# Metrical relations in barycentric coordinates 

Vladimir Volenec*


#### Abstract

Let $\Delta$ be the area of the fundamental triangle $A B C$ of barycentric coordinates and let $\alpha=\cot A, \beta=\cot B, \gamma=\cot C$. The vectors $\boldsymbol{v}_{i}=\left[x_{i}, y_{i}, z_{i}\right](i=1,2)$ have the scalar product $2 \Delta\left(\alpha x_{1} x_{2}+\right.$ $\beta y_{1} y_{2}+\gamma z_{1} z_{2}$ ). This fact implies all important formulas about metrical relations of points and lines. The main and probably new results are Theorems 1 and 8.


Key words: barycentric coordinates
AMS subject classifications: 51 N 20
Received December 20, 2002
Accepted April 2, 2003

Let $A B C$ be a given triangle with the sidelengths $a=|B C|, b=|C A|, c=|A B|$, the measures $A, B, C$ of the opposite angles and the area $\Delta$. For any point $P$ let $\boldsymbol{P}$ be the radiusvector of this point with respect to any origin. Then we have $\overrightarrow{P Q}=\boldsymbol{Q}-\boldsymbol{P}$. There are uniquely determined numbers $y, z \in \mathbb{R}$ so that $\overrightarrow{A P}=y \cdot \overrightarrow{A B}+z \cdot \overrightarrow{A C}$, i.e. $\boldsymbol{P}-\boldsymbol{A}=y(\boldsymbol{B}-\boldsymbol{A})+z(\boldsymbol{C}-\boldsymbol{A})$. If we put $x=1-y-z$, i.e.

$$
\begin{equation*}
x+y+z=1 \tag{1}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\boldsymbol{P}=x \boldsymbol{A}+y \boldsymbol{B}+z \boldsymbol{C} \tag{2}
\end{equation*}
$$

Numbers $x, y, z$, such that (1) and (2) are valid, are uniquely determined by point $P$ and triangle $A B C$, i.e. these numbers do not depend on the choice of the origin. We say that $x, y, z$, are the absolute barycentric coordinates of point $P$ with respect to triangle $A B C$ and write $P=(x, y, z)$. Obviously $A=(1,0,0), B=(0,1,0)$, $C=(0,0,1)$. Actually, point $P$ is the barycenter of the mass point system of points $A, B, C$ with masses $x, y, z$, respectively. The centroid of triangle $A B C$ is point $G=(1 / 3,1 / 3,1 / 3)$.

Any three numbers $x^{\prime}, y^{\prime}, z^{\prime}$ proportional to the coordinates $x, y, z$ are said to be relative barycentric coordinates of point $P$ with respect to triangle $A B C$ and we write $P=\left(x^{\prime}: y^{\prime}: z^{\prime}\right)$. Here we have $x^{\prime}+y^{\prime}+z^{\prime} \neq 0$. Point $P$ is uniquely

[^0]determined by its relative barycentric coordinates $x^{\prime}, y^{\prime}, z^{\prime}$ because its absolute barycentric coordinates are
$$
x=\frac{x^{\prime}}{x^{\prime}+y^{\prime}+z^{\prime}}, \quad y=\frac{y^{\prime}}{x^{\prime}+y^{\prime}+z^{\prime}}, \quad z=\frac{z^{\prime}}{x^{\prime}+y^{\prime}+z^{\prime}} .
$$

If point $P$ divides two different points $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ in the ratio $\left(P_{1} P_{2} P\right)=\lambda$, i.e. if $\overrightarrow{P_{1} P}=\lambda \cdot \overrightarrow{P_{2} P}$, then from $\boldsymbol{P}-\boldsymbol{P}_{1}=\lambda\left(\boldsymbol{P}-\boldsymbol{P}_{2}\right)$ with $\boldsymbol{P}_{i}=x_{i} \boldsymbol{A}+y_{i} \boldsymbol{B}+z_{i} \boldsymbol{C}(i=1,2)$ we obtain

$$
(1-\lambda) \boldsymbol{P}=\left(x_{1}-\lambda x_{2}\right) \boldsymbol{A}+\left(y_{1}-\lambda y_{2}\right) \boldsymbol{B}+\left(z_{1}-\lambda z_{2}\right) \boldsymbol{C}
$$

Because of $x_{i}+y_{i}+z_{i}=1(i=1,2)$ we have

$$
\frac{1}{1-\lambda}\left(x_{1}-\lambda x_{2}+y_{1}-\lambda y_{2}+z_{1}-\lambda z_{2}\right)=1
$$

and therefore

$$
\begin{gather*}
P=\left(\frac{x_{1}-\lambda x_{2}}{1-\lambda}, \frac{y_{1}-\lambda y_{2}}{1-\lambda}, \frac{z_{1}-\lambda z_{2}}{1-\lambda}\right)  \tag{3}\\
P=\left(\left(x_{1}-\lambda x_{2}\right):\left(y_{1}-\lambda y_{2}\right):\left(z_{1}-\lambda z_{2}\right)\right) . \tag{4}
\end{gather*}
$$

Specially, with $\lambda=-1$, point $P$ is the midpoint of the points $P_{1}$ and $P_{2}$ with

$$
P=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)
$$

i.e. $P=\frac{1}{2} P_{1}+\frac{1}{2} P_{2}$. Sides $\overline{B C}, \overline{C A}, \overline{A B}$ have the midpoints

$$
\left(0, \frac{1}{2}, \frac{1}{2}\right)=(0: 1: 1),\left(\frac{1}{2}, 0, \frac{1}{2}\right)=(1: 0: 1),\left(\frac{1}{2}, \frac{1}{2}, 0\right)=(1: 1: 0)
$$

If $\lambda=1$, then equality (3) has no sense, but equality (4) obtains the form

$$
\begin{equation*}
P=\left(\left(x_{1}-x_{2}\right):\left(y_{1}-y_{2}\right):\left(z_{1}-z_{2}\right)\right) \tag{5}
\end{equation*}
$$

and represents the point at infinity of the straight line $P_{1} P_{2}$. For this point $P$ we have equality $\left(P_{1} P_{2} P\right)=1$ and the relative coordinates in (5) have the zero sum. Therefore, this point does not have the absolute coordinates. Because of $P_{1} \neq P_{2}$ point $P$ at infinity cannot be of the form $(0: 0: 0)$. Specially, straight lines $B C, C A$, $A B$ have the points at infinity $(0: 1:-1),(-1: 0: 1),(1:-1: 0)$, respectively.

