
Protumor effects of proinflammatory mediators

in breast cancer

Abstract

Inflammation is defined as an enabling characteristic of malignant
growth. Many proinflammatory mediators have protumor capabilities. In
this review we focus on the protumor effect of cytokines and chemokines in
breast cancer. We discuss the role of interleukin 1b, interleukin 6, tumor
necrosis factor a, CCL2, CCL5, and CXCL12 and its receptor CXCR4 as
typical mediators implicated in breast cancer progression. We also analyze
the impact of transcription factor NF-kB. Proinflammatory mediators with
protumor effects should be considered as therapeutic targets in breast cancer.
It is challenging how to find optimal anti-cytokine and anti-chemokine
regiments as a part of anticancer therapy.

INTRODUCTION

Malignant tumor is no longer considered to be a mass of neoplastic
cells. There is intensive crosstalk between tumor and its sur-

rounding tissue. Tumor, microenvironment is now considered to be
important factor influencing tumor destiny (1). Components of various
processes are present in the tumor stroma: inflammation, specific im-
munologic response, angiogenesis and fibrinogenesis. The link between
cancer and inflammation has been observed by Rudolf Virchow in 1863
(2). More than century later, in the year 2011 Hanahan and Weinberg
defined inflammation as an enabling characteristic of tumor growth (3).
Cancer and inflammation are connected by two pathways. Inflammation
contributes to development of cancer and genetic alterations that lead to
cancer stimulate the inflammatory processes resulting in tumor-favor-
able microenvironment. Inflammation influences all stages of carcino-
genesis: initiation, promotion and progression (1, 4). Mechanisms that
relate inflammation and carcinogenesis are nowadays better defined and
they include: production of ROS and RNS by activated inflamma-
tory/immune cells which can cause DNA damage and contribute to ge-
nome instability and epigenetic alterations such as DNA methylation
and histone modifications. Major mediators relating inflammation and
cancer include cytokines, chemokines, COX-2, prostaglandins, NO and
NF-kB (1). In this review we will focus on two major mediators relating
inflammation and cancer: cytokines and chemokines. We are going to dis-
cuss in more detail protumor effects of these mediators in breast cancer.

Protumor effects of cytokines

Interleukin -1ß (IL-1ß)

There are currently 11 members of IL-1 family of ligands and
receptors (5). In this review we will focus on IL-1b as it has been shown
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to be a primary mediator in context of chronic inflamma-
tion (6). IL-1b induces cellular changes through binding
of IL-1 receptor I (IL-1RI) at the cellular membrane and
recruitment of coreceptor IL-2 RAcP. The second IL-1
receptor (IL-1RII) has no signaling capabilities but may
act as a decoy receptor (7). IL-1b has been shown to be
expressed in many solid tumors, including breast cancer
(8). Patients with IL-1 producing tumors have worse
prognosis than those with lower expression of IL-1 (8).
High serum levels of IL-1b correlate with recurrence in
breast cancer patients (9). IL-1b is produced both by
breast tumor cells and by cells of the tumor microen-
vironment (9). The concentration of IL-1b was reported
to be significantly higher in invasive breast carcinomas
than in ductal carcinoma in situ and benign lesions (10).
In the same study high IL-1b content was associated with
tumor invasiveness and more aggressive tumor pheno-
type. Expression of IL-1b receptors was documented in
human breast cancer cell lines in vitro and in a murine
xenograft model (11). Several studies related IL-1b to
tumor migration and invasion. In the study of Wang et al.
IL-1b has been linked to lower expression of E-cadherin
and induction of matrix metalloproteinase-9 (MMP-9)
(12). Reduced expression of E-cadherin promotes cell
migration; whereas expression of MMP-9 has a role in
local extracellular matrix degradation and tumor inva-
sion. It has been shown that IL-1 stimulates expression of
endothelial adhesion molecules such as intracellular ad-
hesion molecule-1 (ICAM-1) and vascular adhesion mo-
lecule-1 (VCAM-1) (6). ICAM-1 was shown to play a
causal role in invasion of metastatic human breast carci-
noma cell lines (13). These findings confirm that some

