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Metrical relations in barycentric coordinates

Vladimir Volenec∗

Abstract. Let ∆ be the area of the fundamental triangle ABC of
barycentric coordinates and let α = cotA, β = cotB, γ = cotC. The
vectors vi = [xi, yi, zi] (i = 1, 2) have the scalar product 2∆(αx1x2 +
βy1y2 + γz1z2). This fact implies all important formulas about metrical
relations of points and lines. The main and probably new results are
Theorems 1 and 8.
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Let ABC be a given triangle with the sidelengths a = |BC|, b = |CA|, c = |AB|,
the measuresA,B,C of the opposite angles and the area ∆. For any point P let P be
the radiusvector of this point with respect to any origin. Then we have−→PQ = Q−P .
There are uniquely determined numbers y, z ∈ R so that −→AP = y · −→AB+ z · −→AC, i.e.
P − A = y(B − A) + z(C − A). If we put x = 1− y − z, i.e.

x+ y + z = 1, (1)

then we have
P = xA + yB + zC. (2)

Numbers x, y, z, such that (1) and (2) are valid, are uniquely determined by point
P and triangle ABC, i.e. these numbers do not depend on the choice of the origin.
We say that x, y, z, are the absolute barycentric coordinates of point P with respect
to triangle ABC and write P = (x, y, z). Obviously A = (1, 0, 0), B = (0, 1, 0),
C = (0, 0, 1). Actually, point P is the barycenter of the mass point system of points
A,B,C with masses x, y, z, respectively. The centroid of triangle ABC is point
G = (1/3, 1/3, 1/3).

Any three numbers x
′
, y

′
, z

′
proportional to the coordinates x, y, z are said to

be relative barycentric coordinates of point P with respect to triangle ABC and we
write P = (x

′
: y

′
: z

′
). Here we have x

′
+ y

′
+ z

′ �= 0. Point P is uniquely
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determined by its relative barycentric coordinates x
′
, y

′
, z

′
because its absolute

barycentric coordinates are

x =
x

′

x′ + y′ + z′
, y =

y
′

x′ + y′ + z′
, z =

z
′

x′ + y′ + z′
.

If point P divides two different points P1 = (x1, y1, z1) and P2 = (x2, y2, z2) in
the ratio (P1P2P ) = λ, i.e. if

−−→
P1P = λ · −−→P2P , then from P −P 1 = λ(P −P 2) with

P i = xiA + yiB + ziC (i = 1, 2) we obtain

(1 − λ)P = (x1 − λx2)A + (y1 − λy2)B + (z1 − λz2)C.
Because of xi + yi + zi = 1 (i = 1, 2) we have

1
1− λ (x1 − λx2 + y1 − λy2 + z1 − λz2) = 1

and therefore

P =
(
x1 − λx2

1− λ ,
y1 − λy2
1− λ ,

z1 − λz2
1− λ

)
, (3)

P = ((x1 − λx2) : (y1 − λy2) : (z1 − λz2)) . (4)

Specially, with λ = −1, point P is the midpoint of the points P1 and P2 with

P =
(
x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)
,

i.e. P = 1
2P1 + 1

2P2. Sides BC, CA, AB have the midpoints
(
0,

1
2
,
1
2

)
= (0 : 1 : 1),

(
1
2
, 0,

1
2

)
= (1 : 0 : 1),

(
1
2
,
1
2
, 0

)
= (1 : 1 : 0).

If λ = 1, then equality (3) has no sense, but equality (4) obtains the form

P = ((x1 − x2) : (y1 − y2) : (z1 − z2)) (5)

and represents the point at infinity of the straight line P1P2. For this point P we
have equality (P1P2P ) = 1 and the relative coordinates in (5) have the zero sum.
Therefore, this point does not have the absolute coordinates. Because of P1 �= P2

point P at infinity cannot be of the form (0 : 0 : 0). Specially, straight lines BC, CA,
AB have the points at infinity (0 : 1 : −1), (−1 : 0 : 1), (1 : −1 : 0), respectively.