For any vector $\boldsymbol{v}$ numbers $y$ and $z$ are uniquely determined such that $\boldsymbol{v}=$ $y \cdot \overrightarrow{A B}+z \cdot \overrightarrow{A C}$, i.e. $\boldsymbol{v}=y(\boldsymbol{B}-\boldsymbol{A})+z(\boldsymbol{C}-\boldsymbol{A})$. If we put $x=-(y+z)$, then we have

$$
\begin{equation*}
\boldsymbol{v}=x \boldsymbol{A}+y \boldsymbol{B}+z \boldsymbol{C}, x+y+z=0 \tag{6}
\end{equation*}
$$

Numbers $x, y, z$ are uniquely determined and are said to be the barycentric coordinates of vector $\boldsymbol{v}$ with respect to triangle $A B C$. We write $\boldsymbol{v}=[x, y, z]$. For two points $P_{i}=\left(x_{i}, y_{i}, z_{i}\right)(i=1,2)$ we have $\boldsymbol{P}_{i}=x_{i} \boldsymbol{A}+y_{i} \boldsymbol{B}+z_{i} \boldsymbol{C}$ and therefore

$$
\overrightarrow{P_{1} P_{2}}=\boldsymbol{P}_{2}-\boldsymbol{P}_{1}=\left(x_{2}-x_{1}\right) \boldsymbol{A}+\left(y_{2}-y_{1}\right) \boldsymbol{B}+\left(z_{2}-z_{1}\right) \boldsymbol{C}=\left[x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right] .
$$

Specially, $\overrightarrow{B C}=[0,-1,1], \overrightarrow{C A}=[1,0,-1], \overrightarrow{A B}=[-1,1,0]$. We conclude that the (relative) barycentric coordinates of the point at infinity of a straight line are proportional to the barycentric coordinates of any vector parallel to this line. Therefore, parallel lines have the same point at infinity.

The formulas for metrical relations can be written in a more compact form if we use numbers

$$
\begin{equation*}
\alpha=\cot A, \quad \beta=\cot B, \quad \gamma=\cot C \tag{7}
\end{equation*}
$$

We have e.g.

$$
b^{2}+c^{2}-a^{2}=2 b c \cos A=2 b c \sin A \cot A=4 \Delta \alpha
$$

and therefore

$$
b^{2}+c^{2}-a^{2}=4 \Delta \alpha, \quad c^{2}+a^{2}-b^{2}=4 \Delta \beta, \quad a^{2}+b^{2}-c^{2}=4 \Delta \gamma
$$

Adding, we obtain

$$
\begin{equation*}
a^{2}=2 \Delta(\beta+\gamma), \quad b^{2}=2 \Delta(\gamma+\alpha), \quad c^{2}=2 \Delta(\alpha+\beta) \tag{8}
\end{equation*}
$$

Now, let us prove the most important theorem about metrical relations in barycentric coordinates.

Theorem 1. The scalar product of two vectors $\boldsymbol{v}_{i}=\left[x_{i}, y_{i}, z_{i}\right](i=1,2)$ is given by

$$
\boldsymbol{v}_{1} \cdot \boldsymbol{v}_{2}=2 \Delta\left(\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}\right),
$$

where $\Delta$ is the area of the fundamental triangle $A B C$ and numbers $\alpha, \beta, \gamma$ are given by (7).

Proof. Squaring the equality $\overrightarrow{A B}=\boldsymbol{B}-\boldsymbol{A}$ we obtain $c^{2}=\boldsymbol{A}^{2}+\boldsymbol{B}^{2}-2 \boldsymbol{A} \cdot \boldsymbol{B}$, i.e. $2 \boldsymbol{A} \cdot \boldsymbol{B}=\boldsymbol{A}^{2}+\boldsymbol{B}^{2}-c^{2}$ and analogously $2 \boldsymbol{A} \cdot \boldsymbol{C}=\boldsymbol{A}^{2}+\boldsymbol{C}^{2}-b^{2}$ and $2 \boldsymbol{B} \cdot \boldsymbol{C}=$ $\boldsymbol{B}^{2}+\boldsymbol{C}^{2}-a^{2}$. Owing to the equalities $x_{i}+y_{i}+z_{i}=0(i=1,2)$ and (8) we obtain successively

$$
\begin{aligned}
2 \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{2}= & 2\left(x_{1} \boldsymbol{A}+y_{1} \boldsymbol{B}+z_{1} \boldsymbol{C}\right)\left(x_{2} \boldsymbol{A}+y_{2} \boldsymbol{B}+z_{2} \boldsymbol{C}\right) \\
= & 2 x_{1} x_{2} \boldsymbol{A}^{2}+2 y_{1} y_{2} \boldsymbol{B}^{2}+2 z_{1} z_{2} \boldsymbol{C}^{2}+\left(x_{1} y_{2}+y_{1} x_{2}\right)\left(\boldsymbol{A}^{2}+\boldsymbol{B}^{2}-c^{2}\right) \\
& +\left(x_{1} z_{2}+z_{1} x_{2}\right)\left(\boldsymbol{A}^{2}+\boldsymbol{C}^{2}-b^{2}\right)+\left(y_{1} z_{2}+z_{1} y_{2}\right)\left(\boldsymbol{B}^{2}+\boldsymbol{C}^{2}-a^{2}\right) \\
= & \left(x_{1}+y_{1}+z_{1}\right)\left(x_{2} \boldsymbol{A}^{2}+y_{2} \boldsymbol{B}^{2}+z_{2} \boldsymbol{C}^{2}\right) \\
& +\left(x_{2}+y_{2}+z_{2}\right)\left(x_{1} \boldsymbol{A}^{2}+y_{1} \boldsymbol{B}^{2}+z_{1} \boldsymbol{C}^{2}\right) \\
& -a^{2}\left(y_{1} z_{2}+z_{1} y_{2}\right)-b^{2}\left(z_{1} x_{2}+x_{1} z_{2}\right)-c^{2}\left(x_{1} y_{2}+y_{1} x_{2}\right) \\
= & -2 \Delta\left[(\beta+\gamma)\left(y_{1} z_{2}+z_{1} y_{2}\right)+(\gamma+\alpha)\left(z_{1} x_{2}+x_{1} z_{2}\right)\right. \\
& \left.+(\alpha+\beta)\left(x_{1} y_{2}+y_{1} x_{2}\right)\right] \\
= & -2 \Delta\left\{\alpha\left[x_{1}\left(y_{2}+z_{2}\right)+\left(y_{1}+z_{1}\right) x_{2}\right]+\beta\left[y_{1}\left(z_{2}+x_{2}\right)+\left(z_{1}+x_{1}\right) y_{2}\right]\right. \\
& \left.+\gamma\left[z_{1}\left(x_{2}+y_{2}\right)+\left(x_{1}+y_{1}\right) z_{2}\right]\right\} \\
= & -2 \Delta\left[\alpha\left(-2 x_{1} x_{2}\right)+\beta\left(-2 y_{1} y_{2}\right)+\gamma\left(-2 z_{1} z_{2}\right)\right] \\
= & 4 \Delta\left(\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}\right) .
\end{aligned}
$$

Corollary 1. The length of the vector $\boldsymbol{v}=[x, y, z]$ is given by

$$
|\boldsymbol{v}|^{2}=2 \Delta\left(\alpha x^{2}+\beta y^{2}+\gamma z^{2}\right)
$$