processes beneficial for host in the defense against exoge-
nous stimuli (eg. facilitation of migration of neutrophils
into tissue in case of bacterial infection) may be exploited
by tumor and thus become harmful to the host. In vari-
ous experimental models IL-1b was related to angioge-
nesis (6, 14). IL-1b has ability to induce an angiogenic
phenotype (15). IL-1b acts via autocrine and/or para-
crine mechanisms and may promote angiogenesis by
regulating expression of angiogenic factors such as IL-8
(6). IL-1b induces expression of hypoxia inducible fac-
tor-1a, a dominant transcription factor for vascular endo-
theliol growth factor (VEGF) in breast cancer cells (16).
IL-1b enhances inflammation by acting on other pro-
-inflammatory mediators and receptors. IL-1b was shown
to activate a ROS-Src-MAPK-AP-1 pathway in breast
cancer cells leading to increased COX-2 levels (17). An
autoamplification loop has been suggested: IL-1b secret-
ed by macrophages enhances expression of IL-1b by both
macrophages and breast cancer cells. IL-1b plays a role in
crosstalk between cytokines and chemokines by inducing
expression of chemokine receptors. In the study of Valdi-
via-Silva et al. IL-1b stimulation was followed by signifi-
cant increase of CXCR4, CXCR2 and CX3CR1 expres-
sion in breast cancer cell line MCF-7 (18). An interaction
was shown between IL-1b and other factors that promote
breast cancer: growth factors, growth factor receptors and
steroid hormones. EGF ligand amphiregulin was found
to regulate expression of IL-1b in breast cancer cells
(SUM 149) (19). In a mouse model IL-1b and fibroblast
growth factor receptor 1 cooperate to induce COX-2
during early mammary tumorigenesis (20). Speirs et al.
reported transcriptional activation of ER alpha by IL-1b
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Figure 1. Interaction between tumor cells, chemokines, cytokines and inflammatory cells. Two aspects of chemokine activities are shown: 1)
Chemokines influence leukocyte infiltration. Tumor cells produce chemokines that attract monocytes (e.g. CCL2 and CCL5) resulting in an increase
in tumor associated macrophages (TAM). TAM secrete cytokines like TNFa that further stimulate chemokine production. 2) Chemokines and their
receptors play role in directing the homing of tumor cells to metastatic sites. Breast cancer cells express chemokine receptors (e.g. CXCR4) that enable
them to interact with chemokines (e.g. CXCL12) expressed in distant organs.



in breast cancer cells (21). Some authors analyzed some
IL-1 family members, including IL-1ß in ER (–) and ER
(+) breast cancer patient groups and found difference in
cytokine profile (22). IL-1b may have protumor effect by
interfering with immune surveillance. IL-1b has been
shown to be related to recruitment of suppressor cells
called myeloid-derived suppressor cells (MDSC) (23).
These cells act as effective suppressors of CD4+ and
CD8+ T lymphocytes. Mice with impaired IL-1ß signal-
ing (IL-1R-deficient mice) have delayed accumulation of
MDSC and slower growing mammary tumors with re-
duced metastatic potential (24). Since IL-1 family mem-
bers are secreted by adipose tissue these mediators are
being explored as a potential link between obesity and
breast cancer progression (25).

Interleukin 6 (IL-6)

Interleukin 6 (IL-6) is another major proinflamma-
tory cytokine that may contribute to the link between in-
flammation and cancer (26). IL-6 exerts its effects in two
ways. Classical IL-6 activation comprises IL-6 binding to
IL-6 receptor on cell membrane (IL-6R). The IL-6/IL-6R
complex then associates with signal-transducing mem-
brane protein gp 130. In that way gp130 dimerisation is
promoted and intracellular signaling that involves JAK is
initiated. Alternative way by which IL-6 activates cells is
called trans-signaling and comprises IL-6 binding to
soluble form of the IL-6R (sIL-6R). Most genes that are
targeted by IL-6 are involved in cell cycle progression and
suppression of apoptosis (27). By influencing anti-apopto-
tic pathways IL-6 might contribute to survival of DNA-
-damaged cells.

There are several mechanisms by which IL-6 might
influence tumor invasion and spread. IL-6 stimulates
epithelial cells to produce monocyte chemoattractant pro-
tein 1 (MCP-1) and colony stimulating factors (28). IL-6
affects the process of invasion and metastasis by increas-
ing the expression of matrix metalloproteinases (MMPs)
(29). IL-6 also up-regulates the expression of various
adhesion molecules like ICAM-1 and endothelial leuko-
cyte adhesion molecule-1 (ELAM-1) which are important
for adhesion of tumor cells to endothelial cells, thus
favoring tumor spread (30).