For any vector v numbers y and z are uniquely determined such that v =
y · −→AB + z · −→AC, i.e. v = y(B − A) + z(C − A). If we put x = −(y + z), then we
have

v = xA + yB + zC, x+ y + z = 0. (6)

Numbers x, y, z are uniquely determined and are said to be the barycentric coordi-
nates of vector v with respect to triangle ABC. We write v = [x, y, z]. For two
points Pi = (xi, yi, zi) (i = 1, 2) we have P i = xiA + yiB + ziC and therefore

−−→
P1P2 = P 2−P 1 = (x2−x1)A+(y2−y1)B+(z2−z1)C = [x2−x1, y2−y1, z2−z1].
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Specially, −→BC = [0,−1, 1], −→CA = [1, 0,−1], −→AB = [−1, 1, 0]. We conclude that the
(relative) barycentric coordinates of the point at infinity of a straight line are pro-
portional to the barycentric coordinates of any vector parallel to this line. Therefore,
parallel lines have the same point at infinity.

The formulas for metrical relations can be written in a more compact form if we
use numbers

α = cotA, β = cotB, γ = cotC (7)

We have e.g.
b2 + c2 − a2 = 2bc cosA = 2bc sinA cotA = 4∆α

and therefore

b2 + c2 − a2 = 4∆α, c2 + a2 − b2 = 4∆β, a2 + b2 − c2 = 4∆γ.

Adding, we obtain

a2 = 2∆(β + γ), b2 = 2∆(γ + α), c2 = 2∆(α+ β). (8)

Now, let us prove the most important theorem about metrical relations in
barycentric coordinates.

Theorem 1. The scalar product of two vectors vi = [xi, yi, zi] (i = 1, 2) is
given by

v1 · v2 = 2∆(αx1x2 + βy1y2 + γz1z2),

where ∆ is the area of the fundamental triangle ABC and numbers α, β, γ are
given by (7).

Proof. Squaring the equality −→
AB = B − A we obtain c2 = A2 + B2 − 2A · B,

i.e. 2A ·B = A2 +B2 − c2 and analogously 2A ·C = A2 + C2 − b2 and 2B ·C =
B2 +C2 − a2. Owing to the equalities xi + yi + zi = 0 (i = 1, 2) and (8) we obtain
successively

2v1 · v2 = 2(x1A + y1B + z1C)(x2A + y2B + z2C)
= 2x1x2A

2 + 2y1y2B2 + 2z1z2C2 + (x1y2 + y1x2)(A2 + B2 − c2)
+(x1z2 + z1x2)(A2 + C2 − b2) + (y1z2 + z1y2)(B2 + C2 − a2)

= (x1 + y1 + z1)(x2A
2 + y2B2 + z2C2)

+(x2 + y2 + z2)(x1A
2 + y1B2 + z1C2)

−a2(y1z2 + z1y2)− b2(z1x2 + x1z2)− c2(x1y2 + y1x2)
= −2∆[(β + γ)(y1z2 + z1y2) + (γ + α)(z1x2 + x1z2)

+(α+ β)(x1y2 + y1x2)]
= −2∆{α [x1(y2 + z2) + (y1 + z1)x2] + β [y1(z2 + x2) + (z1 + x1)y2]

+γ[z1(x2 + y2) + (x1 + y1)z2]}
= −2∆[α(−2x1x2) + β(−2y1y2) + γ(−2z1z2)]
= 4∆(αx1x2 + βy1y2 + γz1z2).

✷
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Corollary 1. The length of the vector v = [x, y, z] is given by

|v|2 = 2∆(αx2 + βy2 + γz2).

Corollary 2. The angle between two vectors vi = [xi, yi, zi] (i = 1, 2) is given
by

cos∠(v1,v2) =
1

Ω1Ω2
(αx1x2 + βy1y2 + γz1z2),

where
Ω2

i = αx2
i + βy

2
i + γz2i (i = 1, 2).

Corollary 3. Two points Pi = (xi, yi, zi) (i = 1, 2) have the distance |P1P2|
given by

|P1P2|2 = 2∆[α(x1 − x2)2 + β(y1 − y2)2 + γ(z1 − z2)2].

Specially, with P1 = P = (x, y, z) and P2 = A = (1, 0, 0) or P2 = B = (0, 1, 0)
or P2 = C = (0, 0, 1) we obtain further:

Corollary 4. For any point P = (x, y, z) we have equalities

|AP | = 2∆[α(1 − x)2 + βy2 + γz2],
|BP | = 2∆[αx2 + β(1 − y)2 + γz2],
|CP | = 2∆[αx2 + βy2 + γ(1− z)2].

Theorem 2. For the point P = (x, y, z) and any point S we have

|SP |2 = x · |SA|2 + y · |SB|2 + z · |SC|2 − a2yz − b2zx− c2xy.