Corollary 2. The angle between two vectors $\boldsymbol{v}_{i}=\left[x_{i}, y_{i}, z_{i}\right](i=1,2)$ is given by

$$
\cos \angle\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right)=\frac{1}{\Omega_{1} \Omega_{2}}\left(\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}\right)
$$

where

$$
\Omega_{i}^{2}=\alpha x_{i}^{2}+\beta y_{i}^{2}+\gamma z_{i}^{2}(i=1,2)
$$

Corollary 3. Two points $P_{i}=\left(x_{i}, y_{i}, z_{i}\right)(i=1,2)$ have the distance $\left|P_{1} P_{2}\right|$ given by

$$
\left|P_{1} P_{2}\right|^{2}=2 \Delta\left[\alpha\left(x_{1}-x_{2}\right)^{2}+\beta\left(y_{1}-y_{2}\right)^{2}+\gamma\left(z_{1}-z_{2}\right)^{2}\right]
$$

Specially, with $P_{1}=P=(x, y, z)$ and $P_{2}=A=(1,0,0)$ or $P_{2}=B=(0,1,0)$ or $P_{2}=C=(0,0,1)$ we obtain further:

Corollary 4. For any point $P=(x, y, z)$ we have equalities

$$
\begin{aligned}
& |A P|=2 \Delta\left[\alpha(1-x)^{2}+\beta y^{2}+\gamma z^{2}\right] \\
& |B P|=2 \Delta\left[\alpha x^{2}+\beta(1-y)^{2}+\gamma z^{2}\right] \\
& |C P|=2 \Delta\left[\alpha x^{2}+\beta y^{2}+\gamma(1-z)^{2}\right]
\end{aligned}
$$

Theorem 2. For the point $P=(x, y, z)$ and any point $S$ we have

$$
|S P|^{2}=x \cdot|S A|^{2}+y \cdot|S B|^{2}+z \cdot|S C|^{2}-a^{2} y z-b^{2} z x-c^{2} x y
$$

Proof. Let $S$ be the origin. Squaring the equality $\boldsymbol{P}=x \boldsymbol{A}+y \boldsymbol{B}+z \boldsymbol{C}$ and using the equalities from the proof of Theorem 1 we get

$$
\begin{aligned}
|S P|^{2}= & \boldsymbol{P}^{2}=x^{2} \boldsymbol{A}^{2}+y^{2} \boldsymbol{B}^{2}+z^{2} \boldsymbol{C}^{2}+y z\left(\boldsymbol{B}^{2}+\boldsymbol{C}^{2}-a^{2}\right) \\
& +z x\left(\boldsymbol{C}^{2}+\boldsymbol{A}^{2}-b^{2}\right)+x y\left(\boldsymbol{A}^{2}+\boldsymbol{B}^{2}-c^{2}\right) \\
= & (x+y+z)\left(x \boldsymbol{A}^{2}+y \boldsymbol{B}^{2}+z \boldsymbol{C}^{2}\right)-a^{2} y z-b^{2} z y-c^{2} x y
\end{aligned}
$$

and because of $x+y+z=1$ the statement of Theorem 2 follows.
With $P=G=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ we obtain:
Corollary 5 [Leibniz]. For centroid $G$ of triangle $A B C$ and for any point $P$ we have

$$
3 \cdot|S G|^{2}=|S A|^{2}+|S B|^{2}+|S C|^{2}-\frac{1}{3}\left(a^{2}+b^{2}+c^{2}\right)
$$

If $S$ is the circumcenter $O$ of triangle $A B C$, then $|O A|=|O B|=|O C|=R$ and by (8) it follows:

Corollary 6. For any point $P=(x, y, z)$ and the circumscribed circle $(O, R)$ of triangle $A B C$ the equality

$$
|O P|^{2}=R^{2}-a^{2} y z-b^{2} z x-c^{2} x y
$$

holds, i.e. $|O P|^{2}=R^{2}-2 \Delta \Pi$, where

$$
\begin{equation*}
\Pi=(\beta+\gamma) y z+(\gamma+\alpha) z x+(\alpha+\beta) x y=\frac{1}{2 \Delta}\left(a^{2} y z+b^{2} z x+c^{2} x y\right) \tag{9}
\end{equation*}
$$

With $S=P$ Theorem 2 implies:
Corollary 7. For the point $P=(x, y, z)$ the equality

$$
x \cdot|A P|^{2}+y \cdot|B P|^{2}+z^{2}|C P|^{2}=2 \Delta \Pi
$$

holds, where the number $\Pi$ is given by (9).
The equalities from Corollary 4 can be written in another form because of (9), (8) and the equality $x+y+z=1$. We obtain e.g.

$$
\begin{aligned}
\frac{1}{2 \Delta}|A P|^{2} & =\alpha(1-x)^{2}+\beta y^{2}+\gamma z^{2} \\
& =\alpha-2 \alpha x+\alpha x(1-y-z)+\beta y(1-z-x)+\gamma z(1-x-y) \\
& =\alpha-\alpha x+\beta y+\gamma z-(\beta+\gamma) y z-(\gamma+\alpha) z x-(\alpha+\beta) x y \\
& =\alpha(y+z)+\beta y+\gamma z-\Pi=\frac{1}{x}[(\gamma+\alpha) z x+(\alpha+\beta) x y]-\Pi \\
& =\frac{1}{x}[\Pi-(\beta+\gamma) y z]-\Pi=\frac{1}{x}[\Pi(1-x)-(\beta+\gamma) y z] \\
& =\frac{1}{x}\left[\Pi(y+z)-\frac{a^{2}}{2 \Delta} y z\right] .
\end{aligned}
$$

Therefore:
Corollary 8. For any point $P=(x, y, z)$ the equalities

$$
\begin{aligned}
& x \cdot|A P|^{2}=2 \Delta \Pi(y+z)-a^{2} y z, \\
& y \cdot|B P|^{2}=2 \Delta \Pi(z+x)-b^{2} z x, \\
& z \cdot|C P|^{2}=2 \Delta \Pi(x+y)-c^{2} x y
\end{aligned}
$$

hold, where number $\Pi$ is given by (9).
For any point $P=(x, y, z)$ on the circumcircle $(O, R)$ of triangle $A B C$ we have $|O P|=R$ and because of Corollary 6 it follows $\Pi=0$. Therefore, the equalities of Corollary 8 have now the form

$$
\begin{equation*}
|A P|^{2}=-a^{2} \frac{y z}{x}, \quad|B P|^{2}=-b^{2} \frac{z x}{y}, \quad|C P|^{2}=-c^{2} \frac{x y}{z} \tag{10}
\end{equation*}
$$

We have:
Corollary 9. The circumcircle of triangle $A B C$ has the equation

$$
(\beta+\gamma) y z+(\gamma+\alpha) z x+(\alpha+\beta) x y=0 \quad \text { or } \quad a^{2} y z+b^{2} z x+c^{2} x y=0
$$

For any point $P=(x, y, z)$ (except $A, B, C)$ on this circle equalities (10) hold.
Point $P=(x, y, z)$ is collinear with two different points $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ iff there is a number $\lambda \in \mathbb{R}$ such that $\overrightarrow{P_{1} P}=\lambda \overrightarrow{P_{1} P_{2}}$, i.e. $\boldsymbol{P}-\boldsymbol{P}_{1}=$ $\lambda\left(\boldsymbol{P}_{2}-\boldsymbol{P}_{1}\right)$ or $\boldsymbol{P}=(1-\lambda) \boldsymbol{P}_{1}+\lambda \boldsymbol{P}_{2}$. With $\kappa=1-\lambda$ we conclude that point $P$ lies on straight line $P_{1} P_{2}$ iff two numbers $\kappa$ and $\lambda$ exist such that $\kappa+\lambda=1$ and

$$
\begin{equation*}
x=\kappa x_{1}+\lambda x_{2}, \quad y=\kappa y_{1}+\lambda y_{2}, \quad z=\kappa z_{1}+\lambda z_{2} . \tag{11}
\end{equation*}
$$