In many studies serum circulating IL-6 has been shown
to be a negative prognostic factor in breast cancer pa-
tients. IL-6 levels were higher in breast cancer patients
than in healthy controls (31). Higher IL-6 serum levels
were observed in patients with recurrent disease than in
non-recurrent cases (32). Several authors found correla-
tion between IL-6 serum levels and prognosis in meta-
static breast cancer patients (33). IL-6 expression in breast
malignant tissue was found to be higher then in non-
-malignant tissue (34, 35). However, Green et al. found
no difference in expression between neoplastic breast
tissue and normal breast tissue (36). Studies in vitro
showed that effects of IL-6 on breast cancer cells signi-
ficantly vary depending on cell type (37). However, it has
been consistently reported that IL-6 promotes motility of
breast cancer cells (38, 39). IL-6 was shown to decrease

cell adhesion by decreasing E-cadherin expression in
breast cancer cells (40). Sansone et al. reported up-regu-
lation of IL-6 gene expression in mammospheres obtain-
ed from invasive breast carcinoma (41). These authors
also provided evidence that IL-6 regulates Notch-3 de-
pendent signaling pathway thus promoting features that
contribute to malignant phenotype (self renewal of cells,
hypoxia survival and invasive potential) (41). In some
studies IL-6 was related to response to anticancer thera-
py. In the study of Conze et al. IL-6 autocrine production
was shown to be important factor in determining multi-
drug resistance in breast cancer cells (42).

Tumor necrosis factor a (TNFa)

TNFa was originally identified as an endotoxin-in-
duced, macrophage-derived serum protein that has abili-
ty to induce necrosis of tumors (43). TNFa belongs to a
large family of proteins called "TNFa superfamily" (44).
TNFa transduces its signal through two distinct cell
surface receptors: TNF-R1 and TNF-R2 (45). TNFa

receptor activation requires formation of multiprotein
signaling complex leading to activation of transcriptional
or an apoptotic pathway. In most situations the trans-
criptional pathway is activated (37). TNFa is mainly
synthesized by activated macrophages, NK cells, T cells,
B cells and natural killer cells (44). In contrast to high
doses that are related to tumor destruction, exposure to
low dose, chronic TNFa production is related to tumor
promotion (45). High TNFa levels were found in blood
of cancer patients with various tumors, including breast
cancer patients (46). In several studies there was ten-
dency for correlation between increased levels of TNFa

expression and more advanced stage of breast cancer (47,
48, 49). TNFa expression in inflammatory breast carci-
noma was found to be related to higher tumor grade and
lymph node involvement (48). In breast tumors TNFa

expression was found in breast tumor cells and in the
cells of tumor stroma such as macrophages and endo-
thelial cells (48, 49). TNFa receptors were detected in
breast tumors as well (48, 49, 50). In vitro studies showed
that TNFa promotes breast cancer cell proliferation and
enhances estrogen-induced cell proliferation (51, 52).
The experiments in vivo confirmed that TNFa contribu-
tes to mammary tumorigenesis (51, 53). NF-kB pathway
was found to be critical for TNFa-induced tumor growth
in vivo and in vitro (51). TNFa promotes tumor growth
and progression by several mechanisms. TNFa induces
various mediators that may influence tumor growth and
progression. TNFa has been shown to be a potent indu-
cer of monocyte chemoattractants such as CCL2 and
CCL5 (45). Positive loop may develop between tumor cells
and tumor associated macrophages (TAM). Tumor cells
produce monocyte chemoattractants such as CCL2 and
CCL5. These chemokines induce monocyte migration
to tumor sites resulting in accumulation of TAM. TAM
express various cytokines including TNFa that further
promote the expression of chemokines by tumor cells
(Figure 1). Furthermore, TNFa has been shown to influ-
ence processes of motility and invasion. TNFa induces
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expression of MMPs (54). Besides being a potent stimula-
tor of MMP-9 in monocyte cells, TNFa affects MMP
production in breast cancer cells (55, 56). Additionally,
TNFa plays a role in epithelial-mesenchymal transition
(EMT) of breast cancer cells- a process associated with pro-
motion of invasion (47, 57). Another protumor mecha-
nism of TNFa is promotion of angiogenesis. TNFa

simulates production of various angiogenic factors such
as interleukin-8, VEGF and basic fibroblast growth fac-
tor (58).This cytokine is involved in the process of bone
resorption in metastatic breast cancer and presents an
important factor that contributes to cancer cachexia in
patients with malignant disease including breast cancer
(59, 60).