Proof. Let S be the origin. Squaring the equality P = xA + yB + zC and
using the equalities from the proof of Theorem 1 we get

|SP |2 = P 2 = x2A2 + y2B2 + z2C2 + yz(B2 + C2 − a2)
+zx(C2 + A2 − b2) + xy(A2 + B2 − c2)

= (x+ y + z)(xA2 + yB2 + zC2)− a2yz − b2zy − c2xy

and because of x+ y + z = 1 the statement of Theorem 2 follows. ✷

With P = G =
(

1
3 ,

1
3 ,

1
3

)
we obtain:

Corollary 5 [Leibniz]. For centroid G of triangle ABC and for any point P
we have

3 · |SG|2 = |SA|2 + |SB|2 + |SC|2 − 1
3
(a2 + b2 + c2).

If S is the circumcenter O of triangle ABC, then |OA| = |OB| = |OC| = R and
by (8) it follows:
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Corollary 6. For any point P = (x, y, z) and the circumscribed circle (O,R)
of triangle ABC the equality

|OP |2 = R2 − a2yz − b2zx− c2xy
holds, i.e. |OP |2 = R2 − 2∆Π, where

Π = (β + γ)yz + (γ + α)zx+ (α+ β)xy =
1
2∆

(a2yz + b2zx+ c2xy). (9)

With S = P Theorem 2 implies:
Corollary 7. For the point P = (x, y, z) the equality

x · |AP |2 + y · |BP |2 + z2|CP |2 = 2∆Π

holds, where the number Π is given by (9).
The equalities from Corollary 4 can be written in another form because of (9),

(8) and the equality x+ y + z = 1. We obtain e.g.

1
2∆

|AP |2 = α(1− x)2 + βy2 + γz2

= α− 2αx+ αx(1 − y − z) + βy(1− z − x) + γz(1− x− y)
= α− αx+ βy + γz − (β + γ)yz − (γ + α)zx− (α + β)xy

= α(y + z) + βy + γz −Π =
1
x
[(γ + α)zx+ (α+ β)xy] −Π

=
1
x
[Π− (β + γ)yz]−Π =

1
x
[Π(1− x)− (β + γ)yz]

=
1
x
[Π(y + z)− a2

2∆
yz].

Therefore:
Corollary 8. For any point P = (x, y, z) the equalities

x · |AP |2 = 2∆Π(y + z)− a2yz,
y · |BP |2 = 2∆Π(z + x)− b2zx,
z · |CP |2 = 2∆Π(x+ y)− c2xy

hold, where number Π is given by (9).
For any point P = (x, y, z) on the circumcircle (O,R) of triangle ABC we have

|OP | = R and because of Corollary 6 it follows Π = 0. Therefore, the equalities of
Corollary 8 have now the form

|AP |2 = −a2 yz
x
, |BP |2 = −b2 zx

y
, |CP |2 = −c2xy

z
. (10)

We have:
Corollary 9. The circumcircle of triangle ABC has the equation

(β + γ)yz + (γ + α)zx+ (α+ β)xy = 0 or a2yz + b2zx+ c2xy = 0.
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For any point P = (x, y, z) (except A, B, C) on this circle equalities (10) hold.
Point P = (x, y, z) is collinear with two different points P1 = (x1, y1, z1) and

P2 = (x2, y2, z2) iff there is a number λ ∈ R such that −−→P1P = λ−−→P1P2, i.e. P −P 1 =
λ(P 2 − P 1) or P = (1 − λ)P 1 + λP 2. With κ = 1 − λ we conclude that point P
lies on straight line P1P2 iff two numbers κ and λ exist such that κ+ λ = 1 and

x = κx1 + λx2, y = κy1 + λy2, z = κz1 + λz2. (11)

Numbers (11) satisfy the equation

Xx+ Y y + Zz = 0, (12)

where

X = k(y1z2 − z1y2), Y = k(z1x2 − x1z2), Z = k(x1y2 − y1x2). (13)

and k ∈ R \ {0}. Indeed, we obtain an obvious equality

(y1z2− z1y2)(κx1 +λx2)+ (z1x2 −x1z2)(κy1 +λy2)+ (x1y2− y1x2)(κz1+λz2) = 0.