Numbers (11) satisfy the equation

$$
\begin{equation*}
X x+Y y+Z z=0, \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
X=k\left(y_{1} z_{2}-z_{1} y_{2}\right), \quad Y=k\left(z_{1} x_{2}-x_{1} z_{2}\right), \quad Z=k\left(x_{1} y_{2}-y_{1} x_{2}\right) \tag{13}
\end{equation*}
$$

and $k \in \mathbb{R} \backslash\{0\}$. Indeed, we obtain an obvious equality

$$
\left(y_{1} z_{2}-z_{1} y_{2}\right)\left(\kappa x_{1}+\lambda x_{2}\right)+\left(z_{1} x_{2}-x_{1} z_{2}\right)\left(\kappa y_{1}+\lambda y_{2}\right)+\left(x_{1} y_{2}-y_{1} x_{2}\right)\left(\kappa z_{1}+\lambda z_{2}\right)=0 .
$$

Conversely, if numbers $x, y, z$ satisfy equation (12), where (13) holds, then this equation (12) can be written in the form

$$
\left|\begin{array}{ccc}
x & y & z  \tag{14}\\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|=0
$$

Therefore, there are the numbers $\kappa$ and $\lambda$ such that equalities (11) are valid. Adding these equalities it follows $\kappa+\lambda=1$ because of $x+y+z=1$ and $x_{i}+y_{i}+z_{i}=1$ ( $i=1,2$ ). We have the following theorem.

Theorem 3. Point $P=(x, y, z)$ is collinear with points $P_{1}=\left(x_{1}, y_{1}, z_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}, z_{2}\right)$ iff equality (12) holds, where numbers $X, Y, Z$ are given by (13), where $k \in \mathbb{R} \backslash\{0\}$.

Theorem 3 implies that the coordinates of any point of the given straight line $\mathcal{P}$ satisfy an equation of the form (12), the equation of this line $\mathcal{P}$, where numbers $X, Y, Z$ are determined up to proportionality. These numbers are baricentric coordinates of line $\mathcal{P}$ and we write $\mathcal{P}=(X: Y: Z)$. As $P_{1} \neq P_{2}$, so (13) implies $(X: Y: Z) \neq(0: 0: 0)$. The equality (12) is the necessary and sufficient condition for the incidency of point $P=(x: y: z)$ and line $\mathcal{P}=(X: Y: Z)$.

The equality $x+y+z=0$ characterizes the points at infinity. Therefore, all these points lie on a line $\mathcal{N}=(1: 1: 1)$, the line at infinity.

Corollary 10. Three points $P_{i}=\left(x_{i}, y_{i}, z_{i}\right)(i=1,2,3)$ are collinear iff

$$
\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right|=0
$$

Specially, two points $P_{i}=\left(x_{i}: y_{i}: z_{i}\right)(i=1,2)$ are collinear with point $A$ iff $y_{1}$ : $z_{1}=y_{2}: z_{2}$, with point $B$ iff $z_{1}: x_{1}=z_{2}: x_{2}$ and with point $C$ iff $x_{1}: y_{1}=x_{2}: y_{2}$.

Corollary 11. The join of two different points $P_{i}=\left(x_{i}: y_{i}: z_{i}\right)$ is the straight line

$$
P_{1} P_{2}=\left(\left|\begin{array}{ll}
y_{1} & z_{1} \\
y_{2} & z_{2}
\end{array}\right|:\left|\begin{array}{ll}
z_{1} & x_{1} \\
z_{2} & x_{2}
\end{array}\right|:\left|\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right|\right)
$$

As we have $A=(1: 0: 0), B=(0: 1: 0), C=(0: 0: 1)$, so by Corollary 11 it follows $B C=(1: 0: 0), C A=(0: 1: 0), A B=(0: 0: 1)$ and these three lines have the equations $x=0, y=0, z=0$ respectively. If $P=(x: y: z)$, then $A P=(0:-z: y), B P=(z: 0:-x), C P=(-y: x: 0)$.

To be honest, we must say that the statement of Corollary 10 in the proof of Theorem 3 is proved only in the case of finite points $P_{1}, P_{2}$ and $P_{3}=P$. Three points $P_{1}, P_{2}, P$ at infinity obviously satisfy equation (14) because of $x+y+z=0$ and $x_{i}+y_{i}+z_{i}=0(i=1,2)$. Conversely, from (14) and $x_{i}+y_{i}+z_{i}=0(i=1,2)$ if follows $x+y+z=0$. We must prove the statement for the finite points $P_{1}, P_{2}$ and point $P$ at infinity. The point at infinity of line $P_{1} P_{2}$ is the point

$$
(x: y: z)=\left(\left(x_{1}-x_{2}\right):\left(y_{1}-y_{2}\right):\left(z_{1}-z_{2}\right)\right)
$$

and it obviously satisfies equation (14). Conversely, let point $P=(x: y: z)$ at infinity satisfy equation (14). Then there are two numbers $\kappa$ and $\lambda$ such that (11) holds. Adding these equations we obtain $0=\kappa+\lambda$ because of $x+y+z=0$ and $x_{i}+y_{i}+z_{i}=1(i=1,2)$. Therefore, $\lambda=-\kappa$ and equalities (11) obtain the form $x=\kappa\left(x_{1}-x_{2}\right), y=\kappa\left(y_{1}-y_{2}\right), z=\kappa\left(z_{1}-z_{2}\right)$, i.e. $P$ is the point at infinity of line $P_{1} P_{2}$.

From Corollary 10 it follows that point $P$ is collinear with two different points $P_{1}$ and $P_{2}$ iff there are two numbers $\mu$ and $\nu$ such that $x=\mu x_{1}+\nu x_{2}, y=\mu y_{1}+\nu y_{2}$, $z=\mu z_{1}+\nu z_{2}$ for the coordinates of these points. We shall write $P=\mu P_{1}+\nu P_{2}$ in this case.

