  Power flows in the gear train from Fig. 4 
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Fig. 6  Determination of the directions of the rolling powers PWI and PWII in the component trains  
of coupled planetary gear train from Fig. 4 
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Fig. 7  Real torques in the gear train from Fig. 4 

4. Study of a coupled two-carrier planetary gear train with self-locking 

4.1 The train operates as a multiplier  

Self-locking usually occurs in planetary trains with two external [20 and 21] or two 
internal [2] meshes, in the so-called “positive” [2 and 3] trains. Fig. 8 shows a coupled gear 
train with a possibility of self-locking, although it is composed of two simple planetary trains 
(with external and internal meshes, i.e. the so-called “negative” [2 and 3] trains) which are 
free from self-locking.  

Self-locking occurs when the values of the torque ratios tI and tII of the component trains 
I and II are close. The train has internal power circulation and the direction of the circulating 
power (as well as the rolling powers) changes according to which of the torque ratios tI and tII 
is greater. The torque method facilitates the orientation in this complex situation. 

Fig. 9 shows the ideal and real (in rectangles) torques and the directions of the power 
flows when tI < tII. The direction of the internal power for this case is shown in Fig. 8. 

Check of the torques (7): 

0i A B CT T T T    ; 4 0.2 4.2 0     

0i A B CT T T T       ; 4.124 0.05 4.074 0     

Speed ratio (2): 
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
 

shows that the train operates as a multiplier.  

The torque transformation 

0.05
0.0121
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B
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T
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   


 

for the efficiency (4) yields a negative value 
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, 

i.e. self-locking occurs. 
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Fig. 8  Coupled two-carrier planetary 
gear train with self-locking 
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In this case there is a circulating power BlP . The determination of its magnitude is based 

on the real torques S 5.124T     and A 4.124T    . The first torque ST   acts on the carrier SI 

of the first component train, with only the circulating power BlP  flowing through it (Fig. 9). 

The second torque AT   acts on the input shaft through which the input power AP   flows. The 

calculation is also based on the ratio of the angular velocities SI  and A  of the 

corresponding elements. This ratio depends on the speed ratio 
1

20
i   . As the angular 

velocity SI  and the angular velocity B  of the output shaft are identical ( SI B  ), one can 

write: 

1 1
20

1
20

SI B

A A i
 
 

    


 

The same is valid for the ratio of the powers: 

 · 1 5.124
· 20 25

4.124·
Bl SI SI SI

A A A A

P T T
iP T T





  
    

  
 

It is obvious that the circulating power BlP  is 25 times the input power AP   (Fig. 9). 

 
Fig. 9  Torques and power flows of the gear train from Fig. 8 operating as a multiplier  

Of course, in the case of a self-locking train which cannot move (as in this case) the 
term “circulating power” is relative. 

4.2 The train operates as a reducer 

Fig. 10 shows the determined ideal and real torques as well as the directions of the 
power flows for the same gear train (Fig. 8) operating as a reducer. 

The magnitude of the ideal torques is not changed. The change is in the directions of the 
power flows, both absolute and rolling, and thus in the magnitudes of the real torques. 

Check of the torques (7): 

0i A B CT T T T    ; 0.2 4 4.2 0    

0i A B CT T T T       ; 0.45 3.88 4.33 0     
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Speed ratio (2): 

4
20

0.2
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Ti
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

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shows that the train operates as a reducer. 

The torque transformation 
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for the efficiency (4) yields a positive value 
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Fig. 10  Torques and power flows of the gear train from Fig. 8 operating as a reducer 

Despite being rather low, this efficiency is not negative as in the case of the train 
operating as a multiplier. Here the ratio of the circulating power BlP  to the real input power 

AP   is better and it is determined in a way similar to the previous case with the real torque 

SI 4.88T     and the real input torque А 0.45T     by the following relation (considering 

A SI  ): 

· 4.88
11
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A A A A
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P T T
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It is obvious that when the train operates as a reducer (Fig. 10), the circulating power BlP  is 

much lower than when the train operates as a multiplier (Fig. 9) - about 2 times (25:11). Thus, 
the losses in the train are smaller, which explains the higher efficiency. 

The relations obtained by the torque method allow the designer to achieve his desired variant 
(by altering the torque ratios tI and tII of the two component trains): 

 high-efficiency reducer and multiplier with no self-locking or 

 reducer with lower efficiency and self-locking multiplier (as in the example case). 
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5. Conclusion 

Use of the torque method in the analysis of complex compound multi-carrier planetary 
gear trains allows the accomplishment of more objectives than the use of other methods: 

1. Accomplishment of the initial objectives regarding the speed ratio, internal power 
flows (division and circulation) and efficiency; 

2. The method combines accuracy and clarity which are separately presented in the 
methods of Willis and Kutzbach; 

3. Conditions for equilibrium of the ideal and real torques enable an easy verification of 
the accuracy of calculations; 

4. The method is convenient for the optimization analysis of compound planetary gear 
trains [22]. By varying tI and tII, one can look for their best combination for obtaining 
maximum efficiency, minimal overall dimensions, backlash, etc. Multi-factor 
optimization can also be pursued [23 and 24]; 

5. Due to its clarity and easy application, the method is appropriate for industrial 
application (i.e. for engineers) as well as for educational purposes (for students). 

NOMENCLATURE 

Symbols: Subscripts: 

i  – speed ratio; 1 – sun gear of first component train 

P  – transmitted power; 2 – planet (satellite) of first component 
train 

BlP  – circulating (blind) power 3 – ring gear of first component train 

WP  – rolling (relative) power in the simple 
planetary train; 

4 – sun gear of second component train 

T  – ideal torque; 5 – planet (satellite) of second 
component train 

T   – real torque; 6 – ring gear of second component train 

t  – torque ratio; I – first component train 

z  – number of teeth; II – second component train 

  – efficiency; A – input shaft 

0  – basic (internal) efficiency of the 
component simple planetary gear train; 

B – output shaft 

  – torque transformation; C – fixed shaft 

0  – coefficient of internal losses of the 
component simple planetary gear train; 

S – carrier 

  – angular velocity; rel  – relative 
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