Conversely, if numbers x, y, z satisfy equation (12), where (13) holds, then this
equation (12) can be written in the form

∣∣∣∣∣∣
x y z
x1 y1 z1
x2 y2 z2

∣∣∣∣∣∣ = 0. (14)

Therefore, there are the numbers κ and λ such that equalities (11) are valid. Adding
these equalities it follows κ + λ = 1 because of x + y + z = 1 and xi + yi + zi = 1
(i = 1, 2). We have the following theorem.

Theorem 3. Point P = (x, y, z) is collinear with points P1 = (x1, y1, z1) and
P2 = (x2, y2, z2) iff equality (12) holds, where numbers X,Y, Z are given by (13),
where k ∈ R \ {0}.

Theorem 3 implies that the coordinates of any point of the given straight line
P satisfy an equation of the form (12), the equation of this line P , where num-
bers X,Y, Z are determined up to proportionality. These numbers are baricentric
coordinates of line P and we write P = (X : Y : Z). As P1 �= P2, so (13) implies
(X : Y : Z) �= (0 : 0 : 0). The equality (12) is the necessary and sufficient condition
for the incidency of point P = (x : y : z) and line P = (X : Y : Z).

The equality x + y + z = 0 characterizes the points at infinity. Therefore, all
these points lie on a line N = (1 : 1 : 1), the line at infinity.

Corollary 10. Three points Pi = (xi, yi, zi) (i = 1, 2, 3) are collinear iff
∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ = 0.

Specially, two points Pi = (xi : yi : zi) (i = 1, 2) are collinear with point A iff y1 :
z1 = y2 : z2, with point B iff z1 : x1 = z2 : x2 and with point C iff x1 : y1 = x2 : y2.
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Corollary 11. The join of two different points Pi = (xi : yi : zi) is the straight
line

P1P2 =
(∣∣∣∣ y1 z1y2 z2

∣∣∣∣ :
∣∣∣∣ z1 x1

z2 x2

∣∣∣∣ :
∣∣∣∣x1 y1
x2 y2

∣∣∣∣
)
.

As we have A = (1 : 0 : 0), B = (0 : 1 : 0), C = (0 : 0 : 1), so by Corollary 11
it follows BC = (1 : 0 : 0), CA = (0 : 1 : 0), AB = (0 : 0 : 1) and these three
lines have the equations x = 0, y = 0, z = 0 respectively. If P = (x : y : z), then
AP = (0 : −z : y), BP = (z : 0 : −x), CP = (−y : x : 0).

To be honest, we must say that the statement of Corollary 10 in the proof of
Theorem 3 is proved only in the case of finite points P1, P2 and P3 = P . Three
points P1, P2, P at infinity obviously satisfy equation (14) because of x+ y+ z = 0
and xi + yi + zi = 0 (i = 1, 2). Conversely, from (14) and xi + yi + zi = 0 (i = 1, 2)
if follows x + y + z = 0. We must prove the statement for the finite points P1, P2

and point P at infinity. The point at infinity of line P1P2 is the point

(x : y : z) = ((x1 − x2) : (y1 − y2) : (z1 − z2))
and it obviously satisfies equation (14). Conversely, let point P = (x : y : z) at
infinity satisfy equation (14). Then there are two numbers κ and λ such that (11)
holds. Adding these equations we obtain 0 = κ + λ because of x + y + z = 0 and
xi + yi + zi = 1 (i = 1, 2). Therefore, λ = −κ and equalities (11) obtain the form
x = κ(x1 − x2), y = κ(y1 − y2), z = κ(z1 − z2), i.e. P is the point at infinity of line
P1P2.

From Corollary 10 it follows that point P is collinear with two different points
P1 and P2 iff there are two numbers µ and ν such that x = µx1+νx2, y = µy1+νy2,
z = µz1 + νz2 for the coordinates of these points. We shall write P = µP1 + νP2 in
this case.

Theorem 4. Let points Pi = (xi : yi : zi) (i = 1, 2) have the sums si =
xi + yi + zi of coordinates. If point P = (x : y : z) satisfies the equality

P = µP1 + νP2, (15)

then these three points have the ratio

(P1P2P ) = − ν
µ
· s2
s1
. (16)

Proof. We pass onto absolute coordinates. Then the right-hand side of (15) is
of the form µs1P1 + νs2P2 and because of equality of coordinate sums of both sides
we must take (µs1 + νs2)P on the left-hand side of (15). The obtained equality has
the vector form (µs1+νs2)P = µs1P 1+νs2P 2, i.e. µs1(P −P 1) = −νs2(P −P 2)
or µs1 · −−→P1P = −νs2 · −−→P2P . The last equality is equivalent to (16). ✷

For the point A = (1, 0, 0), the midpoint D = (0 : 1 : 1) of side BC and for
centroid G = (1 : 1 : 1) of triangle ABC we have the equality G = A + D and
Theorem 4 implies the equality (ADG) = −2.