Theorem 4. Let points $P_{i}=\left(x_{i}: y_{i}: z_{i}\right)(i=1,2)$ have the sums $s_{i}=$ $x_{i}+y_{i}+z_{i}$ of coordinates. If point $P=(x: y: z)$ satisfies the equality

$$
\begin{equation*}
P=\mu P_{1}+\nu P_{2}, \tag{15}
\end{equation*}
$$

then these three points have the ratio

$$
\begin{equation*}
\left(P_{1} P_{2} P\right)=-\frac{\nu}{\mu} \cdot \frac{s_{2}}{s_{1}} . \tag{16}
\end{equation*}
$$

Proof. We pass onto absolute coordinates. Then the right-hand side of (15) is of the form $\mu s_{1} P_{1}+\nu s_{2} P_{2}$ and because of equality of coordinate sums of both sides we must take $\left(\mu s_{1}+\nu s_{2}\right) P$ on the left-hand side of (15). The obtained equality has the vector form $\left(\mu s_{1}+\nu s_{2}\right) \boldsymbol{P}=\mu s_{1} \boldsymbol{P}_{1}+\nu s_{2} \boldsymbol{P}_{2}$, i.e. $\mu s_{1}\left(\boldsymbol{P}-\boldsymbol{P}_{1}\right)=-\nu s_{2}\left(\boldsymbol{P}-\boldsymbol{P}_{2}\right)$ or $\mu s_{1} \cdot \overrightarrow{P_{1} P}=-\nu s_{2} \cdot \overrightarrow{P_{2} P}$. The last equality is equivalent to (16).

For the point $A=(1,0,0)$, the midpoint $D=(0: 1: 1)$ of side $\overline{B C}$ and for centroid $G=(1: 1: 1)$ of triangle $A B C$ we have the equality $G=A+D$ and Theorem 4 implies the equality $(A D G)=-2$.

Equality (13) is symmetrical in variables $x, y, z$ and $X, Y, Z$. Therefore, for the sets of points and lines (finite ones and at infinity) there holds the principle of duality. The following theorem is dual of Theorem 3.

Theorem 5. Straight line $\mathcal{P}=(X: Y: Z)$ is incident with the intersection of two different lines $\mathcal{P}_{1}=\left(X_{1}: Y_{1}: Z_{1}\right)$ and $\mathcal{P}_{2}=\left(X_{2}: Y_{2}: Z_{2}\right)$ iff the equality (12) holds, where numbers $x, y, z$ are given by

$$
x=K\left(Y_{1} Z_{2}-Z_{1} Y_{2}\right), \quad y=K\left(Z_{1} X_{2}-X_{1} Z_{2}\right), \quad z=K\left(X_{1} Y_{2}-Y_{1} X_{2}\right)
$$

where $K \in \mathbb{R} \backslash\{0\}$.
Corollary 12. Three straight lines $\mathcal{P}_{i}=\left(X_{i}: Y_{i}: Z_{i}\right)(i=1,2,3)$ are concurrent iff

$$
\left|\begin{array}{lll}
X_{1} & Y_{1} & Z_{1} \\
X_{2} & Y_{2} & Z_{2} \\
X_{3} & Y_{3} & Z_{3}
\end{array}\right|=0
$$

Corollary 13. The intersection of two different lines $\mathcal{P}_{i}=\left(X_{i}: Y_{i}: Z_{i}\right)$ $(i=1,2)$ is the point

$$
\mathcal{P}_{1} \cap \mathcal{P}_{2}=\left(\left|\begin{array}{ll}
Y_{1} & Z_{1} \\
Y_{2} & Z_{2}
\end{array}\right|:\left|\begin{array}{ll}
Z_{1} & X_{1} \\
Z_{2} & X_{2}
\end{array}\right|:\left|\begin{array}{ll}
X_{1} & Y_{1} \\
X_{2} & Y_{2}
\end{array}\right|\right)
$$

If $P=(x: y: z)$, then we have $A P=(0:-z: y), B C=(1: 0: 0)$ and therefore $A P \cap B C=(0: y: z)$. Analogously $B P \cap C A=(x: 0: z)$ and $C P \cap A B=(x: y: 0)$.

The point at infinity of a line is its intersection with the line $\mathcal{N}=(1: 1: 1)$ at infinity. Hence, Corollary 13 implies:

Corollary 14. The line $\mathcal{P}=(X: Y: Z)$ has the point $\mathcal{P} \cap \mathcal{N}=((Y-Z)$ : $(Z-X):(X-Y))$ at infinity.

Two lines are parallel iff they have the same intersection with the line at infinity. Therefore, Corollary 12 implies:

Corollary 15. Lines $\mathcal{P}_{i}=\left(X_{i}: Y_{i}: Z_{i}\right)(i=1,2)$ are parallel iff

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
X_{1} & Y_{1} & Z_{1} \\
X_{2} & Y_{2} & Z_{2}
\end{array}\right|=0
$$

Any line parallel to the line $(X: Y: Z)$ has a form $((X+K):(Y+K):(Z+K))$ for some $K \in \mathbb{R}$.

From Theorem 1 we obtain:
Corollary 16. Two vectors $\boldsymbol{v}_{i}=\left[x_{i}, y_{i}, z_{i}\right](i=1,2)$ are ortogonal iff

$$
\begin{equation*}
\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}=0 \tag{17}
\end{equation*}
$$

where numbers $\alpha, \beta$, $\gamma$ are given by (7). Equality (17) is the condition for ortogonality of two lines with the points $\left(x_{i}: y_{i}: z_{i}\right)(i=1,2)$ at infinity.

Theorem 6. The lines ortogonal to the line with the point $(x: y: z)$ at infinity (where $x+y+z=0$ ) have the point at infinity

$$
\begin{equation*}
((\beta y-\gamma z):(\gamma z-\alpha x):(\alpha x-\beta y)) \tag{18}
\end{equation*}
$$

Proof. Point (18) is obviously a point at infinity and the ortogonality follows by Corollary 16 because of $\alpha x(\beta y-\gamma z)+\beta y(\gamma z-\alpha x)+\gamma z(\alpha x-\beta y)=0$.

Lines $B C, C A, A B$ have the points $(0:-1: 1),(1: 0:-1),(-1: 1: 0)$ at infinity and Theorem 6 implies:

Corollary 17. The lines orthogonal to lines $B C, C A, A B$, respectively, have the points at infinity

$$
\begin{align*}
& N_{a}=(-(\beta+\gamma): \gamma: \beta), \\
& N_{b}=(\gamma:-(\gamma+\alpha): \alpha),  \tag{19}\\
& N_{c}=(\beta: \alpha:-(\alpha+\beta)) .
\end{align*}
$$

The line $(0:-\beta: \gamma)$ passes through point $A=(1: 0: 0)$ and point $N_{a}$ from (19). Therefore, this line is the altitude through vertex $A$. Analogously, the altitudes through vertices $B$ and $C$ are $(\alpha: 0:-\gamma)$ and $(-\alpha: \beta: 0)$. All three altitudes obviously pass through point $H=(\beta \gamma: \gamma \alpha: \alpha \beta)$, the orthocenter of triangle $A B C$. Line $((\beta-\gamma):-(\beta+\gamma):(\beta+\gamma))$ passes through midpoint $(0: 1: 1)$ of side $\overline{B C}$, through point $N_{a}$ from (19) and through the point

$$
\begin{equation*}
O=(\alpha(\beta+\gamma): \beta(\gamma+\alpha): \gamma(\alpha+\beta)) \tag{20}
\end{equation*}
$$

Indeed, we have without common factor $\beta+\gamma$ the equalities $-(\beta-\gamma)-\gamma+\beta=0$ and $\alpha(\beta-\gamma)-\beta(\gamma+\alpha)+\gamma(\alpha+\beta)=0$. Therefore, this line is the perpendicular bisector of side $\overline{B C}$, and for sides $\overline{C A}$ and $\overline{A B}$ we have analogous perpendicular bisectors. We have the following theorem.