Protumor effects of chemokines

Chemokines are small proteins (8-10 kDa) with che-
motactic activities important for leukocyte trafficking and
homing. They are classified into four groups on the basis
of the position of two cysteins that are adjacent to the
amino terminus: CXC, CC, C and CX3C (61). Chemo-
kines bind to chemokine receptors which belong to the
G-protein-coupled receptors. Most of those receptors bind
more than one type of chemokine. However, some recep-
tors bind only one ligand: e.g. CXCR4 is the only recep-
tor for CXCL12 (62). According to Ben-Baruch there are
four major groups of chemokine activities in malignan-
cy: 1) inducing the leukocyte infiltration to the tumor
site; 2) directing the homing of tumor cells to metastatic
sites; 3) regulating angiogenesis and 4) acting directly on
tumor cells (63).

CCL2 and CCL5

CC chemokine ligand- 2 (CCL2), also known as mo-
nocyte chemoattractant protein 1 (MCP-1) and CC che-
mokine ligand-5 (CCL5), also known as regulated on
activation, normal T cell expressed and secreted (RAN-
TES) have been intensively studied in breast cancer (re-
viewed in 64). Results of most studies suggest a protumor
role of these chemokines in breast cancer. CCL2 and
CCL5 have been detected in primary breast tumors,
regional lymph nodes, metastases and serum of breast
cancer patients (64). CCL2 and CCL5 expression was
significantly correlated with advanced tumor stage, early
relapse and poor prognosis in breast cancer patients (63).
CCL5 was shown to be biomarker of disease progression
in stage II breast cancer patients, especially when com-
bined with absence of estrogen receptor a (65). Both
chemokines were found to be expressed in breast tumor
cells of primary breast cancers (66, 67, 68). Besides epi-
thelial cells CCL2 and CCL5 were found in the cells of
tumor microenvironment such as TAM and fibroblasts
(63). Studies of tumor cells in biopsies of breast cancer
patients and human breast adenocarcinoma cell lines
showed expression of receptors for CCL2 and CCL5 on
tumor cells (68). The fact that tumor cells express both
chemokines and relevant receptors supports an autocrine
mechanism of regulation. Both CCL2 and CCL5 have
ability to influence the balance between leukocyte infil-

trates in tumor microenvironment. These chemokines
play a significant role in recruitment of monocytes lead-
ing to elevated presence of TAM in breast cancer (64).
Inhibition of CCL5 resulted in reduced TAM presence
in mammary tumors (69). Although initially considered
as part of host defense TAM in breast tumors have been
shown to have deleterious effects by releasing various
tumor-promoting factors such as mediators that support
growth, degradation of extracellular matrix and angio-
genesis, and mediators that suppress immune functions.
Some tumor-promoting activities of CCL2 and CCL5 do
not fully overlap. For example CCL2 has more pro-
nounced role in angiogenesis, while CCL5 is considered
to be mainly an invasion-promoting factor. Besides hav-
ing an indirect effect on angiogenesis by increasing TAM
accumulation in breast tumor tissue, CCL2 has a direct
effect by acting on endothelial cells to promote angio-
genesis (70). The effect of CCL5 as pro-invasive factor is
related to its ability to induce breast tumor cell migration
and to up-regulate the expression of MMPs (71). Besides
innate immunity (through effects on monocytes) CCL2
affects adoptive immunity as well. CCL2 has been shown
to have negative effect on T cell effector function and to
play a role in T helper cell polarization (72, 73). The
contribution of CCL2 and CCL5 to tumor growth was
tested in various animal and in vitro models. Inhibition
of CCL2 or CCL5 or their receptors resulted in reduction
of tumor growth and reduced formation of metastases
(64). In the study of Soria et al. concomitant expression
of CCL2 and CCL5 in breast tumors was found to be
associated with more advanced stage of the disease (68).
In the same study relationship between CCL2 and CCL5
was shown: CCL2 up-regulated the release of CCL5 in
experiments in vitro (68). The same group of authors
investigated expression of TNFa and IL-1b together
with CCL2 and CCL5: the coordinated expression of the
two cytokines and two chemokines was shown to be
important for the disease course (47). Expression of CCL2
and CCL5 as typical examples of protumor chemokines
may influence the equilibrium between "pro" and "contra"
tumor mediators in favor of those with tumor promoting
functions.