Equality (13) is symmetrical in variables x, y, z and X,Y, Z. Therefore, for the
sets of points and lines (finite ones and at infinity) there holds the principle of
duality. The following theorem is dual of Theorem 3.
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Theorem 5. Straight line P = (X : Y : Z) is incident with the intersection of
two different lines P1 = (X1 : Y1 : Z1) and P2 = (X2 : Y2 : Z2) iff the equality (12)
holds, where numbers x, y, z are given by

x = K(Y1Z2 − Z1Y2), y = K(Z1X2 −X1Z2), z = K(X1Y2 − Y1X2),

where K ∈ R \ {0}.
Corollary 12. Three straight lines Pi = (Xi : Yi : Zi) (i = 1, 2, 3) are concur-

rent iff ∣∣∣∣∣∣
X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

∣∣∣∣∣∣ = 0.

Corollary 13. The intersection of two different lines Pi = (Xi : Yi : Zi)
(i = 1, 2) is the point

P1 ∩ P2 =
(∣∣∣∣Y1 Z1

Y2 Z2

∣∣∣∣ :
∣∣∣∣Z1 X1

Z2 X2

∣∣∣∣ :
∣∣∣∣X1 Y1

X2 Y2

∣∣∣∣
)
.

If P = (x : y : z), then we have AP = (0 : −z : y), BC = (1 : 0 : 0)
and therefore AP ∩ BC = (0 : y : z). Analogously BP ∩ CA = (x : 0 : z) and
CP ∩AB = (x : y : 0).

The point at infinity of a line is its intersection with the line N = (1 : 1 : 1) at
infinity. Hence, Corollary 13 implies:

Corollary 14. The line P = (X : Y : Z) has the point P ∩ N = ((Y − Z) :
(Z −X) : (X − Y )) at infinity.

Two lines are parallel iff they have the same intersection with the line at infinity.
Therefore, Corollary 12 implies:

Corollary 15. Lines Pi = (Xi : Yi : Zi) (i = 1, 2) are parallel iff
∣∣∣∣∣∣
1 1 1
X1 Y1 Z1

X2 Y2 Z2

∣∣∣∣∣∣ = 0.

Any line parallel to the line (X : Y : Z) has a form ((X +K) : (Y +K) : (Z +K))
for some K ∈ R.

From Theorem 1 we obtain:
Corollary 16. Two vectors vi = [xi, yi, zi] (i = 1, 2) are ortogonal iff

αx1x2 + βy1y2 + γz1z2 = 0, (17)

where numbers α, β, γ are given by (7). Equality (17) is the condition for ortogo-
nality of two lines with the points (xi : yi : zi) (i = 1, 2) at infinity.

Theorem 6. The lines ortogonal to the line with the point (x : y : z) at infinity
(where x+ y + z = 0) have the point at infinity

((βy − γz) : (γz − αx) : (αx − βy)). (18)
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Proof. Point (18) is obviously a point at infinity and the ortogonality follows
by Corollary 16 because of αx(βy − γz) + βy(γz − αx) + γz(αx− βy) = 0.

✷

Lines BC,CA,AB have the points (0 : −1 : 1), (1 : 0 : −1), (−1 : 1 : 0) at
infinity and Theorem 6 implies:

Corollary 17. The lines orthogonal to lines BC,CA,AB, respectively, have
the points at infinity

Na = (−(β + γ) : γ : β),
Nb = (γ : −(γ + α) : α), (19)
Nc = (β : α : −(α+ β)).

The line (0 : −β : γ) passes through point A = (1 : 0 : 0) and point Na from (19).
Therefore, this line is the altitude through vertex A. Analogously, the altitudes
through vertices B and C are (α : 0 : −γ) and (−α : β : 0). All three altitudes
obviously pass through point H = (βγ : γα : αβ), the orthocenter of triangle ABC.
Line ((β − γ) : −(β + γ) : (β + γ)) passes through midpoint (0 : 1 : 1) of side BC,
through point Na from (19) and through the point

O = (α(β + γ) : β(γ + α) : γ(α+ β)). (20)

Indeed, we have without common factor β + γ the equalities −(β − γ)− γ + β = 0
and α(β − γ)− β(γ + α) + γ(α + β) = 0. Therefore, this line is the perpendicular
bisector of side BC, and for sides CA and AB we have analogous perpendicular
bisectors. We have the following theorem.