Theorem 7. The fundamental triangle $A B C$ has the altitudes $A H=(0:-\beta$ : $\gamma), B H=(\alpha: 0:-\gamma), C H=(-\alpha: \beta: 0)$, the orthocenter $H=(\beta \gamma: \gamma \alpha: \alpha \beta)$, the perpendicular bisectors of the sides are

$$
\begin{aligned}
& ((\beta-\gamma):-(\beta+\gamma):(\beta+\gamma)), \\
& ((\gamma+\alpha):(\gamma-\alpha):-(\gamma+\alpha)), \\
& (-(\alpha+\beta):(\alpha+\beta):(\alpha-\beta))
\end{aligned}
$$

and the circumcenter $O$ of triangle $A B C$ is given by (20).
According to equalities

$$
-\alpha=-\cot A=\cot (\pi-A)=\cot (B+C)=\frac{\cot B \cot C-1}{\cot B+\cot C}=\frac{\beta \gamma-1}{\beta+\gamma}
$$

we have the fundamental identity

$$
\begin{equation*}
\beta \gamma+\gamma \alpha+\alpha \beta=1 \tag{21}
\end{equation*}
$$

Therefore, we have more precise equalities $H=(\beta \gamma, \gamma \alpha, \alpha \beta)$ and

$$
O=\left(\frac{1}{2} \alpha(\beta+\gamma), \frac{1}{2} \beta(\gamma+\alpha), \frac{1}{2} \gamma(\alpha+\beta)\right)=\left(\frac{1}{2}(1-\beta \gamma), \frac{1}{2}(1-\gamma \alpha), \frac{1}{2}(1-\alpha \beta)\right) .
$$

Lines $\mathcal{P}_{i}=\left(X_{i}: Y_{i}: Z_{i}\right)(i=1,2)$ have points $\left(x_{i}: y_{i}: z_{i}\right)$ at infinity, where $x_{i}=Y_{i}-Z_{i}, y_{i}=Z_{i}-X_{i}, z_{i}=X_{i}-Y_{i}$. Vectors $\left[x_{i}, y_{i}, z_{i}\right]$ are parallel with lines $\mathcal{P}_{i}$ for $i=1,2$. Therefore, angle $\vartheta$ of lines $\mathcal{P}_{1}$ and $\mathcal{P}_{2}$ is given by Corollary 2 in the form

$$
\begin{equation*}
\cos \vartheta=\frac{1}{\Omega_{1} \Omega_{2}}\left|\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}\right| \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\Omega_{i}^{2}=\alpha x_{i}^{2}+\beta y_{i}^{2}+\gamma z_{i}^{2} \quad(i=1,2) . \tag{23}
\end{equation*}
$$

We obtain

$$
\begin{aligned}
y_{1} z_{2}-z_{1} y_{2} & =\left(Z_{1}-X_{1}\right)\left(X_{2}-Y_{2}\right)-\left(X_{1}-Y_{1}\right)\left(Z_{2}-X_{2}\right) \\
& =Y_{1} Z_{2}-Z_{1} Y_{2}+Z_{1} X_{2}-X_{1} Z_{2}+X_{1} Y_{2}-Y_{1} X_{2}=k
\end{aligned}
$$

and analogously $z_{1} x_{2}-x_{1} z_{2}=k$ and $x_{1} y_{2}-y_{1} x_{2}=k$, where

$$
k=\left|\begin{array}{ccc}
1 & 1 & 1  \tag{24}\\
X_{1} & Y_{1} & Z_{1} \\
X_{2} & Y_{2} & Z_{2}
\end{array}\right|
$$

Further

$$
\sin ^{2} \vartheta=1-\cos ^{2} \vartheta=\frac{1}{\Omega_{1}^{2} \Omega_{2}^{2}}\left[\Omega_{1}^{2} \Omega_{2}^{2}-\left(\alpha x_{2}+\beta y_{2}+\gamma z_{2}\right)^{2}\right] .
$$

and as we have

$$
\begin{aligned}
& \Omega_{1}^{2} \Omega_{2}^{2}-\left(\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}\right)^{2} \\
& \quad=\left(\alpha x_{1}^{2}+\beta y_{1}^{2}+\gamma z_{1}^{2}\right)\left(\alpha x_{2}^{2}+\beta y_{2}^{2}+\gamma z_{2}^{2}\right)-\left(\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}\right)^{2} \\
& \quad=\beta \gamma\left(y_{1} z_{2}-z_{1} y_{2}\right)^{2}+\gamma \alpha\left(z_{1} x_{2}-x_{1} z_{2}\right)^{2}+\alpha \beta\left(x_{1} y_{2}-y_{1} x_{2}\right)^{2} \\
& \quad=(\beta \gamma+\gamma \alpha+\alpha \beta) k^{2}=k^{2},
\end{aligned}
$$

so it follows

$$
\sin \vartheta=\frac{|k|}{\Omega_{1} \Omega_{2}}
$$

and (22) implies

$$
\cot \vartheta=\frac{1}{|k|}\left|\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}\right|
$$

Substitutions $X_{1} \rightarrow-X_{1}, Y_{1} \rightarrow-Y_{1}, Z_{1} \rightarrow-Z_{1}$ imply substitutions $x_{1} \rightarrow-x_{1}$, $y_{1} \rightarrow-y_{1}, z_{1} \rightarrow-z_{1}$ and $k \rightarrow-k, \alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2} \rightarrow-\left(\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\right.$ $\left.\gamma z_{1} z_{2}\right)$. Therefore, the number $\frac{1}{k}\left(\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}\right)$ does not change the sign. The same is true for substitutions $X_{2} \rightarrow-X_{2}, Y_{2} \rightarrow-Y_{2}, Z_{2} \rightarrow-Z_{2}$. Substitution $1 \leftrightarrow 2$ implies substitutions $k \rightarrow-k$ and $\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2} \rightarrow$ $\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}$. Therefore, the number $\frac{1}{k}\left(\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}\right)$ changes the sign in this case. We conclude that the equalities

$$
\begin{equation*}
\cos \vartheta=\frac{1}{\Omega_{1} \Omega_{2}}\left(\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}\right), \quad \sin \vartheta=\frac{k}{\Omega_{1} \Omega_{2}} \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
\cot \vartheta=\frac{1}{k}\left(\alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}\right) \tag{26}
\end{equation*}
$$

give the oriented angle $\vartheta$ of the ordered pair of oriented lines $\mathcal{P}_{1}$ and $\mathcal{P}_{2}$. We have:
Theorem 8. The oriented angle $\vartheta$ of the oriented lines $\mathcal{P}_{i}=\left(X_{i}: Y_{i}: Z_{i}\right)$ $(i=1,2)$ is given by (25) and (26), where $x_{i}=Y_{i}-Z_{i}, y_{i}=Z_{i}-X_{i}, z_{i}=X_{i}-Y_{i}$ ( $i=1,2$ ) and where numbers $\Omega_{1}, \Omega_{2}, k$ are given by (23) and (24).