CXCL12 and CXCR4

CXC chemokine ligand-12 (CXCL12), also known as
stromal derived factor 1 (SDF-1) and its receptor CXC
chemokine receptor 4 (CXCR4) play a crucial role in
homing of hematopoietic stem cells, B-lymphocyte de-
velopment and progenitor recruitment to sites of ische-
mic tissue damage (74). CXCR4-CXC12 axis has been
shown to be important for "homing" of cancer cells as
well. Müller et al. analyzed human breast cancer cell
lines and found the expression level of CXCR4 (and
CCR7 as well) to be consistently increased in comparison
to normal mammary epithelial cells. In the same study
CXCL12 was expressed at high levels in the most com-
mon sites of breast cancer metastasis (lungs, liver, bone
marrow and lymph nodes) and at low level in all other
organs. Blocking the CXCR4 receptor decreased breast
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cancer cell invasiveness in vitro and markedly reduced
the number of lymph node and lung metastases in an in
vivo mouse model (75). These findings support "hom-
ing" theory of metastases- one of the theories that tries to
explain why metastases to certain organs are not random
(Figure 1). Several authors confirmed association of high
level expression of CXCR4 with breast cancer metastases
especially to lymph nodes (76, 77, 78). In a large tissue
microarray study CXCR4 expression was associated with
breast tumor progression (79). In the study of Holm et al.
elevated expression of CXCR4 was related to recurrence
in HER-2 negative breast cancer patients (80). In some
studies high level expression of CXCR4 was associated
with poor overall survival in breast cancer patients (81,
82). However, that was not confirmed by study of Kang et
al. indicating that further analyses are needed to evaluate
prognostic impact of CXCR4 (77). CXCL12 is expressed
at high levels in breast carcinoma associated fibroblasts
(83, 84). CXCL12 promotes the progression of breast
cancer directly by enhancing tumor cell growth and
indirectly by recruiting endothelial progenitor cells that
are crucial for tumor angiogenesis (83). In the study of
Kang et al. CXCL12 expression significantly correlated
with overall survival and incidence-free survival in breast
cancer patients (77).

NF-kB

NF-kB is an important transcription factor implicated
in regulation of cytokines and chemokines. NF-kB regu-
lates proinflammatory cytokines and these mediators act
as stimulatory signals for NF-kB resulting in amplifica-
tion that is often seen in inflammation. Such positive
feedback mechanisms contribute to intensity of inflam-
mation. In case of tumor growth these mechanisms may
play a role in sustained tumorigenesis. NF-kB is a dime-
ric complex of Rel family proteins that functions as a
transcription factor. It regulates more than 400 genes
(85). In resting state NF-kB is confined to the cytoplasm
through its interaction with inhibitor of kappa B (IkB)
proteins. Nucler translocation of NF-kB is crucial step in
its activation. NF-kB may be activated by various exo-
genous and endogenous factors including proinflam-
matory cytokines, T-and B-cell mitogens, biological, phy-
sical and chemical stressors (85). Constitutive activation
of NF-kB has been reported for many cancers, including
breast cancer (86). Besides constitutive expression in tu-
mor cells, according to Aggarwal and Gehlot, there are
several lines of evidence that relate NF-kB to carcino-
genesis: NF-kB regulates most of the genes linked to
inflammation – some of those may have protumor effects;
NF-kB regulates antiapoptotic genes, genes related to
proliferation, invasion and angiogenesis; NF-kB has been
linked to transformation; NF-kB is activated by nume-
rous carcinogens while chemopreventive agents suppress
its activation (87).

In case of breast cancer NF-kB was related to pro-
gression of breast cancer to hormone-independent phe-
notype (88). Subsequent studies have shown that NF-kB
is activated in both hormone negative and hormone posi-

tive human breast cells (89). In several studies NF-kB
was related to more aggressive phenotype of breast tu-
mors. Increased NF-kB activity was related to breast can-
cer overexpressing HER-2/neu, to poorly differentiated
tumors and tumors with high mitotic counts (90). NF-kB
was reported to contribute to the unusual phenotype and
aggressiveness of inflammatory breast cancer (91). In
study of ER-positive primary breast carcinoma, NF-kB
was suggested to be a marker of high – risk subset of
tumors (92). Some drugs already used in breast cancer
therapy like lapatinum inhibit the activation of NF-kB in
HER-2-overexpressing breast cancer cells (93). The acti-
vity of NF-kB has been implicated in promoting the
chemoresistance of breast cancer (94).

CONCLUSION

Experimental and clinical data support protumor ef-
fects of various cytokines and chemokines in breast can-
cer. These findings provide basis for considering these
mediators as therapeutic targets. Some regiments direct-
ed against proinflammatory mediators are already in use
in other medical indications (6, 95). However, interfer-
ing with complex inflammatory network is not without
potential harmful effects for physiological processes (96).
It is challenging how to find optimal anti-cytokine and
anti-chemokine approach as a part of anticancer therapy.
Some authors suggest targeting several mediators at the
same time (47). Another important problem is how to
define the subgroup of patients that would have maximal
benefit of such anti-inflammatory regiments. Anti-in-
flammatory agents are being explored in the prevention
of cancer as well.
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