Theorem 7. The fundamental triangle ABC has the altitudes AH = (0 : −β :
γ), BH = (α : 0 : −γ), CH = (−α : β : 0), the orthocenter H = (βγ : γα : αβ), the
perpendicular bisectors of the sides are

((β − γ) : −(β + γ) : (β + γ)),
((γ + α) : (γ − α) : −(γ + α)),
(−(α+ β) : (α+ β) : (α− β))

and the circumcenter O of triangle ABC is given by (20).
According to equalities

−α = − cotA = cot(π −A) = cot(B + C) =
cotB cotC − 1
cotB + cotC

=
βγ − 1
β + γ

we have the fundamental identity

βγ + γα+ αβ = 1. (21)

Therefore, we have more precise equalities H = (βγ, γα, αβ) and

O=
(
1
2
α(β + γ),

1
2
β(γ + α),

1
2
γ(α+ β)

)
=

(
1
2
(1 − βγ), 1

2
(1 − γα), 1

2
(1− αβ)

)
.
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Lines Pi = (Xi : Yi : Zi) (i = 1, 2) have points (xi : yi : zi) at infinity, where
xi = Yi − Zi, yi = Zi −Xi, zi = Xi − Yi. Vectors [xi, yi, zi] are parallel with lines
Pi for i = 1, 2. Therefore, angle ϑ of lines P1 and P2 is given by Corollary 2 in the
form

cosϑ =
1

Ω1Ω2
|αx1x2 + βy1y2 + γz1z2|, (22)

where

Ω2
i = αx2

i + βy2i + γz2i (i = 1, 2). (23)

We obtain

y1z2 − z1y2 = (Z1 −X1)(X2 − Y2)− (X1 − Y1)(Z2 −X2)
= Y1Z2 − Z1Y2 + Z1X2 −X1Z2 +X1Y2 − Y1X2 = k

and analogously z1x2 − x1z2 = k and x1y2 − y1x2 = k, where

k =

∣∣∣∣∣∣
1 1 1
X1 Y1 Z1

X2 Y2 Z2

∣∣∣∣∣∣ . (24)

Further
sin2 ϑ = 1− cos2 ϑ =

1
Ω2

1Ω
2
2

[Ω2
1Ω

2
2 − (αx2 + βy2 + γz2)2].

and as we have

Ω2
1Ω

2
2 − (αx1x2 + βy1y2 + γz1z2)2

= (αx2
1 + βy

2
1 + γz21)(αx

2
2 + βy

2
2 + γz22)− (αx1x2 + βy1y2 + γz1z2)2

= βγ(y1z2 − z1y2)2 + γα(z1x2 − x1z2)2 + αβ(x1y2 − y1x2)2

= (βγ + γα+ αβ)k2 = k2,

so it follows

sinϑ =
|k|

Ω1Ω2

and (22) implies

cotϑ =
1
|k| |αx1x2 + βy1y2 + γz1z2|.

Substitutions X1 → −X1, Y1 → −Y1, Z1 → −Z1 imply substitutions x1 → −x1,
y1 → −y1, z1 → −z1 and k → −k, αx1x2 + βy1y2 + γz1z2 → −(αx1x2 + βy1y2 +
γz1z2). Therefore, the number 1

k (αx1x2 + βy1y2 + γz1z2) does not change the
sign. The same is true for substitutions X2 → −X2, Y2 → −Y2, Z2 → −Z2.
Substitution 1 ↔ 2 implies substitutions k → −k and αx1x2 + βy1y2 + γz1z2 →
αx1x2 + βy1y2 + γz1z2. Therefore, the number 1

k (αx1x2 + βy1y2 + γz1z2) changes
the sign in this case. We conclude that the equalities

cosϑ =
1

Ω1Ω2
(αx1x2 + βy1y2 + γz1z2), sinϑ =

k

Ω1Ω2
, (25)
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cotϑ =
1
k
(αx1x2 + βy1y2 + γz1z2) (26)

give the oriented angle ϑ of the ordered pair of oriented lines P1 and P2. We have:
Theorem 8. The oriented angle ϑ of the oriented lines Pi = (Xi : Yi : Zi)