For $\mathcal{P}_{1}=B C=(1: 0: 0), \mathcal{P}_{2}=\mathcal{P}(X: Y: Z)$ we have $x_{1}=0, y_{1}=-1, z_{1}=1$, $x_{2}=Y-Z, y_{2}=Z-X, z_{2}=X-Y$ and then by (8)

$$
\begin{aligned}
\Omega_{1} & =\sqrt{\beta+\gamma}=\frac{a}{\sqrt{2 \Delta}}, \quad \Omega_{2}=\Omega=\sqrt{\alpha x^{2}+\beta y^{2}+\gamma z^{2}} \\
k & =Y-Z=x, \quad \alpha x_{1} x_{2}+\beta y_{1} y_{2}+\gamma z_{1} z_{2}=\gamma z-\beta y .
\end{aligned}
$$

Analogous equalities we have for $\mathcal{P}_{1}=C A$ or $\mathcal{P}_{1}=A B$. Therefore, Theorem 8 implies:

Corollary 18. The oriented angles $\varphi, \chi, \psi$ of lines $B C, C A, A B$ with line $\mathcal{P}=(X: Y: Z)$ with point $(x: y: z)=((Y-Z):(Z-X):(X-Y))$ at infinity are given by equalities

$$
\begin{aligned}
& a \cos \varphi=\frac{\sqrt{2 \Delta}}{\Omega}(\gamma z-\beta y), \quad a \sin \varphi=\frac{\sqrt{2 \Delta}}{\Omega} x, \quad \cot \varphi=\frac{\gamma z-\beta y}{x} \\
& b \cos \chi=\frac{\sqrt{2 \Delta}}{\Omega}(\alpha x-\gamma z), \quad b \sin \chi=\frac{\sqrt{2 \Delta}}{\Omega} y, \quad \cot \chi=\frac{\alpha x-\gamma z}{y} \\
& c \cos \psi=\frac{\sqrt{2 \Delta}}{\Omega}(\beta y-\alpha x), \quad c \sin \psi=\frac{\sqrt{2 \Delta}}{\Omega} z, \quad \cot \psi=\frac{\beta y-\alpha x}{z}
\end{aligned}
$$

where $\Delta$ is the area of triangle $A B C$ and $\Omega^{2}=\alpha x^{2}+\beta y^{2}+\gamma z^{2}$.
Every line $\mathcal{P}$, which passes through the point $A=(1: 0: 0)$, has a form $\mathcal{P}=(0: Y: Z)$ and has the point $(x: y: z)=((Y-Z): Z:-Y)$ at infinity. By Corollary 18 we obtain

$$
\begin{aligned}
& \cot \varphi=\frac{-\gamma Y-\beta Z}{Y-Z}=\frac{\gamma Y+\beta Z}{Z-Y} \\
& \cot \chi=\frac{\alpha(Y-Z)+\gamma Y}{Z}=(\gamma+\alpha) \frac{Y}{Z}-\alpha \\
& \cot \psi=\frac{\beta Z-\alpha(Y-Z)}{Y}=\alpha-(\alpha+\beta) \frac{Z}{Y}
\end{aligned}
$$

and analogous statements for the lines through points $B$ and $C$. Therefore, we have the following corollary.

Corollary 19. Lines $B C, C A, A B$ make angles $\varphi, \chi, \psi$ with a line $(0: Y: Z)$ through point $A$ resp. a line $(X: 0: Z)$ through point $B$ resp. a line $(X: Y: 0)$ through point $C$ such that

$$
\cot \varphi=\frac{\gamma Y+\beta Z}{Z-Y}, \quad \cot \chi=(\gamma+\alpha) \frac{Y}{Z}-\alpha, \quad \cot \psi=\alpha-(\alpha+\beta) \frac{Z}{Y}
$$

resp.

$$
\cot \varphi=\beta-(\beta+\gamma) \frac{X}{Z}, \quad \cot \chi=\frac{\gamma X+\alpha Z}{X-Z}, \quad \cot \psi=(\alpha+\beta) \frac{Z}{X}-\beta
$$

resp.

$$
\cot \varphi=(\beta+\gamma) \frac{X}{Y}-\gamma, \quad \cot \chi=\gamma-(\gamma+\alpha) \frac{Y}{X}, \quad \cot \psi=\frac{\alpha Y+\beta X}{Y-X} .
$$

Theorem 9. If $\vartheta$ is the oriented angle between line $\mathcal{P}=(X: Y: Z)$ and line $\mathcal{P}^{\prime}$ with point $(x: y: z)$ at infinity and if $\tau=\cot \vartheta$, then

$$
\begin{align*}
& x=(\beta+\gamma) X+(\tau-\gamma) Y-(\tau+\beta) Z, \\
& y=-(\tau+\gamma) X+(\gamma+\alpha) Y+(\tau-\alpha) Z,  \tag{27}\\
& z=(\tau-\beta) X-(\tau+\alpha) Y+(\alpha+\beta) Z .
\end{align*}
$$

Proof. Obviously we have $x+y+z=0$ and by (27) a point at infinity is given. Line $\mathcal{P}$ has the point $((Y-Z):(Z-X):(X-Y))$ at infinity and by Theorem 8 we obtain

$$
\begin{aligned}
\cot \angle\left(\mathcal{P}, \mathcal{P}^{\prime}\right) & =\frac{\alpha(Y-Z) x+\beta(Z-X) y+\gamma(X-Y) z}{(Z-X) y-(X-Y) z} \\
& =\frac{X(\gamma z-\beta y)+Y(\alpha x-\gamma z)+Z(\beta y-\alpha x)}{-(y+z) X+y Y+z Z} \\
& =-\frac{(\beta y-\gamma z) X+(\gamma z-\alpha x) Y+(\alpha x-\beta y) Z}{x X+y Y+z Z} .
\end{aligned}
$$

However, by (27) and (21) we get e.g.

$$
\begin{aligned}
\beta y-\gamma z= & {[-\beta(\tau+\gamma)-\gamma(\tau-\beta)] X+[\beta(\gamma+\alpha)+\gamma(\tau+\alpha)] Y } \\
& +[\beta(\tau-\alpha)-\gamma(\alpha+\beta)] Z=-(\beta+\gamma) \tau X+(\gamma \tau+1) Y+(\beta \tau-1) Z
\end{aligned}
$$

and analogously

$$
\gamma z-\alpha x=(\gamma \tau-1) X-(\gamma+\alpha) \tau Y+(\alpha \tau+1) Z
$$

and

$$
\alpha x-\beta y=(\beta \tau+1) X+(\alpha \tau-1) Y-(\alpha+\beta) \tau Z .
$$