(i = 1, 2) is given by (25) and (26), where xi = Yi −Zi, yi = Zi −Xi, zi = Xi − Yi

(i = 1, 2) and where numbers Ω1,Ω2, k are given by (23) and (24).
For P1 = BC = (1 : 0 : 0), P2 = P(X : Y : Z) we have x1 = 0, y1 = −1, z1 = 1,

x2 = Y − Z, y2 = Z −X , z2 = X − Y and then by (8)

Ω1 =
√
β + γ =

a√
2∆
, Ω2 = Ω =

√
αx2 + βy2 + γz2,

k = Y − Z = x, αx1x2 + βy1y2 + γz1z2 = γz − βy.
Analogous equalities we have for P1 = CA or P1 = AB. Therefore, Theorem 8
implies:

Corollary 18. The oriented angles ϕ, χ, ψ of lines BC, CA, AB with line
P = (X : Y : Z) with point (x : y : z) = ((Y − Z) : (Z −X) : (X − Y )) at infinity
are given by equalities

a cosϕ =

√
2∆
Ω

(γz − βy), a sinϕ =

√
2∆
Ω
x, cotϕ =

γz − βy
x

,

b cosχ =
√
2∆
Ω

(αx − γz), b sinχ =
√
2∆
Ω
y, cotχ =

αx− γz
y

,

c cosψ =

√
2∆
Ω

(βy − αx), c sinψ =

√
2∆
Ω
z, cotψ =

βy − αx
z

,

where ∆ is the area of triangle ABC and Ω2 = αx2 + βy2 + γz2.
Every line P , which passes through the point A = (1 : 0 : 0), has a form

P = (0 : Y : Z) and has the point (x : y : z) = ((Y − Z) : Z : −Y ) at infinity. By
Corollary 18 we obtain

cotϕ =
−γY − βZ
Y − Z =

γY + βZ
Z − Y ,

cotχ =
α(Y − Z) + γY

Z
= (γ + α)

Y

Z
− α,

cotψ =
βZ − α(Y − Z)

Y
= α− (α+ β)

Z

Y

and analogous statements for the lines through points B and C. Therefore, we have
the following corollary.

Corollary 19. Lines BC,CA,AB make angles ϕ, χ, ψ with a line (0 : Y : Z)
through point A resp. a line (X : 0 : Z) through point B resp. a line (X : Y : 0)
through point C such that

cotϕ =
γY + βZ
Z − Y , cotχ = (γ + α)

Y

Z
− α, cotψ = α− (α+ β)

Z

Y
resp.

cotϕ = β − (β + γ)
X

Z
, cotχ =

γX + αZ
X − Z , cotψ = (α + β)

Z

X
− β
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resp.

cotϕ = (β + γ)
X

Y
− γ, cotχ = γ − (γ + α)

Y

X
, cotψ =

αY + βX
Y −X .

Theorem 9. If ϑ is the oriented angle between line P = (X : Y : Z) and line
P ′

with point (x : y : z) at infinity and if τ = cotϑ, then

x = (β + γ)X + (τ − γ)Y − (τ + β)Z,
y = −(τ + γ)X + (γ + α)Y + (τ − α)Z, (27)
z = (τ − β)X − (τ + α)Y + (α+ β)Z.

Proof. Obviously we have x+ y+ z = 0 and by (27) a point at infinity is given.
Line P has the point ((Y − Z) : (Z −X) : (X − Y )) at infinity and by Theorem 8
we obtain

cot∠(P ,P ′
) =

α(Y − Z)x+ β(Z −X)y + γ(X − Y )z
(Z −X)y − (X − Y )z

=
X(γz − βy) + Y (αx− γz) + Z(βy − αx)

−(y + z)X + yY + zZ

= − (βy − γz)X + (γz − αx)Y + (αx− βy)Z
xX + yY + zZ

.

However, by (27) and (21) we get e.g.

βy − γz = [−β(τ + γ)− γ(τ − β)]X + [β(γ + α) + γ(τ + α)]Y
+[β(τ − α)− γ(α+ β)]Z = −(β + γ)τX + (γτ + 1)Y + (βτ − 1)Z

and analogously

γz − αx = (γτ − 1)X − (γ + α)τY + (ατ + 1)Z

and
αx− βy = (βτ + 1)X + (ατ − 1)Y − (α+ β)τZ.