So we obtain further

$$
\begin{aligned}
-[(\beta y-\gamma z) X+(\gamma z- & \alpha x) Y+(\alpha x-\beta y) Z] \\
= & {[(\beta+\gamma) \tau X-(\gamma \tau+1) Y-(\beta \tau-1) Z] X } \\
& +[-(\gamma \tau-1) X+(\gamma+\alpha) \tau Y-(\alpha \tau+1) Z] Y \\
& +[-(\beta \tau+1) X-(\alpha \tau-1) Y+(\alpha+\beta) \tau Z] Z \\
= & (\beta+\gamma) \tau X^{2}+(\gamma+\alpha) \tau Y^{2}+(\alpha+\beta) \tau Z^{2} \\
& -2 \alpha \tau Y Z-2 \beta \tau Z X-2 \gamma \tau X Y,
\end{aligned}
$$

$$
\begin{aligned}
x X+y Y+z Z= & {[(\beta+\gamma) X+(\tau-\gamma) Y-(\tau+\beta) Z] X } \\
& +[-(\tau+\gamma) X+(\gamma+\alpha) Y+(\tau-\alpha) Z] Y \\
& +[(\tau-\beta) X-(\tau+\alpha) Y+(\alpha+\beta) Z] Z \\
= & (\beta+\gamma) X^{2}+(\gamma+\alpha) Y^{2}+(\alpha+\beta) Z^{2} \\
& -2 \alpha Y Z-2 \beta Z X-2 \gamma X Y
\end{aligned}
$$

and finally

$$
\cot \angle\left(\mathcal{P}, \mathcal{P}^{\prime}\right)=\tau=\cot \vartheta
$$

Corollary 20. The oriented angle $\vartheta$ of the line $(X: Y: Z)$ and a line with point $(x: y: z)$ at infinity is given by

$$
\cot \vartheta=-\frac{(\beta y-\gamma z) X+(\gamma z-\alpha x) Y+(\alpha x-\beta z) Z}{x X+y Y+z Z}
$$

If $\mathcal{P}=B C=(1: 0: 0)$, then in Theorem 9 we have $X=1, Y=Z=0$ and (27) implies $x=\beta+\gamma, y=-(\tau+\gamma), z=\tau-\beta$. Analogous equalities can be obtained if $\mathcal{P}=C A$ or $\mathcal{P}=A B$. Hence, we have:

Corollary 21. If $\vartheta$ is the oriented angle between line $B C$ resp. $C A$ resp. $A B$ and the line $\mathcal{P}^{\prime}$, then line $\mathcal{P}^{\prime}$ has the point at infinity $((\beta+\gamma):-(\tau+\gamma):(\tau-\beta))$ resp. $((\tau-\gamma):(\gamma+\alpha):-(\tau+\alpha))$ resp. $(-(\tau+\beta):(\tau-\alpha):(\alpha+\beta))$, where $\tau=\cot \vartheta$.

For three collinear points $B, C, D$ and any point $A$ ratio $(D C B)$ is equal to the ratio of oriented areas of triangles $A B D$ and $A B C$. Therefore

$$
\begin{equation*}
\text { area } A B D=(D C B) \cdot \operatorname{area} A B C \tag{28}
\end{equation*}
$$

If $P=(x, y, z)$ then point $D=A P \cap B C$ is given by $D=(0: y: z)$ and has the sum $y+z$ of coordinates. We have equalities $x A=P-D$ and $y B=D-z C$. Therefore, Theorem 4 implies the equalities

$$
(P D A)=y+z, \quad(D C B)=\frac{z}{y+z}
$$

Using (28) and analogous equality area $A B P=(P D A) \cdot$ area $A B D$ we obtain

$$
\operatorname{area} A B D=\frac{z}{y+z}, \quad \text { area } A B P=(y+z) \cdot \operatorname{area} A B D=\Delta z
$$

where $\Delta=$ area $A B C$. We have analogous results for another vertices of triangle $A B C$, i.e. the following theorem holds.

Theorem 10. For any point $P=(x, y, z)$ triangles $B C P, C A P, A B P$ have the oriented areas $\Delta x, \Delta y, \Delta z$, where $\Delta=$ area $A B C$.

Corollary 22. For any points $A, B, C, P$ there holds the equality

$$
\text { area } A B C=\text { area } B C P+\text { area } C A P+\operatorname{area} A B P .
$$

Theorem 10 justifies the name areal coordinates for barycentric coordinates of a point.

Now, let $\mathcal{P}_{i}=\left(x_{i}, y_{i}, z_{i}\right)(i=1,2)$ be any two points. Then for the points $D_{i}=A P_{i} \cap B C$ we have equalities

$$
\left(P_{i} D_{i} A\right)=y_{i}+z_{i}, \quad \text { area } A B D_{i}=\frac{z_{i}}{y_{i}+z_{i}}(i=1,2)
$$

Therefore, we obtain successively

$$
\begin{aligned}
\operatorname{area} A D_{1} D_{2} & =\operatorname{area} A B D_{2}-\operatorname{area} A B D_{1}=\Delta\left(\frac{z_{2}}{y_{2}+z_{2}}-\frac{z_{1}}{y_{1}+z_{1}}\right) \\
& =\Delta \frac{y_{1} z_{2}-z_{1} y_{2}}{\left(y_{1}+z_{1}\right)\left(y_{2}+z_{2}\right)}, \\
\text { area } A P_{1} P_{2} & =\left(P_{1} D_{1} A\right) \cdot \operatorname{area} A D_{1} P_{2}=\left(P_{1} D_{1} A\right)\left(P_{2} D_{2} A\right) \cdot \text { area } A D_{1} D_{2} \\
& =\left(y_{1}+z_{1}\right)\left(y_{2}+z_{2}\right) \text { area } A D_{1} D_{2}=\Delta\left(y_{1} z_{2}-z_{1} y_{2}\right)
\end{aligned}
$$

Finally, we can give a probably new proof of a well-known formula for the oriented area of a triangle.

Theorem 11. Oriented area of any triangle with vertices $\mathcal{P}_{i}=\left(x_{i}, y_{i}, z_{i}\right)$ $(i=1,2,3)$ is given by the formula

$$
\operatorname{area} P_{1} P_{2} P_{3}=\Delta\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1}  \tag{29}\\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right|
$$

Proof. The proven formula for area $A P_{1} P_{2}$ and analogous formulas for area $A P_{2} P_{3}$ and area $A P_{3} P_{1}$ and Corollary 22 imply

$$
\begin{aligned}
\operatorname{area} P_{1} P_{2} P_{3} & =\operatorname{area} A P_{2} P_{3}+\operatorname{area} A P_{3} P_{1}+\operatorname{area} A P_{1} P_{2} \\
& =\Delta\left(y_{2} z_{3}-z_{2} y_{3}+y_{3} z_{1}-z_{3} y_{1}+y_{1} z_{2}-z_{1} y_{2}\right) \\
& =\Delta\left|\begin{array}{lll}
1 & y_{1} & z_{1} \\
1 & y_{2} & z_{2} \\
1 & y_{3} & z_{3}
\end{array}\right|
\end{aligned}
$$

wherefrom (29) follows because of the equalities $1-y_{i}-z_{i}=x_{i}(i=1,2,3)$.

## References

[1] N. M. Ferrers, An Elementary Treatise on Trilinear Co-ordinates, Macmillan and Co., London and New York, 1890.
[2] C. Kimberling, Triangle Centers and Central Triangles, Congressus Numerantium, Vol. 129, Winnipeg 1998.


[^0]:    *Department of Mathematics, University of Zagreb, Bijenička 30, HR-10 000 Zagreb, Croatia, e-mail: volenec@math.hr