So we obtain further

−[(βy − γz)X + (γz − αx)Y + (αx− βy)Z]
= [(β + γ)τX − (γτ + 1)Y − (βτ − 1)Z]X
+[−(γτ − 1)X + (γ + α)τY − (ατ + 1)Z]Y
+[−(βτ + 1)X − (ατ − 1)Y + (α + β)τZ]Z

= (β + γ)τX2 + (γ + α)τY 2 + (α+ β)τZ2

−2ατY Z − 2βτZX − 2γτXY,
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xX + yY + zZ = [(β + γ)X + (τ − γ)Y − (τ + β)Z]X
+[−(τ + γ)X + (γ + α)Y + (τ − α)Z]Y
+[(τ − β)X − (τ + α)Y + (α+ β)Z]Z

= (β + γ)X2 + (γ + α)Y 2 + (α + β)Z2

−2αY Z − 2βZX − 2γXY

and finally
cot∠(P ,P ′

) = τ = cotϑ.

Corollary 20. The oriented angle ϑ of the line (X : Y : Z) and a line with
point (x : y : z) at infinity is given by

cotϑ = − (βy − γz)X + (γz − αx)Y + (αx − βz)Z
xX + yY + zZ

.

If P = BC = (1 : 0 : 0), then in Theorem 9 we have X = 1, Y = Z = 0 and (27)
implies x = β + γ, y = −(τ + γ), z = τ − β. Analogous equalities can be obtained
if P = CA or P = AB. Hence, we have:

Corollary 21. If ϑ is the oriented angle between line BC resp. CA resp. AB
and the line P ′

, then line P ′
has the point at infinity ((β + γ) : −(τ + γ) : (τ − β))

resp. ((τ − γ) : (γ + α) : −(τ + α)) resp. (−(τ + β) : (τ − α) : (α + β)), where
τ = cotϑ.

For three collinear points B,C,D and any point A ratio (DCB) is equal to the
ratio of oriented areas of triangles ABD and ABC. Therefore

areaABD = (DCB) · areaABC. (28)

If P = (x, y, z) then point D = AP ∩ BC is given by D = (0 : y : z) and has the
sum y + z of coordinates. We have equalities xA = P − D and yB = D − zC.
Therefore, Theorem 4 implies the equalities

(PDA) = y + z, (DCB) =
z

y + z
.

Using (28) and analogous equality areaABP = (PDA) · areaABD we obtain

areaABD =
z

y + z
, areaABP = (y + z) · areaABD = ∆z,

where ∆ = areaABC. We have analogous results for another vertices of triangle
ABC, i.e. the following theorem holds.

Theorem 10. For any point P = (x, y, z) triangles BCP , CAP , ABP have
the oriented areas ∆x,∆y,∆z, where ∆ = areaABC.

Corollary 22. For any points A,B,C, P there holds the equality

areaABC = areaBCP + areaCAP + areaABP.
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Theorem 10 justifies the name areal coordinates for barycentric coordinates of a
point.

Now, let Pi = (xi, yi, zi) (i = 1, 2) be any two points. Then for the points
Di = APi ∩BC we have equalities

(PiDiA) = yi + zi, areaABDi =
zi

yi + zi
(i = 1, 2).

Therefore, we obtain successively

areaAD1D2 = areaABD2 − areaABD1 = ∆
(

z2
y2 + z2

− z1
y1 + z1

)

= ∆
y1z2 − z1y2

(y1 + z1)(y2 + z2)
,

areaAP1P2 = (P1D1A) · areaAD1P2 = (P1D1A)(P2D2A) · areaAD1D2

= (y1 + z1)(y2 + z2)areaAD1D2 = ∆(y1z2 − z1y2).

Finally, we can give a probably new proof of a well-known formula for the
oriented area of a triangle.

Theorem 11. Oriented area of any triangle with vertices Pi = (xi, yi, zi)
(i = 1, 2, 3) is given by the formula

areaP1P2P3 = ∆

∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ . (29)

Proof. The proven formula for areaAP1P2 and analogous formulas for areaAP2P3

and areaAP3P1 and Corollary 22 imply

areaP1P2P3 = areaAP2P3 + areaAP3P1 + areaAP1P2

= ∆(y2z3 − z2y3 + y3z1 − z3y1 + y1z2 − z1y2)

= ∆

∣∣∣∣∣∣
1 y1 z1
1 y2 z2
1 y3 z3

∣∣∣∣∣∣ ,

wherefrom (29) follows because of the equalities 1− yi − zi = xi (i = 1, 2, 3).
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